Estimation and Inference for Brain Connectivity Analysis

Lexin Li

Division of Biostatistics University of California, Berkeley

Outline

talk outline:

- motivation
- one solution: symmetric tensor predictor regression
- numerical results
- additional work: inference in a nutshell
- collaboration:
 - William Jagust Lab @ Helen Wills Neuroscience Institute
 - Hua Zhou of UCLA, Weixin Cai of UC Berkeley
 - Yin Xia of UNC, Chapel Hill
- thanks:
 - NSF DMS-1310319
 - Hongtu Zhu and Linglong Kong

- scientific background:
 - Alzheimer's disease (AD) and normal aging
 - amyloid beta (Aβ) is a form of protein that is toxic to neurons in the brain, and it accumulates outside neurons and forms sticky buildup called Aβ plaques
 - Aβ plaques destroy synapses, i.e., contact points via which nerve cells relay signals to one another, and eventually lead to nerve cell death
 - Aβ plaques are the hallmark neuropathology markers of Alzheimer's disease (AD), and are also commonly found in elderly normal controls
 - previous studies have demonstrated that brain networks degrade among AD subjects
 - our interest: how brain networks relate to Aβ deposition in cognitively normal elder subjects

- Berkeley Aging Cohort (BAC):
 - Aβ deposition was measured using Pittsburgh compound-B positron emission tomography (PIB-PET) imaging
 - n = 140 cognitively normal elder subjects
 - a continuous measure for each subject (Box-Cox transformation)
 - a binary measure: dichotomized into two groups, A β negative (111), A β positive (29)
 - brain connectivity network was measured by resting-state functional magnetic resonance imaging (rs-fMRI)
 - preprocessed
 - Freesurfer Desikan-Killany atlas: p = 80 regions-of-interest
 - ► TR = 1.89 sec, temporal dimension q = 256 time points TR = 2.20 sec, temporal dimension q = 187 time points
 - additional covariates: age, gender, education

broad question of interest:

- broad question of interest:
 how Aβ deposition are related to brain connectivity patterns in cognitively normal elder subjects
- many possible formulations to tackle the problem...

broad question of interest:

- many possible formulations to tackle the problem...
 - compare the connectivity networks between the Aβ positive group and Aβ negative group
 - estimation across groups
 - inference: significance quantification

broad question of interest:

- many possible formulations to tackle the problem...
 - compare the connectivity networks between the Aβ positive group and Aβ negative group
 - estimation across groups
 - inference: significance quantification
 - association modeling of the connectivity network and the (binary or continuous) Aβ deposition measure
 - take the connectivity network as a response
 - take the connectivity network as a predictor

broad question of interest:

- many possible formulations to tackle the problem...
 - compare the connectivity networks between the Aβ positive group and Aβ negative group
 - estimation across groups
 - inference: significance quantification
 - association modeling of the connectivity network and the (binary or continuous) Aβ deposition measure
 - take the connectivity network as a response
 - take the connectivity network as a predictor

Symmetric tensor predictor regression

- association modeling:
 - extends from tensor predictor regression (Zhou et al., 2013)
 - fits a regression with Aβ deposition as the response (binary or continuous), the symmetric, connectivity matrix that describes the brain connectivity network as the predictor
 - has easy interpretation of the effect of individual links between brain regions on the phenotype
 - works with binary or continuous connectivity network (e.g., correlation or thresholded correlation matrix), avoiding selecting threshold
 - permits individual variation of functional connectivity
 - > permits inference at the individual level, so potentially useful clinically
 - takes any connectivity matrix as input, both in time domain and frequency domain: correlation, partial correlation, mutual information, partial mutual information

Symmetric tensor predictor regression

- association modeling:
 - extends from tensor predictor regression (Zhou et al., 2013)
 - fits a regression with Aβ deposition as the response (binary or continuous), the symmetric, connectivity matrix that describes the brain connectivity network as the predictor
 - has easy interpretation of the effect of individual links between brain regions on the phenotype
 - works with binary or continuous connectivity network (e.g., correlation or thresholded correlation matrix), avoiding selecting threshold
 - permits individual variation of functional connectivity
 - > permits inference at the individual level, so potentially useful clinically
 - takes any connectivity matrix as input, both in time domain and frequency domain: correlation, partial correlation, mutual information, partial mutual information
 - is applicable to applications beyond neuroimaging; e.g., in genetic epistasis studies, where *D*-way gene interactions can be formulated an order-*D* symmetric tensor

- notations:
 - Y = univariate response; e.g., continuous or binary A β deposition
 - $\mathbf{Z} \in {\rm I\!R}^q$ = additional covariate vector containing age, gender, education
 - ★ X ∈ IR^{p₁×...×p_D} = order-D tensor-valued predictor; e.g., D = 2 for connectivity matrix, D = 2, 3 for two-way, or three-way interactions
- consider a generalized linear model (GLM) with a link function:

$$g(\mu) = \alpha + \gamma^{\mathsf{T}} \mathbf{Z} + \langle \mathcal{B}, \mathbf{X} \rangle$$

- $\blacktriangleright \mu = E(Y|\boldsymbol{X}, \boldsymbol{Z})$
- the inner product $\langle \mathcal{B}, \boldsymbol{X} \rangle = \langle \mathrm{vec} \mathcal{B}, \mathrm{vec} \boldsymbol{X} \rangle$
- this model is prohibitive, if no further constraint, as the number of parameters is 1 + p₀ + ∏^D_{d=1} p_d; e.g., p = 80 → 6,400; p = 1,000 → 10⁶ for 2-way interactions

▶ key idea: impose a low rank decomposition of *B*

▶ an array $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$ admits a rank-*R* CP decomposition if

$$\mathcal{B} = \sum_{r=1}^{R} \boldsymbol{\beta}_{1}^{(r)} \circ \cdots \circ \boldsymbol{\beta}_{D}^{(r)} = \llbracket \boldsymbol{B}_{1}, \dots, \boldsymbol{B}_{D} \rrbracket$$

where $\beta_d^{(r)} \in \mathbb{R}^{p_d}$, d = 1, ..., D, r = 1, ..., R, are all column vectors, \circ denotes an outer product, and $\boldsymbol{B}_d = [\beta_d^{(1)} \dots \beta_d^{(R)}] \in \mathbb{R}^{p_d \times R}$

▶ key idea: impose a low rank decomposition of *B*

▶ an array $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$ admits a rank-*R* **CP** decomposition if

$$\mathcal{B} = \sum_{r=1}^{R} \beta_1^{(r)} \circ \cdots \circ \beta_D^{(r)} = \llbracket \boldsymbol{B}_1, \dots, \boldsymbol{B}_D \rrbracket$$

where $\beta_d^{(r)} \in \mathbb{R}^{p_d}$, d = 1, ..., D, r = 1, ..., R, are all column vectors, \circ denotes an outer product, and $\boldsymbol{B}_d = [\beta_d^{(1)} \dots \beta_d^{(R)}] \in \mathbb{R}^{p_d \times R}$

▶ for D = 2, R = 1, $B = [[B_1, B_2]], B_1 = \beta_1, B_2 = \beta_2$,

$$\mathcal{B}=\boldsymbol{\beta}_1\circ\boldsymbol{\beta}_2$$

▶ for D = 2, R = 2, $\mathcal{B} = \llbracket \boldsymbol{B}_1, \boldsymbol{B}_2 \rrbracket, \boldsymbol{B}_1 = [\boldsymbol{\beta}_1^{(1)}, \boldsymbol{\beta}_1^{(2)}], \boldsymbol{B}_2 = [\boldsymbol{\beta}_2^{(1)}, \boldsymbol{\beta}_2^{(2)}],$

$$\mathcal{B}=oldsymbol{eta}_1^{(1)}\circoldsymbol{eta}_2^{(1)}+oldsymbol{eta}_1^{(2)}\circoldsymbol{eta}_2^{(2)}$$

- CP tensor predictor regression:
 - the link function:

$$g(\mu) = \alpha + \gamma^{\mathsf{T}} \mathbf{Z} + \langle \sum_{r=1}^{R} \beta_{1}^{(r)} \circ \cdots \circ \beta_{D}^{(r)}, \mathbf{X} \rangle$$

- reduces the dimensionality from the order of $p_1 \times \ldots \times p_D$ to $R \times (p_1 + \ldots + p_D)$
- estimation a block-relaxation algorithm:
 alternatively update B_d, and each update is simply a standard GLM, because although g(µ) is not linear in (B₁,..., B_D) jointly, it is linear in B_d individually
- regularized estimation another block-relaxation algorithm: each update is a penalized GLM

symmetric tensor predictor regression:

▶ if **X** is a symmetric tensor, then **B** should be symmetric too, i.e.,

$$\boldsymbol{B} = \sum_{r=1}^{R} \lambda_r \, \boldsymbol{\beta}^{(r)} \circ \cdots \circ \boldsymbol{\beta}^{(r)} = [\![\boldsymbol{\lambda}; \boldsymbol{B}, \dots, \boldsymbol{B}]\!]$$

where $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_R)^\mathsf{T}, \boldsymbol{B} \in \mathrm{I\!R}^{p imes R}$

the link function:

$$g(\mu) = \alpha + \gamma^{\mathsf{T}} \mathbf{Z} + \langle \sum_{r=1}^{R} \lambda_r \ \beta^{(r)} \circ \cdots \circ \beta^{(r)}, \mathbf{X} \rangle$$

- reduces the dimensionality further from the order of RDp to R(p+1)
- estimation can not apply the block-relaxation algorithm!
- in addition, plan to add sparsity regularization

Estimation

solve the sparsity regularized estimation:

$\min \ell(\boldsymbol{\gamma}, \boldsymbol{\lambda}, \boldsymbol{B}) + \rho \| \mathrm{vec} \boldsymbol{B} \|_1$

- update of γ given λ and $\textbf{\textit{B}}$: a classical GLM with offset $\langle \mathcal{B}, \textbf{\textit{X}}_i
 angle$
- update λ given γ and B: a GLM with *R*-dimensional covariates $(\text{vec } X_i)^{\mathsf{T}}(B \odot \cdots \odot B)$ and offset $\gamma^{\mathsf{T}} Z_i$, because

$$\langle \mathcal{B}, \boldsymbol{X}_i \rangle = \langle \operatorname{vec} \mathcal{B}, \operatorname{vec} \boldsymbol{X}_i \rangle = (\operatorname{vec} \boldsymbol{X}_i)^T (\boldsymbol{B} \odot \cdots \odot \boldsymbol{B}) \boldsymbol{\lambda}$$

• update **B** given γ and λ : the proximal gradient method the surrogate function *s* to minimize is the first-order approximation to the objective function at the current point $B^{(t)}$

$$\begin{aligned} s(\boldsymbol{B} \mid \boldsymbol{B}^{(t)}, \delta) &= \ell(\boldsymbol{B}^{(t)}) + \langle \nabla \ell(\boldsymbol{B}^{(t)}), \boldsymbol{B} - \boldsymbol{B}^{(t)} \rangle + \frac{1}{2\delta} \|\boldsymbol{B} - \boldsymbol{B}^{(t)}\|_{\mathsf{F}}^{2} + \rho \|\operatorname{vec} \boldsymbol{B}\|_{1} \\ &= \frac{1}{2\delta} \|\boldsymbol{B} - \{\boldsymbol{B}^{(t)} - \delta \nabla \ell(\boldsymbol{B}^{(t)})\}\|_{\mathsf{F}}^{2} + \rho \|\operatorname{vec} \boldsymbol{B}\|_{1} \end{aligned}$$

s is minimized by soft-thresholding $m{B}^{(t)} - \delta
abla \ell(m{B}^{(t)})$ at threshold $ho \delta$

Simulation

sample size: 300

ARCHITECT PR

sample size: 750

sample size: 200

sample size: 400

60

sample size: 750

BAC data analysis: continuous response

Mutual information

Partial correlation

Partial mutual information

BAC data analysis: binary response

Mutual information

Partial correlation

Partial mutual information

BAC data analysis

- some observations:
 - negative links (red) suggests that, having this link decreases the chance to be Aβ positive, or lower Aβ value — another way to look at this is, it is more likely that this link would disappear in the Aβ positive group compared to the Aβ negative group
 - the difference of connectivity patterns of cognitive normal elder subjects between Aβ positive group and Aβ negative group are similar to that between AD and normal control
 - the four connectivity measures have overlapping findings and do not contradict to each other
 - the findings from a continuous response overlap with those from a binary response

Links	Pearson cor- relation	Partial corre- lation	Mutual infor- mation	Partial mutual information	Findings
Negativ	eprecuneus — posteriorcin- gulate	pericalcarine — amygdala, posterior- cingulate, middle- temporal			‡ Decrease in connection between pos- terior cingulate cortex/precuneus and medial prefrontal cortex, hippocampus (Bluhm et al., 2008)
	middle- temporal — posteriorcin- gulate				‡ Decrease in connectivity inside posterior cingulate cortex/precuneus (Bluhm et al., 2008)
		supramarginal — amygdala		supra- marginal — superiorpari- etal	‡ AD affected superior occipital, supra- marginal, superior temporal, inferior pari- etal, angular and inferior frontal gyri, putamen, thalamus and posterior cere- bellum (Sidlauskaite et al., 2015); ‡ De- crease between the auditory network and temporal gyrus, supramarginal gyrus, and post-central gyrus. (Hafkemeijer et al., 2015)
			rostralanterior cingulate — paracentral		‡ AD group showed lower proportion of fibers in the rostral anterior cingulate (Da- ianu, 2013)
Positive	e middle- temporal — precuneus		para- hippocampal — paracen- tral	precuneus — supra- marginal, superiorpari- etal	‡ Unknown
	Louis Li			Denff	17 / 21

BAC data analysis: continuous response

Links	Pearson cor- relation	Partial corre- lation	Mutual infor- mation	Partial mutual information	Findings
Negative inferior parietal — superior parietal, pre-/post- central, parahippoca- mal, medial orbital frontal			precuneus — superior- temporal, amygdala		‡ Clinically normal older adults harbor- ing amyloid burden show disruption of functional connectivity in default network (posterior cingulate, lateral parietal, and medial prefrontal cortices) that cannot be accounted for by increased age or struc- tural atrophy. (Hedden, 2009); ‡ De- crease in connection between posterior cingulate cortex/precuneus and medial prefrontal cortex, hippocampus (Bluhm et al., 2008)
		precentral — superior- parietal	parstriangularis — parahip- pocampal		‡ Decrease in connection between back of brain and frontal region in general (Meu- nier et al., 2009)
		fusiform — posterior- /anterior cingulate	parahippocamp — superior- temporal, amygdala, precuneus	al hippocampus — pre- central, left & right	‡ RSFC between the hippocampus and the posterior cingulate cortex was found to be positively correlated with perfor- mance on a memory task (Wang et al., 2010)
	inferior pari- etal — puta- men				Unknown
Positive	e frontal pole — interior & superior parietal, post-central	middle tem- poral — en- torhinal		inferiorparietal — pre- central, hippocam- pus,	Unknown Berk et
	Lexin Li		Talk @	Banff	18 / 21

BAC data analysis: binary response

Inference in a nutshell

- from estimation to inference:
 - significance quantification is important!
- what we did one-sample case:
 - used partial correlation to describe the connectivity network
 - imposed matrix normal distribution:

$$\begin{array}{rcl} \operatorname{cov}\{\operatorname{vec}(\boldsymbol{X})\} &=& \boldsymbol{\Sigma}_L\otimes\boldsymbol{\Sigma}_T\\ \operatorname{cov}^{-1}\{\operatorname{vec}(\boldsymbol{X})\} &=& \boldsymbol{\Sigma}_L^{-1}\otimes\boldsymbol{\Sigma}_T^{-1}=\boldsymbol{\Omega}_L\otimes\boldsymbol{\Omega}_T \end{array}$$

tested about the spatial precision matrix:

 $\begin{array}{ll} \mbox{global test:} & \boldsymbol{\Omega}_L \mbox{ is diagnoal versus } \boldsymbol{\Omega}_L \mbox{ is not diagnoal } \\ \mbox{entry-wise test:} & \omega_{L,i,j} = 0 \mbox{ versus } \omega_{L,i,j} \neq 0 \end{array}$

 treated the temporal precision matrix as a nuisance: known and estimated

Inference in a nutshell

- ▶ what we did one-sample case:
 - built the test statistics based on a regression representation of partial correlations
 - proposed a global testing procedure and an entry(link)-wise testing procedure with FDR control
 - established the limiting distribution for the global test statistic, and studied its asymptotic power
 - showed that the multiple testing procedure controls FDR asymptotically
- also studied the two-sample case

Thank You!

