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Motivation

Functional Regression with Functional Response

Functional Regression (Morris 2015)

Functional Response (Hongtu Zhu ...):

Yi(s) = XT
i β(s) + ηi(s), i = 1, . . . , n.

Recover the conditional mean of Y (s) given X and the location s.

Various imaging segmentation and registration methods end up with
preprocessing results non-consistent or with errors.

The error distributions are unknown, assuming Gaussian for
convenience in many applications though.

The variances of errors are varying spatially within the brain. Quantile
regression (QR) is able to give a full picture of the data. These
features make QR more appealing than its cousin, the ordinary least
squares.

In this paper, we would like to recover the 100τ% quantile of the
conditional distribution of Y (s) given X and the location s.
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Motivation

Quantile Regression

Quantile Regression (Koenker and Basset 1978) vs. Mean Regression

yi = f(xi) + εi, i = 1, . . . , n.

Quadratic function vs. Check function:

ρτ (r) =

{
τr if r > 0
−(1− τ)r otherwise

Quantile regression provides better estimators than mean regression
WHEN

Data are skewed
Data contain outliers

Quantile regression does not require specifying any error distribution.

Many nonparametric and semiparametric quantile regression models ...
(Koenker 2005; ...)
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Motivation

ADNI DTI Data

Dataset: 203 subjects from ADNI

Response: mean Fractional Anisotropy (FA) values along midsagittal
corpus callosum skeleton (TBSS pipeline).

Covariates: Gender, Age, Alzheimer’s Disease Assessment Scale,
Mini-Mental State Examination.
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Figure : FA curves along corpus callosum skeleton.

X. Wang (Purdue) Quantile Regression with Functional Response BIRS 5 / 25



Motivation

ADNI Hippocampus Image Data

Dataset: 403 subjects from ADNI

Response: Hippocampus images

Covariates: Gender, Age, and Behavior score
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Figure : Observed left hippocampus images.
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Quantile Regression with Functional Response

Quantile Regression with Functional Response

For a given τ ∈ (0, 1), consider a quantile regression model with
varying-coefficients and functional responses,

Y (s) = XTβτ (s) + ητ (s)

ητ (·) is a stochastic process whose τth quantile is zero for a fixed s
given X.

The conditional quantile function of Y (s) given X for any τ ∈ (0, 1) can
be expressed by

QY (s)(τ |X) = XTβτ (s)

The unknown parameters βτ = (β1, . . . , βp), where βk ∈ H(K), a RKHS
generated by a pd kernel K.

K(s, t) = (1 + 〈s, t〉)d, K(s, t) = exp(−‖s− t‖2/2σ2)

Suppose that we observe (Xi, Yi(sij)) for subjects i = 1, . . . , n and
locations si1, . . . , simi . Our goal is to investigate the estimation of the
coefficient functions βτk, k = 1, . . . , p.
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Quantile Regression with Functional Response

Loss Function

Fixed design: the functional response are observed at the same
locations across curves, that is, m1 = m2 = · · · = mn := m and
s1j = s2j = · · · = sjn := sj for j = 1, . . . ,m.

Random design: the sij are independently sampled from a distribution
π(s).

L2-distance: For two function vectors f1, f2 ∈ Fp, define

∥∥∥f1 − f2∥∥∥2

s,2
=


1

m

m∑
j=1

p∑
k=1

(f1k(sj)− f2k(sj))
2 fixed design∫

S

p∑
k=1

(f1k(s)− f2k(s))2π(s)ds random design

We measure the accuracy of the estimation of β̂τ by

Enτ (β̂τ , βτ ) =
∥∥β̂τ − βτ∥∥2

s,2
.
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Theoretical Results

Rate of Convergence: Lower Bound

Fix τ ∈ (0, 1). Suppose the eigenvalues {ρk : k ≥ 1} of the reproducing
kernel K satisfies ρk � k−2r for some constant 0 < r <∞. Then

a. For the fixed design,

lim
aτ→0

lim
n,m→∞

inf
β̃τ

sup
βτ∈Fp

P
(
Enτ (β̃τ , βτ ) ≥ aτ (n−1 +m−2r)

)
= 1; (1)

b. For the random design,

lim
aτ→0

lim
n,m→∞

inf
β̃τ

sup
βτ∈Fp

P
(
Enτ (β̃τ , βτ ) ≥ aτ ((nm)

− 2r
2r+1 + n−1)

)
= 1. (2)

The above infimums are taken over all possible estimators β̃τ based on
the training data.

If τ belongs to a compact interval of (0, 1), aτ may not depend on τ .
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Theoretical Results

Rate of Convergence: Fixed Design

Under the common design, the minimax rate is of the order
m−2r + n−1. This rate is fundamentally different from the usual
nonparametric rate of (nm)2r/(2r+1) (Stone 1982).

The rate is jointly determined by the sampling frequency m and the
number of curves n rather than the total number of observations mn.

When the functionals are sparsely sampled, that is, m = O(n1/2r), the
optimal rate is of the order m−2r , solely determined by the sampling
frequency. On the other hand, when the sampling frequency is high,
that is, m� n1/2r, the optimal rate remains 1/n regardless of m.
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Theoretical Results

Rate of Convergence: Random Design

Similar to the common design, there is a phase transition phenomenon
in the optimal rate of convergence with a boundary at m = n1/2r.

When the sampling frequency m is small, that is, m = O(n1/2r), the
optimal rate is of the order (nm)2r/(2r+1) which depends jointly on the
values of both m and n.

In the case of high sampling frequency with m� n1/2r, the optimal
rate is always 1/n and does not depend on m.
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Theoretical Results

Rate of Convergence

When m is above the boundary, that is, m� n1/2r, there is no
difference between the fixed and random designs. When m is below
the boundary, that is, m� n1/2r, the random design is always superior
to the fixed design in that it offers a faster rate of convergence.
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Computation of the Estimator

Objective Function

Penalized estimator: Minimize

1

mn

n∑
i=1

m∑
j=1

ρτ
(
Yi(sij)−XT

i β(sij)
)

+ λ

p∑
k=1

‖βk‖2K

Representer Theorem:

β̂k(s) =
m̃∑
i=1

θiξi(s) +

m∑
j=1

βjK(sj , s), k = 1, . . . , p

Matrix form: Minimize

1

mn

n∑
i=1

m∑
j=1

ρτ
(
Yij − bTijθ − aTijβ

)
+ λβTΣβ
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Computation of the Estimator

ADMM Algorithm

Write the optimization into an equivalent form:

min
n∑
i=1

m∑
j=1

ρτ (Yij − uij) + λβ
T

Σβ

subject to uij = b
T
ijθ + a

T
ijβ, i = 1, . . . , n, j = 1, . . . ,m

Augmented Lagrangian:

Lη(u, ξ, θ, β) =

n∑
i=1

m∑
j=1

ρτ (Yij − uij) + λβ
T

Σβ +

n∑
i=1

m∑
j=1

ξij(uij − b
T
ijθ − a

T
ijβ)

+
η

2

n∑
i=1

m∑
j=1

(uij − b
T
ijθ − a

T
ijβ)

2

ADMM update:

u
k+1
ij =argminuij

(
ρτ (Yij − uij) + ξ

k
ij(uij − b

T
ijθ

k − a
T
ijβ

k
) +

η

2
(uij − b

T
ijθ

k − a
T
ijβ

k
)
2

)

(θ
k+1

, β
k+1

) =argminθ,β

λβTΣβ +
m∑
i=1

n∑
j=1

(
ξ
k
ija

T
ijβ +

η

2
(u
k+1
ij − b

T
ijθ − a

T
ijβ)

2

)
ξ
k+1
ij =ξ

k
ij + η(u

k+1
ij − b

T
ijθ − a

T
ijβ

k+1
)
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Computation of the Estimator

ADMM Algorithm

consider the proximal operator of ρτ with parameter µ and λ such that

proxρτ ,µ,λ(v) = arg min
x

(
ρτ (x− µ) +

1

2λ
(x− v)2

)
. (3)

The solution to (3) can be explicitly obtained, and
x+ = proxρτ ,µ,λ(v) = Sτ,µ,λ(v), where

Sτ,µ,λ(v) =


v − λτ v > µ+ λτ
0 µ− λ(1− τ) ≤ v ≤ µ+ λτ
v + λ(1− τ) v < µ− λ(1− τ).

When τ = 1/2 and µ = 0, Sτ,µ,λ(·) is the well-known soft thresholding
operator such that

S1/2,0,λ(v) =
(
1−

λ

2|v|
)
+
v,

(for v 6= 0) which is a shrinkage operator.
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Computation of the Estimator

Choice of Smoothing Parameter

RCV:

RCV =
1

n

n∑
i=1

1

m

m∑
j=1

ρτ (Yij −XT
i β̂

[−i](sij))

SIC:

SIC(λ) = log
( 1

mn

n∑
i=1

m∑
j=1

ρτ (Yij −XT
i β̂(sij))

)
+

log(mn)

2nm
df

GACV:

GACV (λ) =

∑n
i=1

∑m
j=1 ρτ (Yij −XT

i β̂(sij))

mn− df
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Computation of the Estimator

Degrees of Freedom

Let Ŷij = XT
i β̂(sij).

div(Ŷ ) =
n∑
i=1

m∑
j=1

∂Ŷij

∂Yij

This quantity first appeared under SURE formula (Stein 1981). It can
be considered an estimate the effective dimension for a general
modeling procedure (Efron 1986; Meyer and Woodroofe 2000).

Define E = {(i, j) : Yij −XT
i β̂(sij) = 0}. We show that

div(Ŷ ) = |E|
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Computation of the Estimator

Rate of Convergence: Upper Bound

Fix τ ∈ (0, 1). Suppose the eigenvalues {ρk : k ≥ 1} of the reproducing
kernel K satisfies ρk � k−2r for some constant 0 < r <∞. Then

a. For the fixed design,

lim
Aτ→∞

lim
n,m→∞

sup
βτ∈Fp

P
(
Enτ (β̂τ , βτ ) ≥ Aτ (n−1 +m−2r)

)
= 1; (4)

b. For the random design,

lim
Aτ→0

lim
n,m→∞

sup
βτ∈Fp

P
(
Enτ (β̂τ , βτ ) ≥ Aτ ((nm)

− 2r
2r+1 + n−1)

)
= 1. (5)

For τ belonging to a compact interval of (0, 1), the result holds
uniformly for τ .
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Simulated Data Analysis

1D Simulated Data Analysis

Data are simulated from the model:

yi(sj) = xi1β1(sj) + xi2β2(sj) + xi3β3(sj) + ηi(sj , τ), i = 1, .., n, j = 1, ...,m,

where

[xi1, x12, xi3] = [1,∼ Bernoulli(0.5),∼ uniform(0, 1)]

[β1(s), β2(s), β3(s)] = [5s2, 5(1− s)4, 2s2 + 5]

ηi(sj) = vi(sj) + εi(sj), εi(sj) ∼ N(0, 0.1), vi ∼ GP (0,Σ)

ηi(sj , τ) = ηi(sj)− F−1(τ), F is marginal density of ηi(sj)

Use root mean integrated squared error (RMISE) to measure the
quality of estimated βi

RMISEτ =

 1

m

m∑
j=1

‖β̂l(sj , τ)− βl(sj , τ)‖2
1/2

l = 1, 2, 3,
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Simulated Data Analysis

1D Simulated Data Analysis

Averaged RMISE over 100 simulation runs are reported for τ = 0.5 and
τ = 0.75 for sample size n = 20, 50, 100, 200

τ = 0.5 τ = 0.75
n β1(s) β2(s) β3(s) β1(s) β2(s) β3(s)

20 2.49 2.30 3.82 2.85 2.05 4.36
50 1.55 1.35 2.55 1.43 1.44 2.21

100 1.16 0.91 1.8 1.35 0.95 1.99
200 0.88 0.71 1.36 0.79 0.62 1.30
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Real Data Analysis

ADNI DTI Data

Recall:
Response: yi=mean Fractional Anisotropy (FA) curves along midsagittal
corpus callosum skeleton
Covariates: xi= [Gender, Age, Alzheimer’s Disease Assessment Scale,
Mini-Mental State Examination]

Predicted τ ’s quantile for τ = 0.25, 0.5 and 0.75
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Real Data Analysis

ADNI DTI Data

Coefficient βl for τ = 0.25, 0.5 and 0.75
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Real Data Analysis

ADNI Hippocampus Image Data

Coefficient images βl for τ = 0.5:

τ = 0.5
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Real Data Analysis

ADNI Hippocampus Image Data

Coefficient images βl for τ = 0.75:

τ = 0.75
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Conclusion

Conclusion

Estimation

Improve the speed of the algorithm

Inference

Variable selection: knots selection and variable selection simultaneously
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