< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fiber Orientation Distribution Function Estimation by Spherical Needlets

Jie Peng

Department of Statistics, University of California, Davis

February 2016

Diffusion MRI

- Diffusion MRI is a magnetic resonance imaging technology which measures *diffusion* of water molecules along a set of (predetermined) directions.
 - In vivo, non-invasive, no radiation.
- Diffusion MRI uses water diffusion as a proxy to probe the anatomy of biological tissues.
- Raw data from a D-MRI experiment:
 - Multiple grey scale images corresponding to multiple gradient directions plus a few images with no diffusion weighting.
 - Each image consists of intensities for pixels on a 3D grid (e.g., $\sim 256 \times 256 \times 59$ for a human brain).
 - Image resolution: $1 \sim 3mm$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

D-MRI Provides Information on Brain Connectivity

- Neuron axons with similar destinations form big bundles called *white matter fiber tracts*.
- When applied to human brains, diffusion MRI reveals detailed anatomy of white matter tracts such as their location, size, shape and how they are connected to each other.
 - Human connectome project http://www.humanconnectomeproject.org.
- Alzheimer's Disease Neuroimaging Initiative (ADNI): http://adni.loni.usc.edu/.

Tractographic Reconstruction of Neural Connections

http://braintalks.wordpress.com/2011/12/04/10-maps-of-the-mind/

• With diffusion information at each voxel, fiber tracts can be reconstructed using computer-aided 3D tracking techniques called tractography.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Clinical Applications of Diffusion MRI

- Detect brain abnormality in white matter regions such as specific axonal loss, deformation in brain tumors.
- Differentiate types of tumor and growth orientation.
- Measure anatomy of immature brains.
- Monitor status of specific white matter tracts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Water Diffusion in Biological Tissues

Anisotropic due to the presence of fibers with coherent orientations.

- Water tends to diffuse faster along fibers.
- Information on water diffusion may be used to probe tissue structure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diffusion in Brain

- White matter.
 - Astronomical number of connections: "cables" of the brain.
 - Presence of axonal bundles at image resolution \Rightarrow diffusion appears anisotropic.
- Grey matter.
 - \sim 100 billion neurons: "CPU" of the brain.
 - Lack of coherent fiber organization at image resolution (~2mm) ⇒ diffusion appears isotropic.

Sensitize MRI Signal by Water Diffusion

Mori and Zhang, 2006, Neuron 51

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Diffusion Weighted Signals

At voxel \mathbf{s} , along direction \mathbf{q} , diffusion weighted signal:

$$S_0(\mathbf{s}) \int_{\mathcal{R}^3} p_{\mathbf{s},\Delta t}(\mathbf{r}) \exp(i\gamma \delta \mathbf{q} \cdot \mathbf{r}) d\mathbf{r}.$$

- $S_0(s)$: signal intensity without diffusion weighting at voxel s.
- $p_{s,\Delta t}(\cdot)$: p.d.f. of water displacement in time duration Δt at voxel s.
- Δt : time between "depahsing" and "rephasing".
- δ : duration of dephasing/rephasing.
- γ : gyromagnetic ratio.

Diffusion weighted signal is the inverse Fourier transform of the diffusion probability density function.

Gaussian Diffusion and Single Tensor Model

$$p_{\mathbf{s},\Delta t}(\mathbf{r}) = rac{1}{(2\pi)^{3/2}} |\mathbf{D}(\mathbf{s})\Delta t|^{-rac{1}{2}} \exp\left(-rac{\mathbf{r}^{\intercal}\mathbf{D}(\mathbf{s})^{-1}\mathbf{r}}{2\Delta t}
ight), \ \ \mathbf{r}\in\mathbb{R}^{3}.$$

- D(s): diffusion tensor, a 3 × 3 p.d. matrix. Its principal eigenvector captures the fiber orientation within the voxel.
- DWI signal along gradient direction **u**:

$$S(\mathbf{u}) = S_0 \exp(-b\mathbf{u}^T \mathbf{D}\mathbf{u}), \quad b = \frac{\gamma^2 \delta^2 ||\mathbf{q}||^2 \Delta}{2}.$$

• D(s) can be recovered with as few as 6 distinct gradient directions.

(日)、

FOD Estimators

Crossing Fibers

More than 30% voxels have multiple fiber bundles with distinct orientations (under D-MRI image resolution).

Limitations of Single Tensor Model

- Single tensor model can not resolve multiple fiber orientations within a voxel since a tensor only has one principal direction. It may incorrectly lead to:
 - Oblate $(\lambda_1 \approx \lambda_2 >> \lambda_3)$ tensor estimation.
 - Low anisotropy and random diffusion directions.
 - Consequently, early termination of fiber tracking or bias/switching of fiber tracking.
- Tensor Mixture Model.
- Nonparametric methods using HARDI data.

HARDI Techniques

High angular resolution diffusion imaging (HARDI) techniques enable the detection of multi-modal diffusion signals.

- Q-ball imaging: Gradients are sampled from a single spherical shell of a particular radius (a single bvalue).
 - Diffusion orientation distribution function (ODF) (Tuch, 2004, Descoteaux et al., 2007).
 - Fiber orientation density (FOD) function (Tournier et al., 2004, 2007).

Fiber Orientation Density Function

FOD is a symmetric p.d.f. on \mathbb{S}^2 which describes the distribution of fiber orientations (corresponding to coherently oriented fiber bundles) at a voxel.

• Example. K distinct fiber bundles:

$$F(\theta,\phi) = \sum_{k=1}^{K} w_k \delta_{\theta_k,\phi_k}(\theta,\phi), \quad \theta \in [0,\pi], \quad \phi \in [0,2\pi),$$

where $w_k > 0$, $\sum_{k=1}^{K} w_k = 1$ are the volume fractions and θ_k (polar angle) and ϕ_k (azimuthal angle) are the spherical coordinates of the k-th fiber direction.

Assumptions

- DWI signals are the summation of signals originated from distinct fiber bundles.
 - No water exchange between distinct fiber bundles.
 - No water exchange between orientationally distinct segments of the same fiber bundle.
- Diffusion characteristics along all fiber bundles are (i) identical no matter the direction or abundance of the fiber bundle, and (ii) *axially symmetric* around the fiber direction.
 - DWI signal from a single coherently oriented fiber bundle can be represented by an axially symmetric *response function*.
 - The response function is identical across fiber bundles.

Response Function

• An axially symmetric kernel

$$R: [-1,1] \rightarrow \mathbb{R}$$

which describes DWI signal resulting from water diffusion along a single fiber bundle aligned with the z-axis.

- Estimation of the response function. Assume response function is identical across voxels.
 - Fit the single tensor model to every voxel.
 - Identify voxels with high FA values and find their principal eigenvectors.
 - For each such voxel, rotate the DWI signals such that the principal eigenvectors are aligned with the z-axis.
 - Average the rotated DWI profiles across these voxels.

• Example. Gaussian diffusion with $\lambda_1 = \lambda_2 < \lambda_3$:

$$R(\cos(\theta)) = S_0 \exp^{-b\mathbf{q}(\theta,\phi)^T \wedge \mathbf{q}(\theta,\phi)} = S_0 \exp^{-b(\lambda_1 \sin^2 \theta + \lambda_3 \cos^2 \theta)},$$

where $\theta \in [0, \pi]$, $\mathbf{q}(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)^T$ and $\Lambda = \text{Diag}(\lambda_1, \lambda_2, \lambda_3)$.

• Since water diffuses fastest along the dominant fiber direction, the response function is attenuated the most along the z-axis.

Figure: Gaussian diffusion response function with $\lambda_1 = \lambda_2 = 20, \lambda_3 = 1000.$

Spherical Convolution Model of Diffusion Signals

 DWI signal S(·) is the spherical convolution of the response function R(·) with the FOD F(·):

$$S(\mathbf{x}) = R \star F(\mathbf{x}) = \int_{\mathbb{S}^2} R(\mathbf{x}^T \mathbf{y}) F(\mathbf{y}) d\mathbf{y}, \quad \mathbf{x} \in \mathbb{S}^2.$$

- The FOD F(·) can be obtained by performing the spherical deconvolution of the response function R(·) from the DWI signal function S(·).
- Spherical deconvolution can be achieved through *spherical harmonic representation*.

Connection between the FOD model and the multi-tensor model.

- In the multi-tensor model, if the tensors D_k 's have the same set of eigenvalues satisfying $\lambda_1 = \lambda_2 < \lambda_3$, then it corresponds to the FOD model with:
 - Response function

$$R(cos(heta)) = S_0 \exp^{-b(\lambda_1 \sin^2 heta + \lambda_3 \cos^2 heta)}, \quad heta \in [0, \pi],$$

• FOD

$$F(heta,\phi) = \sum_{k=1}^{K} w_k \delta_{ heta_k,\phi_k}(heta,\phi), \quad heta \in [0,\pi], \ \phi \in [0,2\pi),$$

where (θ_k, ϕ_k) denotes the principal eigenvector of the tensor D_k $(k = 1, \dots, K)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

イロト イ団ト イヨト イヨト 二日

Figure: Spherical Convolution. Left to right: response function $R(\cdot)$, FOD $F(\cdot)$ and the DWI signal $S(\cdot)$.

FOD Model

FOD Estimators

Spherical Harmonics

• Spherical harmonics, denoted by $\tilde{\Phi}_{I,m}$:

$$\tilde{\Phi}_{l,m}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos(\theta))\exp^{im\phi}, \ \theta\in[0,\pi],\phi\in[0,2\pi).$$

- *I*(≥ 0) denotes the harmonic order and *m* (−*I* ≤ *m* ≤ *I*) denotes the phase factor.
- Angular frequency increases with order *I*. Harmonics with even *I* are symmetric and those with odd *I* are anti-symmetric.
- P_l^m is an associated Legendre polynomial of order (l, m).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● 三 ● のへで

Real Symmetric Harmonic Basis

• For
$$l = 0, 2, \dots, l_{max}$$
 and $m = -l, \dots, 0, \dots, l$

$$\Phi_{l,m} = \begin{cases} \frac{\sqrt{2}}{2} (\tilde{\Phi}_{l,m} + (-1)^m \tilde{\Phi}_{l,-m}) & \text{if } 0 < m \le l \\ \Phi_l^0 & \text{if } m = 0 \\ \frac{\sqrt{2}}{2i} ((-1)^{m+1} \tilde{\Phi}_{l,m} + \tilde{\Phi}_{l,-m}) & \text{if } -l \le m < 0 \end{cases}$$

 Φ_{I,m} form an orthnormal basis for real symmetric square-integrable functions (including R and F) defined on S².

Figure: Real symmetric spherical harmonics.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Since $S = R \star F$, so

$$s_{lm} = \sqrt{\frac{4\pi}{2l+1}}r_lf_{lm}, \quad l = 0, 2, 4, \cdots, m = -l, \cdots, 0, \cdots l,$$

where $s_{lm} = \langle S, \Phi_{l,m} \rangle$, $r_l = \langle R, \Phi_{l,0} \rangle$ and $f_{lm} = \langle F, \Phi_{l,m} \rangle$ are the spherical harmonics (rotational harmonics) coefficients of S, R and F, respectively.

- Assume that S(·), R(·), F(·) can be represented by finite-order spherical harmonics functions {Φ_{l,m} : −l ≤ m ≤ l}<sub>l=0,2,...,l_{max}.
 </sub>
- The number of SH functions: $L = (I_{max} + 1)(I_{max} + 2)/2$.

Regression Model For DWI Measurements

The observed D-MRI signals:

$$\mathbf{y} = \mathbf{\Phi} \mathbf{R} \mathbf{f} + \boldsymbol{\epsilon}.$$

- y = (y(θ₁, φ₁), · · · , y(θ_n, φ_n))^T is the n × 1 vector of observed DWI measurements.
- Φ is the n × L matrix of the SH functions evaluations at the n gradient directions {(θ_i, φ_i)}ⁿ_{i=1}.
- **R** is an $L \times L$ diagonal matrix with diagonal elements $\sqrt{4\pi/(2l+1)}r_l$ (SH coefficients of the response function) in blocks of size 2l + 1 for $l = 0, 2, \dots, l_{max}$.
- **f** is the $L \times 1$ vector of SH coefficients of the FOD *F*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SH-ridge Estimator of FOD

• Penalized regression:

$$\widehat{\mathbf{f}} = \arg\min_{\mathbf{f}} \parallel \mathbf{y} - \mathbf{\Phi} \mathbf{R} \mathbf{f} \parallel_2^2 + \lambda \mathbb{E}(F), \quad F = \sum_{l,m} f_{l,m} \Phi_{l,m}$$

• Laplace-Beltrami penalty, $\mathbb{E}(F)$, a measure of roughness.

$$\mathbb{E}(F) := \int_{\Omega} (\Delta_b F)^2 d\Omega = \mathbf{f}^T \mathbf{P} \mathbf{f},$$

where **P** is a diagonal matrix with entries $l^2(l+1)^2$ in blocks of size 2l + 1.

• SH-ridge estimator:

$$\hat{\mathbf{f}}^{LB} = (\mathbf{R}^{T} \mathbf{\Phi}^{T} \mathbf{\Phi} \mathbf{R} + \lambda \mathbf{P})^{-1} \mathbf{R}^{T} \mathbf{\Phi}^{T} \mathbf{y}, \quad \hat{F}^{LB} = \sum_{l,m} \hat{f}_{l,m}^{LB} \Phi_{l,m}.$$

Tournier et al.(2004).

FOD Model

FOD Estimators

sCSD Sharpening

Suppress small values of the estimated FOD and sharpens the peak(s) of the FOD estimator.

- 1. Initial step: Get an initial estimator $\hat{\mathbf{f}}_0$ by SH-ridge.
- 2. At the k + 1 updating step

$$\widehat{\mathbf{f}}_{k+1} = \arg\min_{\mathbf{f}} \| \mathbf{y} - \mathbf{\Phi} \mathbf{R} \mathbf{f} \|^2 + \lambda \| \mathbf{P}_k \mathbf{f} \|^2$$
(1)

where \mathbf{P}_k is an $n \times L$ matrix,

$$\mathbf{P}_{k,i,(l,m)} := \begin{cases} \mathbf{\Phi}_{i,(l,m)} & \text{if } \hat{F}_{k,i} < \tau \\ 0 & \text{if } \hat{F}_{k,i} > \tau \end{cases}$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\hat{F}_{k,i}$ is the *i* the element of the vector $\hat{F}_k = \Phi \hat{f}_k$

Tournier et al.(2007).

A D > A B > A B > A

Spherical Needlets

- Spherical needlets ψ_{j,k}s are constructed from spherical harmonics functions (Nrcowich et al., 2006).
- Needlets are spatially localized with exponential concentration with respect to the frequency index *j*.
- Needlets provide sparse representations for spherical functions with small spatial scale features.

Figure: Real symmetric spherical needlets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Needlets-lasso Estimator of FOD

- Assume that $S(\cdot), R(\cdot), F(\cdot)$ can be represented by finite-order spherical harmonics functions.
- Then they can be represented by finite needlets functions $\{\psi_{k,j}: k \in \chi_j\})_{j=0,\cdots,j_{\max}}.$
- The number of symmetric needlets: $N = 2^{2jmax+1} 1$.
- There is a transition matrix $\mathbb C$ such that the spherical harmonics coefficients

$$\mathbf{f} = \mathbb{C}\boldsymbol{\beta},$$

where β is the corresponding spherical needlets coefficients which are expected to be sparse.

• The observed D-MRI signals:

$$\mathbf{y} = \mathbf{\Phi} \mathbf{R} \mathbb{C} \boldsymbol{\beta} + \boldsymbol{\epsilon}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 ℓ_1 penalized regression with nonnegativity constraints:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}: \tilde{\boldsymbol{\Phi}} \mathbb{C} \boldsymbol{\beta} \geq 0} \parallel \mathbf{y} - \boldsymbol{\Phi} \mathbf{R} \mathbb{C} \boldsymbol{\beta} \parallel_2^2 + \lambda \parallel \boldsymbol{\beta} \parallel_1.$$

- λ is a tuning parameter which controls the degree of sparsity.
- $\hat{F}^{NL} = \tilde{\Phi}\mathbb{C}\beta \ge 0$ ensures that the estimated FOD is nonnegative on the evaluation grid.
- This is a constrained convex minimization problem and can be solved by the ADMM algorithm.

Simulation Setting

• FODs with two distinct fiber bundles:

$$F(\theta,\phi) = w_1\delta(\theta_1,\phi_1) + w_2\delta(\theta_2,\phi_2).$$

- $w_1 = w_2 = 0.5$.
- Separation angle between the two fiber bundles: $\theta_{sep} = 45,60,75,90$ degrees.
- Gaussian diffusion response function with $\frac{\lambda_3}{\lambda_1} = 50$.
- n = 81 gradient directions, sampled from an equal angle grid.
- $bvalue=1000s/mm^2$, $3000s/mm^2$.
- $SNR = \frac{S_0}{\sigma} = 20$, where S_0 is the b_0 image intensity and σ is the Rician noise standard deviation.

The number of gradient directions, SNR and bvalue are typical/close to those in real D-MRI studies.

Simulation Results

- FODs are estimated by SH-ridge with $l_{max} = 8$ (L = 45 SH functions), by sCSD sharpening, and by needlets-lasso with $j_{max} = 4$ (N = 511 needlets functions).
- Tuning parameters in SH-ridge and needlets-lasso are chosen by BIC. Those of sCSD are set as the recommended values by the paper.
- The needlets-lasso estimator has much sharper peaks.
- sCSD is sensitive to the penalty parameter τ as well as I_{max} and thus is hard to automate in the real data setting where there are hundreds of thousands voxels with different fiber population characteristics.

FOD Model

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Figure: Mean plus 2-SD plots across 100 replicates. bvalue=1000. Top: $\theta_{sep} = 45$; Middle: $\theta_{sep} = 60$; Bottom: $\theta_{sep} = 90$. Left: SH-ridge; Middle: sCSD; Right: needlets-lasso.

Diffusion MRI	Tensor Models and Limitations		FOD Model	FOD Estimators
	Average 3H estimation & +251D	words parents entering a risks	Average on these of common a verify	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Figure: Mean plus 2-SD plots across 100 replicates. bvalue=3000. $\theta_{sep} = 45$. Left: SH-ridge; Middle: sCSD; Right: needlets-lasso.

FOD Mode

FOD Estimators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Three fiber bundles simulation.

Figure: Mean plus 2-SD plots across 100 replicates. bvalue=1000. Top: $\theta_{sep} = 75$; Bottom: $\theta_{sep} = 90$. Left: SH-ridge; Middle: sCSD; Right: needlets-lasso.

FOD Estimators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Borrow information from neighboring voxels.
- Inference based on bootstrapping.
- Feature extraction and multiscale analysis.

Sensitize MRI Signal by Water Diffusion

- *Excitation*: Apply a strong homogeneous field ⇒ water molecules resonate at the same frequency and phase.
- Dephasing : Apply a linearly inhomogeneous gradient field ⇒ water molecules resonate at different frequencies depending on their locations.
- Apply the homogeneous field ⇒ water molecules resonate at the same frequency again, but signal is still out of phase.
- *Rephasing*: Apply an opposite gradient field.
 - If water molecules had moved along the gradient direction, then there would be a disruption of phase ⇒ signal loss and signals are *diffusion weighted*.

Diffusion MRI

Tensor Models and Limitations

FOD Model

FOD Estimators

Mori and Zhang, 2006, Neuron 51

MRI can not measure the phase of individual water molecules, but it can detect imperfect rephasing through signal loss.

- During MR measurements, the amount of water molecular displacement is about $1 \sim 20 \mu m$, depending on sample, temperature, duration of experiment, etc.
- DT-MRI experiments are designed such that this amount of diffusion leads to $10 \sim 90\%$ signal loss.

Diffusion Weighted Signals

- "Dephasing" encodes the location information of water molecules through their signal phase.
- MR can not measure the phase of individual water molecules, but it can detect imperfect rephasing through signal loss.
 - Perfect rephasing only happens when water molecules remain stationary between the two applications of gradients.
 - If water moved between "dephasing" and "rephasing", there will be a disruption of phase across the sample.
 - Then after rephasing, some of the molecules that moved will have different phases from the stationary molecules. This leads to an overall signal attenuation signals are *diffusion weighted*.
- Water motion along directions perpendicular to the gradient direction will not cause signal loss and thus can not be detected.
 - Multiple gradient directions need to be applied if water diffuse anisotropically.

(日)

Fig.1.9 An example of a dephase-rephase experiment by gradient application. Red, green, and blue circles indicate three water molecules located at different positions in a sample tube. Thick arrows indicate the strengths of magnetic field strength (B_0), and narrow arrows indicate phases of MR signals from each molecule.

Introduction to diffusion tensor imaging, Mori, 2007

Model Diffusion Signals

- Signal loss equals to the summation (across locations within a voxel) of the sinusoid waves with shifted signal phases weighted by the proton density at their corresponding location.
- Applying a gradient field **q** with duration δ introduces a *phase* shift in space:

$$\gamma \delta \mathbf{q} \cdot \mathbf{r}, \quad \mathbf{r} \in R^3$$

which is proportional to the projected distance on **q**.

- $\mathbf{q} \in R^3$ gradient field: $||\mathbf{q}||$ field strength, $\mathbf{u} = \mathbf{q}/||\mathbf{q}||$ gradient direction.
- $\mathbf{r} \in R^3$: displacement vector.
- δ: duration of dephasing/rephasing (assumed to be short, so ignore water movement during δ).
- γ : gyromagnetic ratio.

 After the "dephasing" stage, water molecules start to move during the time period Δt (>> δ). Their final locations are distributed according to a *diffusion probability density function*:

$$p_{\Delta t}(\mathbf{r}), \quad \mathbf{r} \in R^3$$

– density of protons having a displacement \mathbf{r} in time duration Δt .

- Δt : time between "depahsing" and "rephasing". Typically, the molecular displacement is $1\sim 20\mu m$.
- The probability of water molecules having displacements **r** and -**r** is the same:

$$p_{\Delta}(\mathbf{r}) = p_{\Delta}(-\mathbf{r}).$$

Microscopic vs. Macroscopic

- The average distance that water molecules move during the MR measurement is $1\sim 20\mu m$.
- Thus only barriers that have a smaller dimension may cause anisotropy in water diffusion, this includes microscopic cellular architecture ($< 10 \mu m$) such as protein filaments, cell membrasnes, myelin sheaths.
- However, the image resolution is much coarser ($\sim 2mm$). Therefore information is averaged within each voxel.
- Thus diffusion MRI provides information on "macroscopic coherent arrangement of anisotropic microscopic anatomy" (Mori, 2007). Only when both factors exist in a voxel, one can observe diffusion anisotropy.

Spherical Needelts Construction

- Two main ideas: (i) discretization of the sphere by an exact quadrature formula; (ii) Littlewood-Paley decomposition.
- The quadrature formula discretizes the sphere into cubature points and cubature weights:

Theorem 1. Denote \mathcal{H}_l as the space spanned by $\{Y_{lm} : m = -l, \dots, l\}$, and let $\mathcal{K}_l = \bigoplus_{k=0}^{l} \mathcal{H}_k$. For any $l \in \mathbb{N}$, there exist a finite subset $\mathcal{X}_l = \{\xi_{lk} : k = 1, \dots, n_l\}$ of \mathbb{S}^2 and positive real numbers $\{\lambda_{lk} : k = 1, \dots, n_l\}$ such that

$$\int_{\mathbb{S}^2} f(x) dx = \sum_{k=1}^{n_l} \lambda_{lk} f(\xi_{lk}),\tag{7}$$

for any $f \in \mathcal{K}_l$. Here ξ_{lk} and λ_{lk} are called cubature points and cubature weights, respectively.

Spherical Needelts Construction (Cont'd)

• Given a frequency $j \in \mathbb{N}_0$ and cubature points ξ_{jk} and weights λ_{jk} , the spherical needlets with frequency j (B > 1):

$$\psi_{jk}(x) = \sqrt{\lambda_{jk}} \sum_{l=\lfloor B^{j-1} \rfloor}^{\lceil B^{j+1} \rceil} b(\frac{l}{B^j}) \sum_{m=-l}^{l} \tilde{\Phi}_{l,m}(\xi_{jk}) \overline{\tilde{\Phi}}_{l,m}(x), \ x \in \mathbb{S}^2.$$

- $b(\cdot)$ is a window function satisfying: (i) supp(b) = [1/B, B]; (ii) $\sum_{j=0}^{\infty} b^2(t/B^j) = 1$, for any t > 0; (iii) $b \in C^{(M)}$ for some $M \ge 1$.
- b(·) decomposes the frequency domain into several overlapping intervals (B^{j-1}, B^{j+1}).
- ξ_{jk} determines the location of the needlets ψ_{jk} and λ_{jk} determines to what extent ψ_{jk} is localized.
- Varying ξ_{jk} and j is analogous to translation and dilation in multiscale analysis.

Spherical Needlets Properties

- Needlets are real-valued spherical functions.
- They are localized in the frequency domain since the window function has compact support.
- Needlets are spatially localized with exponential concentration with respect to the frequency index *j*.
- Spherical needlets provide sparse representation of spherical functions with sharp local peaks.
- Needlets (together with the first spherical harmonics $\tilde{\Phi}_{00}$) form a tight frame on $L^2(\mathbb{S}^2)$:

$$\|f\|_{L^2}^2 = \sum_{j,k} |\langle f, \psi_{jk}|^2 + a_{00}^2.$$

- They are almost orthogonal: for $|j j'| \ge 2$, $<\psi_{jk}, \psi_{j'k'}>= 0.$
- The spherical needlets ψ_{jk} and $\psi_{jk'}$ are asymptotically uncorrelated as the frequency *j* increases and the distance between them remains fixed.