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Motivation and goal

Physics aims:

string theory effective action beyond supergravity
approximation

higher derivative corrections in D = 11− d dimensions

with T d

non-perturbative effects and black hole physics
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Motivation and goal

Physics aims:

string theory effective action beyond supergravity
approximation

higher derivative corrections in D = 11− d dimensions

with T d

non-perturbative effects and black hole physics

Maths aims:

wavefront sets of small automorphic representations of
split real Lie groups

alternative expressions for Eisenstein series

beyond automorphic forms?
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String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion
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Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′
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String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion
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α′

(energy)

Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′

✗
✖

✔
✕fixed order in gs

computed by integrals over moduli space of Riemann surfaces
becomes hard after two loops [D’Hoker, Phong]
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String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion
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α′

(energy)

Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′

✛

✚

✘

✙

incl. non-pert.

(up to) fixed energy order

sometimes fixed by (discrete) symmetries/automorphy
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String theory effective action

Consider four-graviton scattering amplitude (in D = 10
space-time dimensions) at tree level
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String theory effective action

Consider four-graviton scattering amplitude (in D = 10
space-time dimensions) at tree level

k1
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k3

k4

Atree(s, t, u) = g−2
s

4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4
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String theory effective action

Consider four-graviton scattering amplitude (in D = 10
space-time dimensions) at tree level

k1

k2

k3

k4

Atree(s, t, u) = g−2
s

4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

❇
❇❇▼

Mandelstam

variables

s = −(k1 + k2)
2

t = −(k1 + k4)
2

u = −(k1 + k3)
2

❅
❅■

string coupling:

tree level

❇
❇❇▼

absorbs polarisation

tensors

�
��✠

α′ = ℓ2s

string scale
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String theory effective action

Consider four-graviton scattering amplitude (in D = 10
space-time dimensions) at tree level

k1

k2

k3

k4

Atree(s, t, u) = g−2
s

4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

❇
❇❇▼

Mandelstam

variables

s = −(k1 + k2)
2

t = −(k1 + k4)
2

u = −(k1 + k3)
2

❅
❅■

string coupling:

tree level

❇
❇❇▼

absorbs polarisation

tensors

�
��✠

α′ = ℓ2s

string scale

Expand for low energies

α′s << 1, α′t << 1 and α′u << 1
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String theory effective action

Consider four-graviton scattering amplitude (in D = 10
space-time dimensions) at tree level

k1

k2

k3

k4

Atree(s, t, u) = g−2
s

4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= 4g−2
s R4

[
1

stu
+ (α′)3·2ζ(3)+(α′)5(s2 + t2 + u2)·ζ(5)+ . . .

]

❇
❇❇▼

dimensionful
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Low energy effective action

Gravitational interaction at lowest energies in D space-time
dimensions normally described by general relativity (or
supergravity) with Lagrangian

L = ℓ2−DR
�✒length scale ∼

√
α′

✛
Riemann scalar

curvature of space-time

two-derivatives
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Low energy effective action

Gravitational interaction at lowest energies in D space-time
dimensions normally described by general relativity (or
supergravity) with Lagrangian

L = ℓ2−DR
�✒length scale ∼

√
α′

✛
Riemann scalar

curvature of space-time

two-derivatives

Higher orders in α′ are related to higher derivative
modifications. For gravity in D dimensions schematically
from string tree level (Einstein frame)

e−1L= ℓ2−DR + ℓ8−D2ζ(3)g
−3/2
s R4

+ℓ12−Dζ(5)g
−5/2
s ∇4R4 + . . .
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Low energy effective action

Gravitational interaction at lowest energies in D space-time
dimensions normally described by general relativity (or
supergravity) with Lagrangian

L = ℓ2−DR
�✒length scale ∼

√
α′

✛
Riemann scalar

curvature of space-time

two-derivatives

Higher orders in α′ are related to higher derivative
modifications. For gravity in D dimensions schematically
from string tree level (Einstein frame)
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−3/2
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Moduli fields and U-duality (I)

The string coupling gs is a modulus of string theory.

Moduli contain information of the background on which
strings propagate.
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Moduli fields and U-duality (I)

The string coupling gs is a modulus of string theory.

Moduli contain information of the background on which
strings propagate.

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n

winding w
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Moduli fields and U-duality (I)

The string coupling gs is a modulus of string theory.

Moduli contain information of the background on which
strings propagate.

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n

winding w

1
R

✲✛
R ↔ 1

R

n ↔ w

momentum w
winding n
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Moduli fields and U-duality (I)

The string coupling gs is a modulus of string theory.

Moduli contain information of the background on which
strings propagate.

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n

winding w

1
R

✲✛
R ↔ 1

R

n ↔ w

momentum w
winding n

Equivalent string theories! T-duality SO(d− 1, d− 1,Z)
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Moduli fields and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

z = χ+ ig−1
s

(

a b

c d

)

· z =
az + b

cz + d

giving equivalent string theories. z ∈ SL(2,R)/SO(2)
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Moduli fields and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

z = χ+ ig−1
s

(

a b

c d

)

· z =
az + b

cz + d

giving equivalent string theories. z ∈ SL(2,R)/SO(2)

All moduli g together form moduli space M [Hull, Townsend

1995]

g ∈ M = Ed(Z)\Ed(d)/K(Ed)

✑
✑✑✸ ✻ ❆❆❑

U-duality Cremmer–Julia
hidden symmetry

compact subgp

t t t tt t
1

2

3 4 5 d
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Moduli fields and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

z = χ+ ig−1
s

(

a b

c d

)

· z =
az + b

cz + d

giving equivalent string theories. z ∈ SL(2,R)/SO(2)

All moduli g together form moduli space M [Hull, Townsend

1995]

g ∈ M = Ed(Z)\Ed(d)/K(Ed)

✑
✑✑✸ ✻ ❆❆❑

U-duality Cremmer–Julia
hidden symmetry

compact subgp

t t t tt t
1

2

3 4 5 d

✬
✫

✩
✪

T-duality✓✒✏✑S-duality
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Coefficient functions in amplitude (I)

Expand the (analytic part of the) full scattering amplitude in
energy direction

A(s, t, u; g) = R4
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3
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(energy)

✓

✒

✏

✑

✓

✒

✏
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E(0,0) E(1,0)

Coefficient functions E(p,q)
are invariant under U-duality Ed(Z)

are of moderate growth in order to be compatible with
perturbation theory

satisfy differential equations for supersymmetry
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Coefficient functions in amplitude (I)

Expand the (analytic part of the) full scattering amplitude in
energy direction

A(s, t, u; g) = R4




1

stu
+
∑

p,q≥0

E(p,q)(g)σp2σ
q
3





with σn =
(α′)n

4n (sn + tn + un) and g ∈ M. t
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✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
E(0,0) E(1,0)

Coefficient functions E(p,q)
are invariant under U-duality Ed(Z)

are of moderate growth in order to be compatible with
perturbation theory

satisfy differential equations for supersymmetry

⇒ Looking for (spherical) automorphic forms on Ed
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Coefficient functions in amplitude (II)

A lot known for lowest E(p,q) from supersymmetry and

internal consistency [Green, Gutperle, Kiritsis, Miller, Obers,

Pioline, Russo, Sethi, Vanhove, Waldron,...]

E(0,0)(g) = 2ζ(3)Eα1,3/2(g) R4 correction, 1
2-BPS, min-rep

E(1,0)(g) = ζ(5)Eα1,5/2(g) ∇4R4 correction, 1
4-BPS, ntm-rep

E(0,1)(g) = later ∇6R4 correction, 1
8-BPS

in terms of (maximal parabolic) Eisenstein series

Eα1,s(g) =
∑

γ∈P1(Z)\Ed(Z)

H(γg)s
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Coefficient functions in amplitude (II)

A lot known for lowest E(p,q) from supersymmetry and

internal consistency [Green, Gutperle, Kiritsis, Miller, Obers,

Pioline, Russo, Sethi, Vanhove, Waldron,...]

E(0,0)(g) = 2ζ(3)Eα1,3/2(g) R4 correction, 1
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E(1,0)(g) = ζ(5)Eα1,5/2(g) ∇4R4 correction, 1
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8-BPS

in terms of (maximal parabolic) Eisenstein series
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✻gs (loops)

α′
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✇ ✇

✓

✒

✏

✑

✓

✒

✏

✑
Consistency with tree-level results

E(0,0)(g) = 2ζ(3)g
3/2
s + . . . , E(1,0)(g) = ζ(5)g

5/2
s + . . . ,
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Different viewpoint: Field theory

Instead of reviewing Fourier expansions and consistency of
answers above [Green, Miller, Russo, Vanhove; Obers, Pioline;...]

⇒ use that four-graviton process is very special. Low

order corrections R4, ∇4R4 and ∇6R4 are partially BPS

=⇒ Only BPS states contribute; no other string theory
states visible at low energies
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Different viewpoint: Field theory

Instead of reviewing Fourier expansions and consistency of
answers above [Green, Miller, Russo, Vanhove; Obers, Pioline;...]

⇒ use that four-graviton process is very special. Low

order corrections R4, ∇4R4 and ∇6R4 are partially BPS

=⇒ Only BPS states contribute; no other string theory
states visible at low energies

Used by [Green, Vanhove] to perform supergravity loop
calculations including BPS momentum states to find E(0,0)
and E(1,0) in D = 10 dimensions.
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Different viewpoint: Field theory

Instead of reviewing Fourier expansions and consistency of
answers above [Green, Miller, Russo, Vanhove; Obers, Pioline;...]

⇒ use that four-graviton process is very special. Low

order corrections R4, ∇4R4 and ∇6R4 are partially BPS

=⇒ Only BPS states contribute; no other string theory
states visible at low energies

Used by [Green, Vanhove] to perform supergravity loop
calculations including BPS momentum states to find E(0,0)
and E(1,0) in D = 10 dimensions.

Aim: Investigate E(p,q) for D < 10 by similar methods in

manifestly U-duality covariant formalism

=⇒ Exceptional field theory loops
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Exceptional field theory

[de Wit, Nicolai; Hull; Waldram et al.;

Hohm, Samtleben; West; ...] t t t tt
1 3 4 d

2 Ed

Formalism to make hidden Ed(R) (continuous!) manifest.

Consider extended space-time (D = 11− d)

MD ×Md(αd)

Coordinates xµ, yM with µ = 0, ..., D − 1 and M = 1, ..., d(αd).

d(αd) = dimRαd
: hst. weight rep. on node αd
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Exceptional field theory

[de Wit, Nicolai; Hull; Waldram et al.;

Hohm, Samtleben; West; ...] t t t tt
1 3 4 d

2 Ed

Formalism to make hidden Ed(R) (continuous!) manifest.

Consider extended space-time (D = 11− d)

MD ×Md(αd)

Coordinates xµ, yM with µ = 0, ..., D − 1 and M = 1, ..., d(αd).

d(αd) = dimRαd
: hst. weight rep. on node αd

Rαd
decomposes under ‘gravity line’ GL(d,R) ⊂ Ed(R)

yM = (ym, y[mn], y[m1...m5], . . .) (m,n, ... = 1, ..., d)
✟✯

KK momenta
❍❨
M2 wrappings
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Generalised coordinates yM ∈ Rαd

t t t tt
1 3 4 d

2 Ed

Ed Rαd

SO(5, 5) 16

E6 27

E7 56

E8 248
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Generalised coordinates yM ∈ Rαd

t t t tt
1 3 4 d

2 Ed

Ed Rαd
Rα1

SO(5, 5) 16 10

E6 27 27

E7 56 133

E8 248 3875⊕ 1

Generalised coordinates yM have to obey section constraint

∂A

∂yM
∂B

∂yN

∣
∣
∣
∣
Rα1

= 0

for any two fields A(xµ, yM ), B(xµ, yM ). LHS belongs to

Rαd
⊗Rαd

= Rα1 ⊕ . . .
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Section constraint

∂A

∂yM
∂B

∂yN

∣
∣
∣
∣
Rα1

= 0

Possible solution: ‘M-theory’: yM = (ym, ymn, ym1...m5 , . . .)��❅❅ ��❅❅

Alternative: Type IIB [Blair, Malek, Park]. These are the only
two vector space solutions [BK]
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Section constraint

∂A

∂yM
∂B

∂yN

∣
∣
∣
∣
Rα1

= 0

Possible solution: ‘M-theory’: yM = (ym, ymn, ym1...m5 , . . .)��❅❅ ��❅❅

Alternative: Type IIB [Blair, Malek, Park]. These are the only
two vector space solutions [BK]

Here: ‘Toroidal’ extended space for yM . Conjugate
momenta are quantised charges

ΓM = (nm, n
m1m2 , nn1...n5 , . . .) ∈ Z

d(αd)

Section constraint becomes 1
2-BPS constraint on charges

Γ× Γ̃
∣
∣
Rα1

= 0 ⇒ write Γ× Γ̃ = 0 for brevity

−→ One loop Automorphic forms and lattice sums in exceptional field theory – p.13



Amplitudes in EFT (I)

Exceptional field theory is mainly a classical theory. QFT
treatment complicated due to section constraint.

Consider 3-point vertex in EFT φ ∂φ ∂φ

∫

R11−d

dx

∫

R
d(αd)/section

dy φ(x, y) (∇φ(x, y) · ∇φ(x, y))
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Amplitudes in EFT (I)

Exceptional field theory is mainly a classical theory. QFT
treatment complicated due to section constraint.

Consider 3-point vertex in EFT φ ∂φ ∂φ

∫

R11−d

dx

∫

R
d(αd)/section

dy φ(x, y) (∇φ(x, y) · ∇φ(x, y))

y-Fourier expand φ(x, y) =
∑

Γ∈Zd(αd)

φΓ(x)e
iℓ−1Γ·y. Vertex

∑

Γ1,Γ2∈Z
d(αd)

Γ1×Γ2=0

∫

R11−d

dxφ−Γ1−Γ2
(x)
[

∂µφΓ1
∂µφΓ2

−ℓ−2 〈Z(Γ1)|Z(Γ2)〉φΓ1
φΓ2

]
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Amplitudes in EFT (I)

Exceptional field theory is mainly a classical theory. QFT
treatment complicated due to section constraint.

Consider 3-point vertex in EFT φ ∂φ ∂φ

∫

R11−d

dx

∫

R
d(αd)/section

dy φ(x, y) (∇φ(x, y) · ∇φ(x, y))

y-Fourier expand φ(x, y) =
∑

Γ∈Zd(αd)

φΓ(x)e
iℓ−1Γ·y. Vertex

∑

Γ1,Γ2∈Z
d(αd)

Γ1×Γ2=0

∫

R11−d

dxφ−Γ1−Γ2
(x)
[

∂µφΓ1
∂µφΓ2

−ℓ−2 〈Z(Γ1)|Z(Γ2)〉φΓ1
φΓ2

]

︸ ︷︷ ︸
charge dependent mass

❆❑
Section constraint on yM turned into constraint on charges
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Amplitudes in EFT (II)

〈Z(Γ)|Z(Γ)〉 like BPS-mass. In M-theory frame

ds211 = e
9−d
3

φMmndy
mdyn + e−

d
3
φηµνdx

µdxν

φ now dilaton; Mmn uni-modular metric on T d.

|Z(Γ)|2 = e−3φMmnnmnn+
1

2
e(6−d)φMm1n1Mm2n2n

m1m2nn1n2+. . .

From form of vertex see that momenta in propagators are
effectively shifted by Kaluza–Klein mass

p2 −→ p2 + ℓ−2|Z(Γ)|2

and section constraint Γi × Γj = 0 at every vertex.
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One-loop in EFT (I)

Four-graviton amplitude reduces to scalar box

❅
❅❘

�
�✒

�
�✠

❅
❅■

=
[
iκ2

2 t8t8
∏4

A=1 kAR(kA, eA)
]

A1-loop(k1, k2, k3, k4)

︸ ︷︷ ︸

R4

Pull out kinematic part

A1-loop(k1, k2, k3, k4) = κ2
∫

d11−dp

(2π)11−d

∑

Γ∈Z
d(αd)

Γ×Γ=0

1

((p− k1)2 + ℓ−2|Z|2)

× 1

(p2 + ℓ−2|Z|2)((p− k1 − k2)2 + ℓ−2|Z|2)((p+ k4)2 + ℓ−2|Z|2)
+ perms.
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One-loop in EFT (II)

Γ = 0 term corresponds to SUGRA in D = 11− d; usual log
threshold contribution ⇒ remove for analytic eff. action

Treat loop integral over d11−dp with usual Schwinger and
Feynman techniques:

A1-loop(k1, k2, k3, k4) = 4πℓ9−d
∑

Γ∈Z
d(αd)

Γ×Γ=0

∞∫

0

dv

v
d−1
2

1∫

0

dx1

x1∫

0

dx2

x2∫

0

dx3

× exp
[π

v

(
(1− x1)(x2 − x3)s+ x3(x1 − x2)t− ℓ−2|Z|2

)]

+ perms.

Low energy from expanding in Mandelstam variables

s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2.
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Low energy correction terms

For lowest two orders

A1-loop(s, t, u) = πℓ6
(

ξ(d− 3)Eαd,
d−3
2

+
π2ℓ4(s2 + t2 + u2)

720
ξ(d+ 1)Eαd,

d+1
2

+ . . .

)
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Low energy correction terms

For lowest two orders

A1-loop(s, t, u) = πℓ6
(

ξ(d− 3)Eαd,
d−3
2

+
π2ℓ4(s2 + t2 + u2)

720
ξ(d+ 1)Eαd,

d+1
2

+ . . .

)

✟✟✙ R4 correction

❅■
∇4R4 correction
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Low energy correction terms

For lowest two orders

A1-loop(s, t, u) = πℓ6
(

ξ(d− 3)Eαd,
d−3
2

+
π2ℓ4(s2 + t2 + u2)

720
ξ(d+ 1)Eαd,

d+1
2

+ . . .

)

✟✟✙ R4 correction

❅■
∇4R4 correction

Notation

ξ(s) = π−s/2Γ(s/2)ζ(s) [completed Riemann zeta]

Eαd,s =
1

2ζ(2s)

∑

Γ 6=0
Γ×Γ=0

|Z(Γ)|−2s [Eisenstein series]

Restricted lattice sum rewritable as single U-duality orbit!
−→ Two loops −→ Beyond
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Remarks

Expressions converge for ∇2kR4 term on T d when k > 3−d
2

For k = 0 (R4) and d > 3 (D < 8) find after using
Langlands’ functional relation the correct correction

function ED
(0,0) (including numerical coefficient).

For d = 3 one has to regularise; related to known

one-loop R4 divergence in SUGRA.

For k = 2 (∇4R4) expressions converge. For d ≤ 5 one
obtains only one supersymmetric invariant of [Bossard,

Verschinin]; for 7 ≤ d < 5 full (unique) invariant with
correct coefficient. For d = 8 ancestor of 3-loop
divergence [BK].

Expressions also ok for d > 8; Kac–Moody case [Fleig, AK]
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Two loops in EFT (I)
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Two loops in EFT (I)

[Bern et al.]: combination of planar and non-planar scalar
diagram at L = 2

�
�✒

❅
❅❘

❅
❅■

�
�✠

�
�
�
�
�❅

❅

❅
❅

�
�✒

❅
❅❘

❅
❅■

�
�✠

After a few pages of calculation

A2-loop(s, t, u) ∼ ℓ6
∑

Γ1,Γ2
Γi×Γj=0

∫ ∞

0

d3Ω

(detΩ)
7−d
2

e−Ωij〈Z(Γi)|Z(Γj)〉

×
[
ℓ4(s2 + t2 + u2)

6
+

ℓ6(s3 + t3 + u3)

72
Φ(0,1)(Ω) + . . .

]
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Two loops in EFT (I)

[Bern et al.]: combination of planar and non-planar scalar
diagram at L = 2

�
�✒

❅
❅❘

❅
❅■

�
�✠

�
�
�
�
�❅

❅

❅
❅

�
�✒

❅
❅❘

❅
❅■

�
�✠

After a few pages of calculation

A2-loop(s, t, u) ∼ ℓ6
∑

Γ1,Γ2
Γi×Γj=0

∫ ∞

0

d3Ω

(detΩ)
7−d
2

e−Ωij〈Z(Γi)|Z(Γj)〉

×
[
ℓ4(s2 + t2 + u2)

6
+

ℓ6(s3 + t3 + u3)

72
Φ(0,1)(Ω) + . . .

]
❍❍❍❥

∇4R4 correction
✟✟✟✙

∇6R4

Automorphic forms and lattice sums in exceptional field theory – p.20



Two loops in EFT (II)

Focus first on ∇4R4 contribution. Need to understand

∑

Γ1,Γ2
Γi×Γj=0

∫ ∞

0

d3Ω

(detΩ)
7−d
2

e−Ωij〈Z(Γi)|Z(Γj)〉

where Ωij = Ω =

(

L1 + L3 L3

L3 L2 + L3

)
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Two loops in EFT (II)

Focus first on ∇4R4 contribution. Need to understand

∑

Γ1,Γ2
Γi×Γj=0

∫ ∞

0

d3Ω

(detΩ)
7−d
2

e−Ωij〈Z(Γi)|Z(Γj)〉

where Ωij = Ω =

(

L1 + L3 L3

L3 L2 + L3

)

Sum is restricted to pairs of charges Γ1, Γ2 satisfying

Γi × Γj |Rα1
= 0

Solutions can be parametrised by suitable parabolic
decompositions [BK].
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Two loops in EFT (III)

Putting everything together

A2-loop,∇4R4

(s, t, u) = 8πℓ10ξ(d− 4)ξ(d− 5)Eαd−1,
d−4
2

This gives the correct function and coefficient for
3 ≤ d ≤ 8 with the right coefficient. Case d = 5 (D = 6)
trickier due to IR divergences.

Certain doubling of contributions from one loop and two
loops. Corrected if one-loop result renormalised.

Other orbits of M subdominant at low energies except
d = 5.
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Beyond Eisenstein series (I)

Consider ∇6R4 term E(0,1). Inhomogeneous equation [Green,

Vanhove]

(∆− λ)E(0,1) = −E2
(0,0)

Poisson equation. Not Eisenstein series!
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Beyond Eisenstein series (I)

Consider ∇6R4 term E(0,1). Inhomogeneous equation [Green,

Vanhove]

(∆− λ)E(0,1) = −E2
(0,0)

Poisson equation. Not Eisenstein series!

Recently solved in D = 10 dimensions (SL(2,Z)) by [Green,

Miller, Vanhove], giving correct perturbative results.

For other dimensions can write Poincaré series form [Ahlén,

AK in progress] that needs to be studied further.
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Beyond Eisenstein series (I)

Consider ∇6R4 term E(0,1). Inhomogeneous equation [Green,

Vanhove]

(∆− λ)E(0,1) = −E2
(0,0)

Poisson equation. Not Eisenstein series!

Recently solved in D = 10 dimensions (SL(2,Z)) by [Green,

Miller, Vanhove], giving correct perturbative results.

For other dimensions can write Poincaré series form [Ahlén,

AK in progress] that needs to be studied further.

E(0,1)(g) =
∑

γ∈P1\Ed

σ(γg)

with σ(g) not a character on P1 but depends on unipotent
part through Bessel functions. −→ yonder
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Beyond Eisenstein series (II)

Using exceptional field theory can also find a solution

E
2-loop
(0,1)

=
2π5−d

9

∑

Γi∈Z
2d(αd)
∗

Γi×Γj=0

∫

R
×3
+

d
3Ω

(detΩ)
7−d
2

(

L1 + L2 + L3 − 5
L1L2L3

detΩ

)

e
−Ωij〈Z(Γi)|Z(Γj)〉

Resembles an independent string theory answer based on
the Zhang–Kawazumi invariant [Pioline].

More general questions

Space of functions required for solving inhomogeneous
Laplace equation?

Automorphic distributions?

Fourier expansion and wavefront set?

Automorphic representations? Global picture?
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Summary and outlook

Explicitly evaluated loop amplitudes in EFT

Reproduced known E(p,q) in

manifestly U-duality covariant form

Useful tools for dealing with section
constraint

Analysis of differential equation for
higher order corrections and their
wavefront sets

Hasse diagram for E7(7)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

R

R4

∇4R4

∇6R4

∇6R4
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Summary and outlook

Explicitly evaluated loop amplitudes in EFT

Reproduced known E(p,q) in

manifestly U-duality covariant form

Useful tools for dealing with section
constraint

Analysis of differential equation for
higher order corrections and their
wavefront sets

Hasse diagram for E7(7)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

R

R4

∇4R4

∇6R4

∇6R4

Thank you for your attention!
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Beyond Eisenstein (III)

Solve (∆− 12)f(z) = −4ζ(3)E3/2(z)
2: [Green, Miller, Vanhove]

f(z) =
∑

γ∈Γ∞\SL(2,Z)

σ(γz), where (z = x+ iy) and

σ(z) = 2ζ(3)2y3 +
1

9
π2y +

∑

n 6=0

cn(y)e
2πinx

cn(y) = 8ζ(3)σ−2(n)y

[(

1 +
10

π2n2y2

)

K0(2π|n|y)

+

(
6

π|n|y +
10

π3|n|3y3
)

K1(2π|n|y)−
16

π(|n|y)1/2
K7/2(2π|n|y)

]

For higher rank U-dualities (in progress with Olof Ahlén).
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Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?
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Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?

At the level of Lie algebras k ⊂ g over R.

(1) ∞-dim’l fixed point Lie algebra of (Chevalley) involution.
(2) k is not a Kac–Moody algebra.
(3) k is not a simple algebra. It has ∞-dim’l ideals.
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Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?

At the level of Lie algebras k ⊂ g over R.

(1) ∞-dim’l fixed point Lie algebra of (Chevalley) involution.
(2) k is not a Kac–Moody algebra.
(3) k is not a simple algebra. It has ∞-dim’l ideals.

For k of hyperbolic g = e10 one has irreducible (spinor)
representations of dimensions [Damour, AK, Nicolai]

32, 320, 1728, 7040

with quotients
so(32), so(288, 32), ?, ?
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K-types

(Some of) these representations can be lifted to the Weyl
group W and (covers of) K [Ghatei, Horn, Köhl, Weiss].

Question: Can they arise as K-types of some G
representations?
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K-types

(Some of) these representations can be lifted to the Weyl
group W and (covers of) K [Ghatei, Horn, Köhl, Weiss].

Question: Can they arise as K-types of some G
representations?

For other Kac–Moody groups, e.g.









2 −2

−2 2 −1

−1 2









other

quotients possible, also with U(1) factors
⇒ holomorphic discrete series?

Question: Spherical vectors for Kac–Moody reps?
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