TWISTED WEYL GROUP MULTIPLE DIRICHLET SERIES OVER THE RATIONAL FUNCTION FIELD

Holley Friedlander Dickinson College

BIRS: Whittaker Functions: Number Theory, Geometry and Physics July 28, 2016

BIG PICTURE

- Weyl group multiple Dirichlet series arise as Fourier-Whittaker coefficients of metaplectic Eisenstein series.
- When defined over algebraic function fields, they are rational functions in several variables.

Long-term goal: Understand how these rational functions encode arithmetic/geometric/combinatorial information.

NOTATION

$n \ge 1$	
$K = \mathbb{F}_q(t)$,	$q \equiv 1 \mod 2n$
$\mathcal{O} = \mathbb{F}_q[t]$	
φ	reduced root system of rank
Λ	root lattice of Φ
W	Weyl group of Φ
σ_1,\ldots,σ_r	simple reflections
α_1,\ldots,α_r	simple roots
$\varpi_1, \ldots \varpi_r$	fundamental weights
$o = \sum_{i=1}^{r} \varpi_i$	

r

WEYL GROUP MULTIPLE DIRICHLET SERIES

Let
$$\mathbf{s} = (s_1, \ldots, s_r)$$
, and let $\mathbf{m} = (m_1, \ldots, m_r) \in \mathcal{O}^r$.

$$Z(\mathbf{s};\mathbf{m};\Phi,n,\mathbb{F}_q(t))=Z(\mathbf{s};\mathbf{m}):=\sum_{\mathbf{c}\in(\mathcal{O}_{mon})^r}\frac{H(\mathbf{c};\mathbf{m})}{|c_1|^{s_1}\cdots|c_r|^{s_r}}$$

- analytic continuation to \mathbb{C}^r
- functional equations form group isomorphic to W

We say $Z(\mathbf{s}; \mathbf{m})$ is untwisted when $\mathbf{m} = (1, ..., 1)$.

Let $Z^*(\mathbf{s}; \mathbf{m}) = \Xi(\mathbf{s})Z(\mathbf{s}; \mathbf{m})$ be the normalized series, where $\Xi(\mathbf{s})$ is a product of zeta functions.

The coefficients $H(\mathbf{c}; \mathbf{m})$ are complex numbers defined so that $Z(\mathbf{s}; \mathbf{m})$ has desired analytic properties. Existence of **Gauss sums** gives a twisted multiplicativity:

The $H(\mathbf{c}; \mathbf{m})$ are completely determined by

$$H(P^{k_1}, \ldots, P^{k_r}; P^{l_1}, \ldots, P^{l_r})$$

for each prime P such that $P^{k_i}||c_i$ and $P^{l_i}||m_i$.

The *p*-parts are generating functions for the prime-power coefficients.

- No Euler product in general; "twisted" analogue.
- $Z^*(\mathbf{s}; \mathbf{m})$ is rational in $X_1 = q^{-s_1}, ..., X_r = q^{-s_r}$.
- Denominator of *Z*^{*}(**s**; **m**) is known.
- Numerator not well-understood.

Fix
$$\ell = (l_1, \ldots, l_r) \in (\mathbb{Z}_{\geq 0})^r$$
, and let $\theta = \sum_{i=1}^r (l_i + 1) \varpi_i$.

- Define a Weyl group action on \tilde{A} where $A = \mathbb{C}[\Lambda]$. (Identify $\mathbf{x}^{\lambda = \sum k_i \alpha_i}$ with $x_1^{k_1} \cdots x_r^{k_r}$.)
- Build a W-invariant function by averaging:

$$F(\mathbf{x}; \theta) = N(\mathbf{x}; \theta)/D(\mathbf{x})$$

Let $x_i = |P|^{-s_i}$. Then

Invariance of $F(\mathbf{x}; \theta)$ under W gives a functional equation.

The functional equation gives a recurrence relation on the coefficients of $N(\mathbf{x}; \theta)$. (See arXiv:1509.07400).

p-part properties

Write $N(\mathbf{x}; \theta) = \sum a_{\lambda} \mathbf{x}^{\lambda}$. Recall for $\lambda = \sum k_i \alpha_i$, we have $a_{\lambda} = H(P^{k_1}, \dots, P^{k_r}; P^{l_1}, \dots, P^{l_r})$.

Theorem (Chinta-Friedberg-Gunnells, F.)

The support of $N(\mathbf{x}; \theta)$ is contained in weight polytope Π_{θ} , defined as the convex hull $\theta - w\theta$; $w \in W$.

Example: $\Phi = A_2$, n = 3

Support of $N(\mathbf{x}; \rho)$

$$F(\mathbf{x};\rho) = \frac{1+g(P)x_1+g(P)x_2+|P|^2x_1^2x_2+|P|^2x_2^2+g(P)|P|^2x_1^2x_2^2}{(1-|P|^2x_1^3)(1-|P|^2x_2^3)(1-|P|^5x_1^3x_2^3)}$$

Theorem (Chinta-Friedberg-Gunnells, F.)

Define Θ^+ to be the set of all regular dominant weights in the irreducible representation of highest weight θ . Then up to the coefficients $a_{\theta-\xi}$ for $\xi \in \Theta^+$, $N(\mathbf{x}; \theta)$ is completely determined by the functional equations of $F(\mathbf{x}; \theta)$.

Example: $\Phi = A_2$, n = 3

Support of $N(\mathbf{x}; 4\varpi_1 + \varpi_2)$

Proposition (F.)

Let $\tilde{F}(\mathbf{X}; \rho)$ denote $F(\mathbf{x}; \rho)$ after the variable change

$$u: \left\{ egin{array}{ll} \mathsf{S}_i & \mapsto & 2-\mathsf{S}_i \ |\mathsf{P}| & \mapsto & 1/q \ \mathsf{g}_k^*(\mathsf{1},\mathsf{P}) & \mapsto & au(\epsilon^k) \end{array}
ight..$$

Then $\tilde{F}(\mathbf{X}; \rho) = Z^{*}(\mathbf{X}; 1, ..., 1).$

$$\Phi = A_2, n = 3$$

$$F(\mathbf{x}; \rho) = \frac{1 + g(P)x_1 + g(P)x_2 + |P|^2 x_1^2 x_2 + |P|^2 x x_2^2 + g(P)|P|^2 x_1^2 x_2^2}{(1 - |P|^2 x_1^3)(1 - |P|^2 x_2^3)(1 - |P|^5 x_1^3 x_2^3)}$$

$$Z^*(\mathbf{X}; 1, 1) = \frac{1 + q \tau X_1 + q \tau X_2 + q^4 X_1^2 X_2 + q^4 X_1 X_2^2 + q^5 \tau X_1^2 X_2^2}{(1 - q^4 X_1^3)(1 - q^4 X_2^3)(1 - q^7 X_1^3 X_2^3)}$$

The *p*-parts and the global series have the same polar behavior and satisfy the same functional equations (up to a variable change).

Theorem (F.)

Fix $\mathbf{m} \in \mathcal{O}^r$ and put $\theta = \sum (\deg m_i + 1) \varpi_i$. Let Θ^+ be the set of regular dominant weights in the irreducible representation of highest weight θ . Then

$$Z^*(\mathbf{X};\mathbf{m}) = \sum_{\xi\in\Theta^+} M_{ heta-\xi} \widetilde{F}(\mathbf{X};\xi) \mathbf{X}^{ heta-\xi},$$

where for $\lambda = \sum_{i=1}^{r} \lambda_i \alpha_i$, the coefficients M_λ are the character sums

$$M_{\lambda} = \sum_{\substack{\mathbf{c} \in (\mathcal{O}_{mon})^r \\ \deg c_i = \lambda_i}} H(\mathbf{c}; \mathbf{m}).$$

•
$$\Phi = A_2$$
, $n = 3$, $q = 7$

•
$$\mathbf{m} = (t^3 + 5t + 2, 1)$$
, $\theta = 4\varpi_1 + \varpi_2$

•
$$\Theta^+ = \{4\varpi_1 + \varpi_2, 2\varpi_1 + 2\varpi_2, \rho\}$$

•
$$\{\theta - \xi : \xi \in \Theta^+\} = \{0, \alpha_1, 2\alpha_1 + \alpha_2\}$$

$$Z^{*}(\mathbf{X};\mathbf{m}) = M_{0}\tilde{F}(\mathbf{X};4\varpi_{1}+\varpi_{2})$$
$$+ M_{\alpha_{1}}\tilde{F}(\mathbf{X};2\varpi_{1}+2\varpi_{2})X_{1}$$
$$+ M_{2\alpha_{1}+\alpha_{2}}\tilde{F}(\mathbf{X};\rho)X_{1}^{2}X_{2}$$

Where

$$M_0 = 1, M_{\alpha_1} \approx \tau(\epsilon)(-0.5 - 2.598i), M_{2\alpha_1 + \alpha_2} = \approx \tau(\epsilon)^3 (6.5 - 2.598i).$$

Support of the numerator of $Z^*(\mathbf{X}; \mathbf{m})$, in terms of the $\tilde{N}(\mathbf{X}; \xi)$.

•
$$\Phi = B_2, n = 2, q = 5$$

•
$$\mathbf{m} = (1, t^2 + 2)$$
, $\theta = \varpi_1 + 3\varpi_2$

•
$$\{\theta - \xi : \xi \in \Theta^+\} = \{0, \alpha_2, \alpha_1 + 2\alpha_2\}$$

$$Z^{*}(\mathbf{X}; \mathbf{m}) = M_{0}\tilde{F}(\mathbf{X}; \varpi_{1} + 3\varpi_{2})$$
$$+ M_{\alpha_{2}}\tilde{F}(\mathbf{X}; 2\varpi_{1} + \varpi_{2})X_{2}$$
$$+ M_{\alpha_{1}+2\alpha_{2}}\tilde{F}(\mathbf{X}; \rho)X_{1}X_{2}^{2}$$

Where

$$M_0 = 1,$$
 $M_{\alpha_2} = -\tau(\epsilon),$ $M_{\alpha_1+2\alpha_2} = q^2$

$\mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O}$ • • • • • •

Support of the numerator of $Z^*(\mathbf{X}; \mathbf{m})$, in terms of the $\tilde{N}(\mathbf{X}; \xi)$.

- 1. The $\tilde{F}(\mathbf{X}; \xi)\mathbf{x}^{\theta-\xi}, \xi \in \Theta^+$ satisfy the global functional equations $\implies Z^*(\mathbf{X}; \mathbf{m}) = \sum c_{\xi} \tilde{F}(\mathbf{X}; \xi) \mathbf{X}^{\theta-\xi}$.
- 2. The support of $\Xi(s)^{-1}\tilde{F}(\mathbf{X};\xi)$ lies outside of Π_{ξ} . The coefficients $c_{\xi} = M_{\lambda}$ are the $\mathbf{X}^{\theta-\xi} = \mathbf{X}^{\lambda}$ coefficients of $Z(\mathbf{s}; \mathbf{m})$ (no normalizing factors), written as a power series in q^{-s_i} .

SUPPORT OF $\Xi(s)^{-1}\widetilde{F}(\mathbf{X};\xi)$

 $\Phi = A_2$, n = 2, support of $\Xi[\mathbf{x}]^{-1} \tilde{F}(\mathbf{X}; \xi) \mathbf{X}^{\theta - \xi}$

SUPPORT OF $\Xi(s)^{-1}\tilde{F}(\mathbf{X};\xi)$

 $\Phi = B_2$, n = 2, support of $\Xi[\mathbf{X}]^{-1} \tilde{F}(\mathbf{X}; \xi) \mathbf{X}^{\theta - \xi}$

- 1. What do the $M_{\theta-\xi}$, $\xi \in \Theta^+$ tell us?
- 2. Is there a connection between $Z_{\mathbb{F}_q(t)}(\mathbf{s}; \mathbf{m})$ and $Z_{\mathcal{K}}(\mathbf{s}; \mathbf{1})$ for *K* higher genus?

Thank you!

For $\alpha \in \Phi$, let $n(\alpha) = \frac{n}{\gcd(n, \|\alpha\|^2)}$ and let $\Lambda' \subset \Lambda$ be the sublattice generated by the set $\{n(\alpha)\alpha\}_{\alpha \in \Phi}$.

Define \tilde{A}_{β} as the set of functions f/g such that supp g lies in the kernel of the map $\nu : \Lambda \to \Lambda/\Lambda'$ and ν maps supp f to β .

Write
$$F(\mathbf{x}, \ell) = \sum_{\beta \in \Lambda/\Lambda'} f_{\beta}(\mathbf{x})$$
 so that $f_{\beta}(\mathbf{x}) \in \tilde{A}_{\beta}$. Then

 $f_{\beta}(\mathbf{X}) = \mathcal{P}_{\beta,\ell,k}(x_k) f_{\beta}(\sigma_k \mathbf{X}) + \mathcal{Q}_{\beta,\ell,k}(x_k) f_{\sigma_k \bullet \beta}(\sigma_k \mathbf{X}).$

Let
$$I = (I_1, \ldots, I_r)$$
 for $0 \le I_j < n(\alpha_j) - 1$, and define

$$Z_l^*(\mathbf{s};\mathbf{m}) = \Xi(\mathbf{s}) \sum_{\substack{\mathbf{c} \in \mathcal{O}_{mon} \\ \deg c_j \equiv l_j \mod n(\alpha_j)}} \frac{H(\mathbf{c};\mathbf{m})}{|c_1|^{s_1} \cdots |c_r|^{s_r}}.$$

Then

$$Z_{l}^{*}(\mathbf{s};\mathbf{m}) = |m_{i}|^{1-s_{i}} \left(P_{l_{i},l_{i}(m,l)}^{\|\alpha_{i}\|^{2}}(s_{i}) Z_{l}^{*}(\sigma_{i}\mathbf{s};\mathbf{m}) + Q_{l_{i},l_{i}(m,l)}^{\|\alpha_{i}\|^{2}}(s_{i}) Z_{\sigma_{i}\bullet l}^{*}(\sigma_{i}\mathbf{s};\mathbf{m}) \right)$$