Twisted Weyl group multiple Dirichlet series OVER THE RATIONAL FUNCTION FIELD

Holley Friedlander
Dickinson College

BIRS: Whittaker Functions: Number Theory, Geometry and Physics
July 28, 2016

Big Picture

- Weyl group multiple Dirichlet series arise as Fourier-Whittaker coefficients of metaplectic Eisenstein series.
- When defined over algebraic function fields, they are rational functions in several variables.

Long-term goal: Understand how these rational functions encode arithmetic/geometric/combinatorial information.

Notation

$$
\begin{array}{cl}
n \geq 1 & \\
K=\mathbb{F}_{q}(t), & q \equiv 1 \bmod 2 n \\
\mathcal{O}=\mathbb{F}_{q}[t] & \\
\Phi & \text { reduced root system of rank } r \\
\Lambda & \text { root lattice of } \Phi \\
W & \text { Weyl group of } \Phi \\
\sigma_{1}, \ldots, \sigma_{r} & \text { simple reflections } \\
\alpha_{1}, \ldots, \alpha_{r} & \text { simple roots } \\
\varpi_{1}, \ldots \varpi_{r} & \text { fundamental weights } \\
\rho=\sum_{i=1}^{r} \varpi_{i} &
\end{array}
$$

Analogy between \mathbb{Q} and $\mathbb{F}_{q}(t)$

WEyL GROUP MULTIPLE DIRICHLET SERIES

Let $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$, and let $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathcal{O}^{r}$.

$$
Z\left(\mathbf{s} ; \mathbf{m} ; \Phi, n, \mathbb{F}_{q}(t)\right)=Z(\mathbf{s} ; \mathbf{m}):=\sum_{\mathbf{c} \in\left(\mathcal{O}_{\text {mon }}\right)^{r}} \frac{H(\mathbf{c} ; \mathbf{m})}{\left|c_{1}\right|^{s_{1} \cdots \cdot\left|c_{r}\right|^{s_{r}}}}
$$

- analytic continuation to \mathbb{C}^{r}
- functional equations form group isomorphic to W

We say $Z(\mathbf{s} ; \mathbf{m})$ is untwisted when $\mathbf{m}=(1, \ldots, 1)$.
Let $Z^{*}(\mathbf{s} ; \mathbf{m})=\equiv(\mathbf{s}) Z(\mathbf{s} ; \mathbf{m})$ be the normalized series, where $\equiv(\mathbf{s})$ is a product of zeta functions.

Coefficients

The coefficients $H(\mathbf{c} ; \mathbf{m})$ are complex numbers defined so that $Z(\mathbf{s} ; \mathbf{m})$ has desired analytic properties. Existence of Gauss sums gives a twisted multiplicativity:

The $H(\mathbf{c} ; \mathbf{m})$ are completely determined by

$$
H\left(P^{k_{1}}, \ldots, P^{k_{r}} ; P^{l_{1}}, \ldots, P^{l_{r}}\right)
$$

for each prime P such that $P^{k_{i}} \| c_{i}$ and $P^{l_{i}} \| m_{i}$.
The p-parts are generating functions for the prime-power coefficients.

- No Euler product in general; "twisted" analogue.
- $Z^{*}(\mathbf{s} ; \mathbf{m})$ is rational in $X_{1}=q^{-s_{1}}, \ldots, X_{r}=q^{-s_{r}}$.
- Denominator of $Z^{*}(\mathbf{s} ; \mathbf{m})$ is known.
- Numerator not well-understood.

Chinta-Gunnells construction

Fix $\ell=\left(l_{1}, \ldots, l_{r}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{r}$, and let $\theta=\sum_{i=1}^{r}\left(l_{i}+1\right) \varpi_{i}$.

- Define a Weyl group action on Ã where $A=\mathbb{C}[\Lambda]$. (Identify $\mathbf{x}^{\lambda=\sum k_{i} \alpha_{i}}$ with $x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}$.)
- Build a W-invariant function by averaging:

$$
F(\mathbf{x} ; \theta)=N(\mathbf{x} ; \theta) / D(\mathbf{x})
$$

Let $x_{i}=|P|^{-s_{i}}$. Then

$$
\underbrace{N(\mathbf{x} ; \theta)=\sum_{k_{1}, \ldots, k_{r} \geq 0} H\left(P^{k_{1}}, \ldots, P^{k_{r} ;} ; P^{l_{1}}, \ldots, P^{l_{r}}\right) x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}}_{p-\text { part }} .
$$

p-PART FUNCTIONAL EQUATION

Invariance of $F(\mathbf{x} ; \theta)$ under W gives a functional equation.
The functional equation gives a recurrence relation on the coefficients of $N(\mathbf{x} ; \theta)$. (See arXiv:1509.07400).

p-PART PROPERTIES

Write $N(\mathbf{x} ; \theta)=\sum a_{\lambda} \mathbf{x}^{\lambda}$. Recall for $\lambda=\sum k_{i} \alpha_{i}$, we have $a_{\lambda}=H\left(P^{k_{1}}, \ldots, P^{k_{r}} ; P^{l_{1}}, \ldots, P^{l_{r}}\right)$.

Theorem (Chinta-Friedberg-Gunnells, F.)

The support of $N(\mathbf{x} ; \theta)$ is contained in weight polytope Π_{θ}, defined as the convex hull $\theta-w \theta ; w \in W$.

Example: $\Phi=A_{2}, n=3$

Support of $N(\mathbf{x} ; \rho)$
$F(\mathbf{x} ; \rho)=\frac{1+g(P) x_{1}+g(P) x_{2}+|P|^{2} x_{1}^{2} x_{2}+|P|^{2} x x_{2}^{2}+g(P)|P|^{2} x_{1}^{2} x_{2}^{2}}{\left(1-|P|^{2} x_{1}^{3}\right)\left(1-|P|^{2} x_{2}^{3}\right)\left(1-|P|^{5} x_{1}^{3} x_{2}^{3}\right)}$

p-PART PROPERTIES

Theorem (Chinta-Friedberg-Gunnells, F.)

Define Θ^{+}to be the set of all regular dominant weights in the irreducible representation of highest weight θ. Then up to the coefficients $a_{\theta-\xi}$ for $\xi \in \Theta^{+}, N(\mathbf{x} ; \theta)$ is completely determined by the functional equations of $F(\mathbf{x} ; \theta)$.

Example: $\Phi=A_{2}, n=3$

Support of $N\left(\mathbf{x} ; 4 \varpi_{1}+\varpi_{2}\right)$

$Z^{*}(\mathbf{s} ; \mathbf{m})$; Untwisted CASE

Proposition (\mathbf{F}.)

Let $\tilde{F}(\mathbf{X} ; \rho)$ denote $F(\mathbf{x} ; \rho)$ after the variable change

$$
\nu:\left\{\begin{array}{ll}
s_{i} & \mapsto 2-s_{i} \\
|P| & \mapsto 1 / q \\
g_{k}^{*}(1, P) & \mapsto \tau\left(\epsilon^{k}\right)
\end{array} .\right.
$$

Then $\tilde{F}(\mathbf{X} ; \rho)=Z^{*}(\mathbf{X} ; 1, \ldots, 1)$.

Example (Chinta 2008)

$$
\begin{aligned}
& \Phi=A_{2}, n=3 \\
& F(\mathbf{x} ; \rho)=\frac{1+g(P) x_{1}+g(P) x_{2}+|P|^{2} X_{1}^{2} x_{2}+|P|^{2} x x_{2}^{2}+g(P)|P|^{2} x_{1}^{2} x_{2}^{2}}{\left(1-|P|^{2} X_{1}^{3}\right)\left(1-|P|^{2} X_{2}^{3}\right)\left(1-|P|^{5} X_{1}^{3} X_{2}^{3}\right)} \\
& \quad Z^{*}(\mathbf{X} ; 1,1)=\frac{1+q \tau X_{1}+q \tau X_{2}+q^{4} X_{1}^{2} X_{2}+q^{4} X_{1} X_{2}^{2}+q^{5} \tau X_{1}^{2} X_{2}^{2}}{\left(1-q^{4} X_{1}^{3}\right)\left(1-q^{4} X_{2}^{3}\right)\left(1-q^{7} X_{1}^{3} X_{2}^{3}\right)}
\end{aligned}
$$

IDEA OF PROOF

The p-parts and the global series have the same polar behavior and satisfy the same functional equations (up to a variable change).

$Z^{*}(\mathbf{s} ; \mathbf{m}) ;$ twisted CASE

Theorem (F .)

Fix $\mathbf{m} \in \mathcal{O}^{r}$ and put $\theta=\sum\left(\operatorname{deg} m_{i}+1\right) \varpi_{i}$. Let Θ^{+}be the set of regular dominant weights in the irreducible representation of highest weight θ. Then

$$
Z^{*}(\mathbf{X} ; \mathbf{m})=\sum_{\xi \in \Theta^{+}} M_{\theta-\xi} \tilde{F}(\mathbf{X} ; \xi) \mathbf{X}^{\theta-\xi},
$$

where for $\lambda=\sum_{i=1}^{r} \lambda_{i} \alpha_{i}$, the coefficients M_{λ} are the character sums

$$
M_{\lambda}=\sum_{\substack{\mathbf{c} \in\left(\mathcal{O}_{\text {mon }}\right)^{r} \\ \operatorname{deg} c_{i}=\lambda_{i}}} H(\mathbf{c} ; \mathbf{m}) .
$$

EXAMPLE 1

- $\Phi=A_{2}, n=3, q=7$
- $\mathbf{m}=\left(t^{3}+5 t+2,1\right), \theta=4 \varpi_{1}+\varpi_{2}$
- $\Theta^{+}=\left\{4 \varpi_{1}+\varpi_{2}, 2 \varpi_{1}+2 \varpi_{2}, \rho\right\}$
- $\left\{\theta-\xi: \xi \in \Theta^{+}\right\}=\left\{0, \alpha_{1}, 2 \alpha_{1}+\alpha_{2}\right\}$

$$
\begin{aligned}
Z^{*}(\mathbf{X} ; \mathbf{m}) & =M_{0} \tilde{F}\left(\mathbf{X} ; 4 \varpi_{1}+\varpi_{2}\right) \\
& +M_{\alpha_{1}} \tilde{F}\left(\mathbf{X} ; 2 \varpi_{1}+2 \varpi_{2}\right) X_{1} \\
& +M_{2 \alpha_{1}+\alpha_{2}} \tilde{F}(\mathbf{X} ; \rho) X_{1}^{2} X_{2}
\end{aligned}
$$

Where
$M_{O}=1, M_{\alpha_{1}} \approx \tau(\epsilon)(-0.5-2.598 i), M_{2 \alpha_{1}+\alpha_{2}}=\approx \tau(\epsilon)^{3}(6.5-2.598 i)$.

Support of the numerator of $Z^{*}(\mathbf{X} ; \mathbf{m})$, in terms of the $\tilde{N}(\mathbf{X} ; \xi)$.

EXAMPLE 2

- $\Phi=B_{2}, n=2, q=5$
- $\mathbf{m}=\left(1, t^{2}+2\right), \theta=\varpi_{1}+3 \varpi_{2}$
- $\left\{\theta-\xi: \xi \in \Theta^{+}\right\}=\left\{\mathrm{o}, \alpha_{2}, \alpha_{1}+2 \alpha_{2}\right\}$

$$
\begin{aligned}
Z^{*}(\mathbf{X} ; \mathbf{m}) & =M_{\circ} \tilde{F}\left(\mathbf{X} ; \varpi_{1}+3 \varpi_{2}\right) \\
& +M_{\alpha_{2}} \tilde{F}\left(\mathbf{X} ; 2 \varpi_{1}+\varpi_{2}\right) X_{2} \\
& +M_{\alpha_{1}+2 \alpha_{2}} \tilde{F}(\mathbf{X} ; \rho) X_{1} X_{2}^{2}
\end{aligned}
$$

Where

$$
M_{O}=1, \quad M_{\alpha_{2}}=-\tau(\epsilon), \quad M_{\alpha_{1}+2 \alpha_{2}}=q^{2}
$$

ExAMPLE 2

Support of the numerator of $Z^{*}(\mathbf{X} ; \mathbf{m})$, in terms of the $\tilde{N}(\mathbf{X} ; \xi)$.

IDEA OF Proof

1. The $\tilde{F}(\mathbf{X} ; \xi) \mathbf{x}^{\theta-\xi}, \xi \in \Theta^{+}$satisfy the global functional equations $\Longrightarrow Z^{*}(\mathbf{X} ; \mathbf{m})=\sum c_{\xi} \tilde{F}(\mathbf{X} ; \xi) \mathbf{X}^{\theta-\xi}$.
2. The support of $\equiv(s)^{-1} \tilde{F}(\mathbf{X} ; \xi)$ lies outside of Π_{ξ}. The coefficients $c_{\xi}=M_{\lambda}$ are the $\mathbf{X}^{\theta-\xi}=\mathbf{X}^{\lambda}$ coefficients of $Z(\mathbf{s} ; \mathbf{m})$ (no normalizing factors), written as a power series in $q^{-s_{i}}$.

SUPPORT OF $\equiv(s)^{-1} \tilde{F}(\mathbf{X} ; \xi)$

$$
\Phi=A_{2}, n=2, \text { support of } \equiv[\mathbf{x}]^{-1} \tilde{F}(\mathbf{X} ; \xi) \mathbf{X}^{\theta-\xi}
$$

SUPPORT OF $\equiv(s)^{-1} \tilde{F}(\mathbf{X} ; \xi)$

Questions

1. What do the $M_{\theta-\xi}, \xi \in \Theta^{+}$tell us?
2. Is there a connection between $Z_{\mathbb{F}_{q}(t)}(\mathbf{s} ; \mathbf{m})$ and $Z_{K}(\mathbf{s} ; \mathbf{1})$ for K higher genus?

Thank you!

LOCAL FUNCTIONAL EQUATIONS

For $\alpha \in \Phi$, let $n(\alpha)=\frac{n}{\operatorname{gcd}\left(n,\|\alpha\|^{2}\right)}$ and let $\Lambda^{\prime} \subset \Lambda$ be the sublattice generated by the set $\{n(\alpha) \alpha\}_{\alpha \in \Phi}$.

Define \tilde{A}_{β} as the set of functions f / g such that supp g lies in the kernel of the map $\nu: \Lambda \rightarrow \Lambda / \Lambda^{\prime}$ and ν maps supp f to β.
Write $F(\mathbf{x}, \ell)=\sum_{\beta \in \Lambda / \Lambda^{\prime}} f_{\beta}(\mathbf{x})$ so that $f_{\beta}(\mathbf{x}) \in \tilde{A}_{\beta}$. Then

$$
f_{\beta}(\mathbf{x})=\mathcal{P}_{\beta, \ell, k}\left(x_{k}\right) f_{\beta}\left(\sigma_{k} \mathbf{x}\right)+\mathcal{Q}_{\beta, \ell, k}\left(x_{k}\right) f_{\sigma_{k} \bullet \beta}\left(\sigma_{k} \mathbf{x}\right)
$$

Global functional equation

Let $I=\left(I_{1}, \ldots, I_{r}\right)$ for $0 \leq I_{j}<n\left(\alpha_{j}\right)-1$, and define

Then

