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Introduction

Connectomics is the production and study of connectomes:
comprehensive maps of connections within an organism’s nervous system,
typically its brain or eye. (Wikipedia)

Connections are assess in two ways: structurally and functionally.

Structural connectivity asks

“which regions of the brain have physical connections between them?”

Functional connectivity asks

“which regions of the brain tend to function in related ways?”
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Structural Connectivity

Structural connectivity is assessed using diffusion tensor imaging (DTI).
This MRI technique measures the direction of water flow in the brain; it
allows us to measure connections and quantify their strength.

http://www.sci.utah.edu/ gk/DTI-data/
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Structural Connectivity

Structural connectivity can be represented (quantified) in many different
ways, but one way involves asking: how many streamlines
(connections) are there between any two regions?

More specifically, the outcome for each subject is a matrix of counts,
where the i , j-th entry is the number of connections between locations i
and j as defined commonly across subjects.
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Functional Connectivity

Functional connectivity can be assessed in a variety of ways. The most
common is fMRI, which measures blood oxygen level across the brain as
a surrogate for brain activity. This can be conducted while a subject is at
rest (resting state) or doing something (task). Magnetoencephalograpy
(MEG) is an (expensive) alternative.

http://www.med.nyu.edu/thesenlab/research-0/research-functional-magnetic-
resonance-imaging-fmri/
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Functional Connectivity

Both MEG and fMRI provide time series observed at each location in
the brain. In studies of functional connectivity, the goal is to measure
similarity in the functional status between locations in the brain. A
common approach for analysis is to ask: how correlated are the time
series in pairs of regions?

In this case, the outcome for each subject is a matrix, where the i , j-th
entry is the a measure of connection of the time series observed in
locations i and j as defined commonly across subjects.
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Graphs and Connectivity

Big (symmetric) matrices are difficult to interpret, so oftentimes
investigators will threshold the matrices to produce graphs.

E. Bullmore, O. Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems Nat. Rev., Neurosci., 10 (2009), pp. 186198
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Motivating Example: Autism

Our interest is to ask: is the connectome different in diseased patients
compared to healthy subjects? If so, where are they different?

One motivating example is in autism, in a study with 264 subjects aged
6-19 (matched) with autism spectrum disorders (ASD) and typically
developing (TD) controls. These subjects have undergone MEG/DTI,
and our goal is to ask about differences in the structural connectome of
the brain in ASD.

 Results of edge-wise comparisons from MEG 

 Results of edge-wise comparisons from DTI

Figure courtesy of Ragini Verma.
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Notation

We consider the observed data to be Xi = (Mi ,Di ), where Mi is the DTI
connectivity matrix, and Di ∈ {0, 1} is the indicator of ASD for
i = 1, . . . , n. We let F0 and F1 denote the distribution functions of the
data Mi in the TD and ASD groups respectively, and we wish to test:

H0 : F0 = F1 versus

H1 : F0 6= F1

But how? This might be especially complex if we represent the
connectomes by complex graphs, etc. We propose to do this using
distance statistics.
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What are distance statistics?

To assess this, we can remember that from the theory of U-statistics, the
sample variance

σ̂2 =
∑
i

(xi − x̄)2/(n − 1)

=
∑

(i,j)∈Γ

(xi − xj)
2/2|Γ|

where Γ = {(i , j) : i 6= j}. Thus, variance may be written as a scaled
version of the average squared Euclidean distance between any two
observations. To generalize this, we may replace the squared Euclidean
distance with a general measure of discrepancy or a metric, say d , and
for computational efficiency we estimated the variance of a set of
densities by

∑
(l,k)∈Γ∗ d(Mk ,Ml)du/|Γ∗| where Γ∗ is a randomly chosen

sufficiently large subset of Γ (for this study we used |Γ∗| = 2000).
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What are distance statistics?

How does that help us with testing differences in connectomes? Well, if
we can define variance, we can do ANOVA.

We can ask: do the distances in connectomes between groups tend to be
larger than the distances within groups?

Also, if we want to assess where the connectomes might differ, we can do
ANOVA on submatrices/subgraphs of M.
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Distance-based ANOVA

Consider the ANOVA test statistic1

T =
SST/(2− 1)

SSE/(n − 1)

where

SSE =
2∑

r=1

(nr − 1)

(
nr
2

)−1 ∑
j<k:Dj=r ,Dj=r

d(Mj ,Mk),

SS = (n − 1)

(
n

2

)−1∑
j<k

d(Mj ,Mk), and

SST = SS − SSE

1This formulation turns out to be equivalent to McArdle and Anderson (2001).
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But what’s the null distribution of T?

To estimate the null distribution of T , a simple option2 is to permute
the group labels Di repeatedly to generate the distribution of T under
the null hypothesis.

This is computationally expensive; to address this, Minas et al. (2014)
recently proposed an approximation to the permutation null distribution.

However, the permutation-based null distribution may also result in
suboptimal statistical power.

But wait- didn’t we get here in the first place by invoking the U-statistic
representation of sample variance? And don’t U-statistics have nice
asymptotic behaviors? Sort of.

2McArdle and Anderson (2001), Reiss et al. (2010), Minas et al. (2011)
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But what’s the null distribution of T?

We know that

SS = (n − 1)

(
n

2

)−1∑
j<k

d(Mj ,Mk)

= (n − 1)U

where U is a U-statistic with kernel d and
√
nU ⇒ N(σ2, 4ζ1) and

n→∞, where

σ2 = E{d(M1,M2)} and
ζ1 = Cov{d(M1,M2), d(M1,M3)}

And a similar argument applies to SSE . So this should be easy?
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But what’s the null distribution of T?

Not quite. Although we might be tempted to use the delta method after
finding the asymptotic distribution of SSE and SS , there is a problem. In
particular, SST is a measure of the additional variation between groups
compared to that within groups.

Under the null, there is none.

So, we don’t get
√
n-asymptotics.

17/31



But what’s the null distribution of T?

However, we can write:

SST = (n − 1)

(
n

2

)−1∑
j<k

d(Mj ,Mk)−
1∑

r=0

(nr − 1)

(
nr
2

)−1 ∑
j<k:Dj=r ,Dj=r

d(Mj ,Mk)

=
2

n

∑
j<k

d(Mj ,Mk)

{
1− n

n1
I (Dj = Dk = 0)− n

n2
I (Dj = Dk = 1)

}
=

2

n

∑
j<k

d(Mj ,Mk)
{

1− η−1I (Dj = Dk = 0)− (1− η)−1I (Dj = Dk = 1)
}

︸ ︷︷ ︸
(A)

+
2

n

∑
j<k

d(Mj ,Mk)

[{
n

n1
− η−1

}
I (Dj = Dk = 0) +

{
n

n2
− (1− η)−1

}
I (Dj = Dk = 1)

]
︸ ︷︷ ︸

(B)

First, it is easy to see that U = (n − 1)−1(A) is a U-statistic, with kernel hη(Xj ,Xk). It
turns our that U is a degenerate U-statistic and the degeneracy is of order 1.
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But what’s the null distribution of T?

However, we can write:

SST =
2

n

∑
j<k

d(Mj ,Mk)
{

1− η−1I (Dj = Dk = 0)− (1− η)−1I (Dj = Dk = 1)
}

−
{

n

n1
− η−1

}
2

n − 1

∑
j<k

{
d(Mj ,Mk)I (Dj = Dk = 0)− η2σ2

}
︸ ︷︷ ︸

(B1)

−
{

n

n2
− (1− η)−1

}
2

n − 1

∑
j<k

{
d(Mj ,Mk)I (Dj = Dk = 1)− (1− η)2σ2

}
︸ ︷︷ ︸

(B2)

−
{

n

n1
− η−1

}
nη2σ2 −

{
n

n2
− (1− η)−1

}
n(1− η)2σ2︸ ︷︷ ︸

(B3)

+oP(1)

And we recognize each of (B1)-(B3) as products of mean-zero asymptotically linear
estimators. What to do with them?
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A very useful lemma.

Lemma

Let θ̂1 and θ̂2 be two asymptotically linear estimators of θ1 and θ2, with
influence functions Ψ1 and Ψ2 respectively. Then, n(θ̂1 − θ1)(θ̂2 − θ2) is
asymptotically equivalent to E (Ψ1Ψ2) + nU where U is a U-statistic with
first-order degenerate kernel:

h(Xi ,Xj) = {Ψ1(Xi )Ψ2(Xj) + Ψ1(Xj)Ψ2(Xi )}/2.

Furthermore, for f (x1, x2) with Ef 2(X1,X2) <∞ we have
Ef (X1,X2)h(X1,X3) = 0.

Thus, we can re-express our estimator as being asymptotically equivalent
to a U-statistic!
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But what’s the null distribution of T?

In summary,

SST = σ2 + n

(
n

2

)−1∑
j<k

h∗(Xj ,Xk) + oP(1),

where

h∗(Xj ,Xk) = d(Mj ,Mk){1− (1− Dj)(1− Dk)/η − DjDk/(1− η)}

−
(

1− 1− Dj

η

){
(1− Dk)EMd(Mk ,M)− σ2η

}
−
(

1− 1− Dk

η

){
(1− Dj)EMd(Mj ,M)− σ2η

}
−
(

1− Dj

1− η

){
DkEMd(Mk ,M)− σ2(1− η)

}
−
(

1− Dk

1− η

){
DjEMd(Mj ,M)− σ2(1− η)

}
− (1− Dk − η)(1− Dj − η)σ2η−1(1− η)−1.

Which can be seen easily to also be first order degenerate.
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But what’s the null distribution of T?

Now3, we write the spectral representation h∗(x1, x2) =
∑∞

l=1 λlφl(x1)φl(x2) (from
Hilbert-Schmidt Theory), where λl are the eigenvalues and φl are the eigenfunctions of the
transformation Ψ : g(x) 7−→ Eh∗(x ,Xj)g(Xj). Then, under regularity conditions,

nU =
2

n − 1

∑
j<k

h∗(Xj ,Xk) =
2

n − 1

∑
j<k

∑
l

λlφl(Xj)φl(Xk)

=
∑
l

λl
1

n − 1


∑

j

φl(Xj)


2

−
∑
j

φl(Xj)
2


=
∑
l

λl


 1√

n − 1

∑
j

φl(Xj)


2

− 1

n − 1

∑
j

φl(Xj)
2

⇒ ∞∑
j=1

λj(Z
2
j − 1)

Next, where Zj ∼ N(0, 1) by the central limit theorem which are independent by the
orthonormality of φl . Now, the eigenvalues of Ψ satisfy Eh∗(x ,Xj)φl(Xj) = λlφl(Xj), so to
estimate λl we can use the empirical version of this expression, Hnφl,n = λl,nφl,n.

Thus, SST ⇒
∑∞

j=1 λj(Z
2
j − 1) as n→∞.

3Lee, A.J. (1990). U-statistics: Theory and Practice22/31



But what’s the null distribution of T?

Theorem

Under the null hypothesis that p(Mi | Di ) = p(Mi ), SST is
asymptotically equivalent to σ2 + nU∗ where U∗ is the U-statistic with a
first-order degenerate kernel.
Thus,

SST ⇒
∞∑
j=1

λj(Z
∗2
j − 1) + σ2

where (
∑

Di ) /n→ η ∈ (0, 1), σ2 = E [d(Mj ,Mk)], Z∗1 ,Z
∗
2 , . . . are

normally distributed random variables with Z∗j ⊥ Z∗j′ for j 6= j ′ and
λ1, λ2, . . . are eigenvalues of an integral equation that can be
approximated using a singular value decomposition.
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End result.

Corollary

Under the null hypothesis that p(Mi | Di ) = p(Mi ), we have

T ⇒ σ−2


∞∑
j=1

λj(Z
2
j − 1) + 1
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Simulations

To assess the performance of our test, for i = 1, . . . , n, we let
Di ∼ Bern(0.5) and consider two outcome distributions:

Scalar Case Mi ∼ N(Di , σ
2)

Graph Case Mi is sampled using the adjacency matrix:
1 1 1− τDi τDi τDi

1 1 τDi τDi τDi

1− τDi τDi 1 1 1
τDi τDi 1 1 1
τDi τDi 1 1 1


We simulated B = 1000 datasets from the above distributions for various
parameter values. All simulations showed type I error below the 5% rate.
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Simulations - Scalar Case

For the scalar simulations, we used two distance functions: the squared Euclidean distance
d1(Mj ,Mk) = (Mj −Mk)2/2 and the absolute distance d2(Mj ,Mk) = |Mj −Mk |/2.
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Simulations - Graph Case

For the graph simulations, we used the number of edge disagreements between subjects as
the discrepancy measure and fixed τ1 = 5%.
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DTI Connectivity in the CURE Study

Our motivating study of autism consisted of age-matched 144 subjects
with autism and 120 who were typically developing.

Diagnoses were confirmed using expert consensus by two independent
psychologists following the guidelines set by Collaborative Programs of
Excellence in Autism (CPEA). Briefly, 30-direction DTI were quality
assured following de-noising and brain extraction, and a tensor model was
fit to identify the direction of water diffusion across the brain. The brain
was segmented into 301 regions using a co-registered T1-weighted image,
and FSL probtrackx was used to estimated the degree of structural
connectivity between each of the 301 regions accounting for the volume
of each region.

The observed data for each subject were thus symmetric 301 by 301
connectivity matrices, with (i , j)-th entry being a measure of the strength
of connection between regions i and j .
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DTI Connectivity in the CURE Study

Typically Developing Controls Autism Spectrum Disorders Absolute Difference

Younger Subjects Older Subjects Absolute Difference
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DTI Connectivity in the CURE Study

For discrepancies in DTI connectivity we used the squared Frobenius norm
of the differences in the streamline count matrices and applied our test.

No diagnosis-related differences were observed in our small sample
for connectivity in structure (p=0.45).

We did, however see differences between age groups using our testing
framework (p<0.01).

We are currently examining how more sensitive distance measures and
targeted subnetwork analyses can refine our results, and help us to
understand changes in the connectivity of the brain in autism.
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Thanks!

Thank you very much for your attention!

Please check out our website at http://www.med.upenn.edu/pennsive/ if
you are interested in learning more about our work.
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