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Motivation

Major depressive disorder (MDD) affects approximately
5% of the worldwide population each year.

It is the leading cause of disability worldwide (in terms
of years lost due to disability).

Standard treatments take (at least) 6–8 weeks to take
effect, during which time patients have poor quality of
life and are at high risk of suicide.

Treatment assignment is done by “trial and error.”



Functional
and

imaging
data

in precision
medicine

R. Todd
Ogden

Introduction

Treatment
regimes

A linear
functional
approach

Other
approaches

Discussion

References

A motivating dataset: The EMBARC study

The EMBARC (Establishing Moderators And Biosignatures
of Antidepressant Response for Clinical Care) study is an
ongoing multi-site randomized placebo-controlled clinical
trial.

400 subjects are randomized to placebo or citalopram
At baseline, measure

clinical characteristics — diagnostic measures,
treatment history, comorbidity, . . .
neurophychological assessments — word fluency,
emotion processing and regulation, . . .
brain structure — structural MRI
integrity of white matter tracks in the brain — DTI
“resting state” EEG and fMRI
brain function while performing certain tasks — fMRI
and EEG

Can imaging (and other) data be used in making
patient-specific treatment decisions?
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EMBARC goals

The primary goals of the EMBARC project are:

1 To select measurements that can be made at baseline
that will help predict patient response to treatment.

2 To determine a rule, based on these measurements, that
will assign the treatment that is best for each patient.

Baseline measurements consist of scalar quantities and
functional data.
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Setup

Continuous response Y (large values are better)

Treatment A = −1 or 1

Scalar covariates Z = (1, Z1, . . . , Zp)
ᵀ (age, severity,

clinical/cognitive measures, etc.)

Functional observations
Z = {X1(t), t ∈ T1}, . . . , {Xq(t), t ∈ Tq} (can be 1-D,
2-D, 3-D, . . . )
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Setup

Potential outcomes: Y ∗(−1), Y ∗(1) but we observe only
Y = Y ∗(1)(A+ 1)/2 + Y ∗(−1)(1−A)/2.

“Treatment regime”: g : (Z,X)→ {−1, 1}
We want to choose g to make E[Y ∗(g(Z,X))] as large as
possible.

The “value” of the decision rule is∫
Z

∫
X E[Y ∗(g(Z,X))]dXdZ



Functional
and

imaging
data

in precision
medicine

R. Todd
Ogden

Introduction

Treatment
regimes

A linear
functional
approach

Other
approaches

Discussion

References

Some general approaches

A-learning (“Advantage learning”): Murphy (2003);
Robins (2004); Blatt, et al. (2004)

Q-learning (“Quality learning”): Watkins and Dayan
(1992); Nahum-Shani et al. (2010)

OWL (“Outcome weighted learning”): Zhao, et al.
(2012)

These generally rely on a relatively small number of scalar
covariates to make decisions.

Techniques using functional data also exist: McKeague and
Qian (2014); Ciarleglio et al. (2015).

These all rely on some type of model (but they try to make
the methods robust to model misspecification).
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Data model

E[Y |Z,X, A] = hα,β(Z,X) +
A

2
fγ,ω(Z,X)

hα,β(Z,X) = αᵀZ +
∑p

`=1

∫
β`(s)X`(s)ds

fγ,ω(Z,X) = γᵀZ +
∑p

`=1

∫
ω`(s)X`(s)ds

β = {β1, . . . , βq} and ω = {ω1, . . . , ωq}

fγ,ω(Z,X) = E[Y |Z,X, A = 1]− E[Y |Z,X, A = −1]

Therefore:

gopt(Z,X) = sign{fγ,ω(Z,X)}

= sign

{
γᵀZ +

p∑
`=1

∫
ω`(s)X`(s)ds

}
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Fitting the model

Elements of fitting procedure (Ciarleglio, et al., 2015):

Express functional observations in terms of
eigenfunctions of smoothed estimated covariance
operator (Goldsmith, et al., 2011)

Express the objective function for fitting the data as a
loss function in the framework of A-learning (Murphy,
2003)

Smoothing parameters may be chosen by REML

We would like to consider a procedure for variable selection
also.
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Modified covariates method (Tian et al., 2014)

Note that: E(2Y A|Z,X) = fγ,ω(Z,X)

Estimate γ and ω by minimizing:

1

n

n∑
i=1

(2YiAi − fγ,ω(Zi,Xi))
2 ∝ 1

n

n∑
i=1

(
Yi − fγ,ω(Zi,Xi)

Ai
2

)2

So we can estimate γ and ω by fitting

Y = fγ,ω(Z,X) · A
2

+ ε

= γᵀ
{
Z · A

2

}
+

p∑
`=1

∫
ω`(s)

{
X`(s)

A

2

}
ds+ ε
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Combining estimation with variable selection
and roughness penalization

Define Ln(γ,ω) = 1
n

∑n
i=1

(
Yi − fγ,ω(Zi,Xi)

Ai
2

)2
Express functional components in terms of spline basis
functions, choose γ and ω to minimize (Gertheiss, et al.,
2013)

Ln(γ,ω) + λ


p+1∑
j=2

J(|γj |) +

q∑
`=1

Pρ`(ω`)


J(|γj |) = |γj | Pρ` (ω`) =

{
||ω`||2 + ρ`Q(ω`)

}1/2 ||ω`|| =
∫
ω2
` (s)ds

1D: Q(ω`) =
∣∣∣∣∣∣ ∂2ω`
∂s2

∣∣∣∣∣∣2 2D: Q(ω`) =
∣∣∣∣∣∣ ∂2ω`
∂s2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ ∂2ω`
∂s∂t

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ ∂2ω`
∂t2

∣∣∣∣∣∣2
Tuning parameters:

λ (complexity)

ρ`, ` = 1, . . . , q (smoothness)
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Group lasso

For fixed λ, ρ1, . . . , ρq, this objective function can be
optimized using procedures for the “group lasso” (Yuan and
Lin, 2006).

Scalar covariates are regarded as groups of size 1.

Can fit using grplasso in R.

Tuning parameters may be chosen by cross-validation
(although there are q + 1 of them . . . ).
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Other variations

Augmentation (Tian et al., 2014)

Adaptive lasso (Zhou, 2006)

SCAD (Fan and Li, 2001)

MCP (Zhang 2010)
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Application: EMBARC data (1D functions)

Treatment: Placebo (nP = 58), Sertraline (nS = 54)

Scalars:
Age at MDE bp1831 bp1822 Sex
Dur of MDE bp1844 Chronicity Age at Eval.
bp 1827 bp1837 Severity Years Educ.

Functions:
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Response: S-S slope from LMEM with time, site, time×site
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Results: Contrast coefficient estimates

Variable γ̂ Variable γ̂
Treatment -0.001 bp1822 -0.009
Age at MDE -0.021 Chron. 0.012
Dur of MDE 0.043 Severity -0.012
bp1827 0 Sex -0.066
bp1831 0 Age at Eval. -0.055
bp1844 0.005 Years Ed. 0.074
bp1837 -0.029
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Results: In-sample expected response

Received
Optimal Placebo Sertraline

Placebo 25 22
Sertraline 33 32

Estimated mean change in HAMD

Random 0.038× 8 = 0.304
Placebo 0.078× 8 = 0.624
Sertraline −0.005× 8 = -0.040
Optimal −0.171× 8 = -1.368
subOptimal 0.255× 8 = 2.040

Random Placebo Sertraline Optimal subOptimal
-5

0
5

10

Responses Under Each Regime
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Application: EMBARC data (2D functions)

Treatment: Placebo (nP = 58), Sertraline (nS = 54)

Scalars:
Age at MDE bp1831 bp1822 Sex
Dur of MDE bp1844 Chronicity Age at Eval.
bp 1827 bp1837 Severity Years Educ.

Functions:

 
 
 
 
 
 
 
Sub 1 
 
 
 
 
 
 
 
Sub 2 
 
 
 
 
 
 
 
Sub 3 
 

Response: S-S slope from LMEM with time, site, time×site
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Results: Contrast coefficient estimates

Variable γ̂ Variable γ̂
Treatment -0.158 bp1822 0
Age at MDE 0 Chron. 0
Dur of MDE 0 Severity 0
bp1827 0 Sex 0
bp1831 0 Age at Eval. 0
bp1844 0 Years Ed. 0
bp1837 0

Theta          Alpha 
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Results: In-sample expected response

Received
Optimal Placebo Sertraline

Placebo 15 12
Sertraline 33 42

Estimated Mean Change in HAMD

Random 0.038× 8 = 0.304
Placebo 0.078× 8 = 0.624
Sertraline −0.005× 8 = −0.040
Optimal −0.095× 8 = −0.760
subOptimal 0.176× 8 = 1.408

Random Placebo Sertraline Optimal subOptimal

-5
0

5
10

Responses Under Each Regime
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Generated Effect Modifiers

Redefining the treatment effect as A = 0 or 1, the linear
model with a single predictor W is

Y = ν0 + ν1A+ ν2W + ν3(AW ) + ε

W is called a “treatment effect modifier” if ν3 6= 0.

For assigning treatment, the only important term is the
interaction term.

A “generated effect modifier” (GEM) is a linear combination
of the available predictors W = γᵀZ +

∑p
`=1

∫
ω`(s)X`(s)ds.

There are several criteria by which γ and ω1, . . . , ωp may be
chosen (Petkova, et al., 2016).
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Nonparametric generated effect modifiers

Single index model:
E[Y |A = 1]− E[Y |A = 0] = ν1A+ h(AW ) + ε, where h is
unspecified but constrained to be smooth and again,

W = γᵀZ +

p∑
`=1

∫
ω`(s)X`(s)ds. (1)

We fit this model by expressing h in terms of B-splines,
applying a smoothness penalty and iterating between
estimation of the parameters in (1) and the coefficients of h
(Park, et al., 2016).

Multiple index model:

E[Y |A = 1]−E[YA = 0] = ν1A+h1(AW1)+. . .+hr(AWr)+ε,
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Distance based methods

Define ma(x) = E[Y |X = x, A = a] One way to estimate
ma(x) nonparametrically is with the generalization of the
Nadaraya-Watson estimator (Ferraty and Vieu, 2006)

m̂a(x) =

∑n
i=1K(d(x,Xi)/h)1(Ai = a)Yi∑n
i=1K(d(x,Xi)/h)1(Ai = a)

K is a kernel

h is a bandwidth

d is a semi-metric

Potential semi-metrics:

Euclidean

PCA-based

wavelet-based
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Discussion

Difficult to do well when n is “moderate”

Inference on estimated coefficient functions

Dynamic treatments

Accounting for side effects

More than two treatments
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