Persistent Homology: an approach for high dimensional data analysis

Rui Hu, Zhichun Zhai, Bei Jiang, and Linglong Kong Giseon Heo

Mathematical and Statistical Challenges in Neuroimaging Data Analysis

(Banff-NDA)

Statistics and TDA

Outline

1 Introduction of Persistent Homology

2 Statistics with Persistence Landscapes

3 Applications

- Maltose binding protein
- NYU ADHD data
- Application of Tensor Regression

This problem can be solved by pre-school children in five to ten minutes, by programmers in an hour and by people with higher education... well, check it yourself!

8809	=	6	5555	=	0
7111	=	0	8193	=	3
2172	=	0	8096	=	5
6666	=	4	1012	=	1
1111	=	0	7777	=	0
3213	=	0	9999	=	4
7662	=	2	7756	=	1
9313	=	1	6855	=	3
0000	=	4	9881	=	5
2222	=	0	5531	=	0
3333	=	0	2581	=	???

How do we distinguish geometrical objects?

< 67 ▶

One popular answer: It is the branch of mathematics which does not distinguish between a teacup and a bagel.

 \sim

(Banff-NDA)

《注》 《注》 - 注

• Equivalence classes by topological type $\{A, R\}, \{B\}, \{C, G, I, J, L, M, N, S, U, V, W, Z\},$ $\{D, O\}, \{E, F, T, Y\}, \{H, K\},$ $\{P\}, \{Q\}, \{X\}$

Equivalence classes by homotopy type
 {A, R, D, O, P, Q}, {B},
 {C, I, L, M, N, S, U, V, W, Z, F, J, T, Y, G, H, K, X}

Topology allows the larger group of homeomorphisms that deform an object by stretching, shrinking, bending, but neither tearing nor gluing.

- (//

- A circle is homeomorphic to a square.
- **Homotopy equivalent** intuitively means that one can be continuously deformed to the other.
- The figure eight and the island with two lakes are equivalent although they are not homeomorphic to each other.
- Similarly the circle, the square, and Möbius band.

- Algebraic topology associates to a topological space an algebraic system such as a group or a sequence of groups.
- There is a natural interplay between continuous maps f : X → Y between topological spaces and algebraic homomorphisms f_{*} : G(X) → G(Y) on their associated groups.
- There exist several ways to associate topological spaces with groups, but homology fits our interests the best.

- The zero-dimensional homology group $H_0(X)$ is generated by elements representing **connected components** of X.
- k ≥ 1 the k dimensional homology group H_k(X) is generated by elements representing k-dimensional holes in X.

Betti numbers

- β_0 counts the number of connected components of a complex K.
- β_i , $i \ge 1$ counts the number of *i* dimensional holes of a complex *K*.

Noisy Torus vs. noisy Sphere

Mission: recover topology and geometry from point cloud data

But.. set of points does not have interesting topology

< A[™] →

How about ϵ balls? No...

• • • • •

э

Answer: Simplicial complexes

(Banff-NDA)

Statistics and TDA

February 5, 2016

Image: A mathematic states and a mathematic states

3

Čech Complex

3

・ロト ・四ト ・ヨト ・ヨト

The Nerve lemma states that if the ambient space is $\mathbb{R}^{d}(\mathbb{Y})$, then the Čech complex $\mathcal{C}_{\epsilon}(S)$ is homotopy equivalent to the union of balls, $\bigcup_{i} B_{\epsilon}(x_{i})$.

Simplexes

3

・ロト ・四ト ・ヨト ・ヨト

Which ε ?

(Banff-NDA)

Statistics and TDA

February 5, 2016 20 /

Let X_1, X_2, \ldots, X_n be *n* independent points randomly sampled from $\mathbb{X} \subseteq \mathbb{R}^d$.

- Replace each point of discrete data set in \mathbb{R}^d by a ball of a fixed radius $\varepsilon;$
- Obtain simplicial complexes from the balls;
- Construct filtered simplicial complexes as ε increases;
- Compute persistent homology (topological feature vs noise).

Persistent homology at glance

3

• • • •

Theorem

Taking a particular chain maps $t : C_*^i \to C_*^{i+1}$, for a finite persistence module $C = \{C_*, t\}$ with field F coefficients,

$$H_*(\mathcal{C}, F) \cong \bigoplus_i t^{r_i} F[t] \oplus \left(\bigoplus_j t^{s_j} F[t] / (t^{n_j} F[t]) \right)$$

- The left sum provides $[r_i, \infty)$ corresponds to a topological feature that is created at time r_i and remains until the end of filtration.
- The right sum $[s_j, s_j + n_j)$ corresponds to a feature that is created at time s_j and dies after time n_j .
- The multiset of intervals is called a barcode.
- The longer the interval, the more significant the feature.

Types of Data: (dis)similarity measure

(Banff-NDA)

Statistics and TDA

▶ ৰ ≣ ▶ ৰ ≣ ▶ ≣ ৩ ৭ ৫ February 5, 2016 24 / 47

< 17 ▶

Random field [Adler et al. (2010)]

A (1) > 4

3

Persistence descriptors: Barcode and Persistence diagram

Figure: Space of barcodes (persistence diagrams) with Wasserstein distance is not a manifold, it is difficult to calculate Fréchet mean and variance.

Statistics with descriptors

- How do we calculate the mean and variance?
- Can we apply it to hypothesis testing?

Given (a, b), with $a \leq b$, $f_{(a,b)} : \mathbb{R} \to \mathbb{R}$ by $f_{(a,b)}(t) = \min(t - a, b - t)_+$, where $x_+ = \max(x, 0)$.

Definition

The **persistence landscape** of $\{(a_i, b_i)\}_{i=1}^m$ is defined as a set of functions, $\{\lambda(k, t) : \mathbb{N} \times \mathbb{R} \to \overline{\mathbb{R}}\}_{k \in \mathbb{N}}$, where $\lambda(k, t) = k^{th}$ largest value of $\{f_{(a_i, b_i)}(t)\}_{i=1}^m$, and $\lambda(k, t) = 0$, if k > m.

 $\mathbb{N} = \{1, 2, 3, \cdots\}$ and $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}.$

Persistence Landscape

(Banff-NDA)

Statistics and TDA

February 5, 2016 29 / 4

< 🗇 🕨

э

- Persistence landscapes belong to L^p(S), S = N × ℝ, with the metric induced by p-integrable functions, which is a separable Banach space.
- Let λ₁,..., λ_n be a sample of persistence landscapes drawn from a probability measure with Fréchet mean μ.
- Strong Law of Large Numbers

$$ar{\lambda}_n(k,t) \stackrel{\text{a.s.}}{
ightarrow} \mu(k,t) \quad \text{iff} \quad E(\lambda) < \infty$$

• Central Limit theorem: Assume $p \ge 2$. If $E(\lambda) < \infty$ and $E(||\lambda||^2) < \infty$,

$$\sqrt{n}(\bar{\lambda}_n(k,t)-\mu(k,t))/\sigma \stackrel{d}{\rightarrow} N(0,1)$$

• $p \ge 2, E(\lambda) < \infty$ and $E(||\lambda||^2) < \infty$. For any $f \in L^q(S)$ with $\frac{1}{p} + \frac{1}{q} = 1$, let $X = \int_S f\lambda := ||f\lambda||_1$. Then

$$\sqrt{n}[\overline{X}_n - E(X)] \stackrel{d}{\rightarrow} N(0, \operatorname{var}(X))$$

• t-test:
$$\sum_{k=1}^{K} \int (\lambda_k^A(t) - \lambda_k^B(t)) dt$$

• Multivariate test (Hotellings T^2 test): Consider a vector, $(\int (\lambda_1^A - \lambda_1^B), \int (\lambda_2^A - \lambda_2^B), \dots, \int (\lambda_k^A - \lambda_k^B))$, where k is chosen so that, $k \ll n_1 + n_2 - 2$.

Open and closed proteins

Figure: Maltose binding proteins: (left) 10MP open and ligand-free; (right) 1MPD closed and ligand-bound. Each protein consists of 370 amino acid residues. DATA:**Correlations between 370 amino acid residues**.

Allosteric path with 1MPD [Kovacev-Nikolic et al. (2015)]

The allosteric path is the set of highly correlated and mutually interacting amino acid residues that do not lie close to each other in the space.

Figure: Two shortest allosteric paths, 66-64-330-328-327/66-64-329-328-327. ALLOPATHFINDER software Tang et al (2007).

(íΒ	а	nf	F-	N	D	A

Binding sites and allosteric path (β_1) [Kovacev-Nikolic et al. (2015)]

34 / 47

Kovacev-Nikolic et al. (2015)

Image: A mathematic states and a mathematic states

Classification by support vector machine

3

< 17 ►

- BOLD signals at for resting status fMRI– 116 ROIs and 172 equally spaced time courses
- Diagnosis (DX-0, 1, 3)
- ADHD index
- Handedness
- Inattentive and Hyperimpulsive
- Vervall IQ, performance IQ, Full IQ
- MedStatus (medication or no medication) and QC(questionable or pass)

BOLD signals over time \times ROI and Persistence Landscape

Clusters of diagnose ADHD

Propose Tensor Regression Model [Lu et al. (2008)]

• For each $\mathbf{X}_k \in \mathbb{R}^{t_1} \otimes \mathbb{R}^{t_2}$, apply the multilinear PCA. $\{\mathbf{U}^{(i)}, i = 1, 2\} : \mathbb{R}^{t_1} \otimes \mathbb{R}^{t_2} \longrightarrow \mathbb{R}^{d_1} \otimes \mathbb{R}^{d_2}$ with $d_i < t_i, i = 1, 2$ $\mathbf{M}_k = \mathbf{X}_k \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)}$.

such that $\{\mathbf{M}_k \in \mathbb{R}^{d_1} \otimes \mathbb{R}^{d_2}\}_{k=1}^n$ captures most of the variation observed in the original tensor objects.

• The variations are measured by the total tensor scatter.

$$\mathbf{U}^{(i)} = \operatorname{argmax}_{\mathbf{U}^{(1)},\mathbf{U}^{(2)}} \Phi_{\mathbf{M}}$$

where $\Phi_{\mathbf{M}} = \sum_{k=1}^{n} \|\mathbf{M}_{k} - \bar{\mathbf{M}}\|_{F}^{2}$.

Rank-R generalized linear tensor regression model [Zhou et al. (2013)]

Let $\mathbf{v} = (\mathbf{u}, \mathbf{x})$, where \mathbf{u} denotes covariates and \mathbf{x} functional of PL in dim 0, 1, and 2. Response variable is ADHD index.

$$\mu_{\mathbf{y}} = \alpha + \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{v} + \langle \sum_{r=1}^{R} \beta_{1}^{(r)} (\boldsymbol{\beta}_{2}^{(r)})^{\mathsf{T}}, \, \mathbf{M} \rangle, \quad \boldsymbol{\beta}_{i}^{(r)} \in \mathbb{R}^{d_{i}}$$
(1)

$$\mu_{y} = \alpha + \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{u} + \langle \sum_{r=1}^{R} \beta_{1}^{(r)} (\boldsymbol{\beta}_{2}^{(r)})^{\mathsf{T}}, \, \mathbf{M} \rangle, \quad \boldsymbol{\beta}_{i}^{(r)} \in \mathbb{R}^{d_{i}}$$
(2)

$$\mu_{\mathbf{y}} = \alpha + \boldsymbol{\gamma}^{T} \mathbf{v} \tag{3}$$

$$\mu_{\mathbf{y}} = \alpha + \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{u} \tag{4}$$

RMSE - Matlab toolbox [Acar et al. (2011), Bader et al. (2015), Zhou (2013)]

- Randomly choose 210 observation as training set and 6 as test set.
- Apply the regression model on training set to estimate the parameters and then make prediction on the test set.
- Repeat the process 100 times to find the mean of square root MSE (sum of training and predictive MSE) and its standard deviation.

P-value (sd) for coefficient in full model

	99 %	90 %	80 %
Gender	0.0762(0.2025)	0.2284(0.2725)	0.1755(0.1405)
Age	0.0569(0.1896)	0.2399(0.3338)	0.5631(0.2580)
handedness	0.0238(0.1038)	0.0675(0.1464)	0.0259(0.0528)
DX	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
Inattentive	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
HyperImpulsive	0.0524(0.1743)	0.1050(0.1861)	0.2134(0.2284)
Verbal IQ	0.0599(0.1749)	0.1870(0.2566)	0.5691(0.2548)
PerformancelQ	0.0669(0.1877)	0.1393(0.2502)	0.3494(0.2256)
Full4IQ	0.0320(0.1335)	0.0308(0.1358)	0.0027(0.0143)
MedStatis	0.0864(0.2220)	0.2517(0.3213)	0.4793(0.2371)
QC	0.0803(0.1920)	0.1776(0.2587)	0.3242(0.2409)
0-D PL	0.0875(0.2119)	0.1882(0.2814)	0.4912(0.2355)
1-D PL	0.0591(0.1636)	0.2078(0.2578)	0.5786(0.2786)
2-D PL	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
RMSE	1.4298(0.3212)	1.9695(0.2009)	2.3231(0.0835)

э

크

Image: A mathematic states and a mathematic states

P-value (sd) for coefficient in model 2 (covr+tensor)

	99 %	90 %	80 %
Gender	0.1187(0.2588)	0.2007(0.2811)	0.4026(0.3340)
Age	0.0570(0.1741)	0.3035(0.3144)	0.6137(0.2554)
handedness	0.0494(0.1878)	0.0778(0.1818)	0.0332(0.0573)
DX	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
Inattentive	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
HyperImpulsive	0.0637(0.1829)	0.0760(0.1638)	0.2199(0.2128)
VerballQ	0.0744(0.1948)	0.1581(0.2512)	0.6469(0.2513)
PerformancelQ	0.0707(0.1862)	0.1075(0.2082)	0.4219(0.2461)
Full4IQ	0.0242(0.0970)	0.0028(0.0154)	0.0014(0.0055)
MedStatis	0.0726(0.1771)	0.1806(0.2513)	0.3692(0.2547)
QC	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
RMSE	1.4715(0.6302)	1.9682(0.1548)	2.3486(0.0849)

3

프 에 프 어

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	full 90 %	covr+tensor 90%	covr+ PL	covr
Sex	0.2284(0.2725)	0.2007(0.2811)	0.3733(0.1127)	0.3141(0.1064)
Age	0.2399(0.3338)	0.3035(0.3144)	0.4868(0.0946)	0.5461(0.0896)
hand	0.0675(0.1464)	0.0778(0.1818)	0.4105(0.0834)	0.3211(0.0732)
DX	0.0000(0.0000)	0.0000(0.0000)	0.0034(0.0022)	0.0031(0.0018)
Inattn	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)	0.0000(0.0000)
Hyper	0.1050(0.1861)	0.0760(0.1638)	0.0000(0.0000)	0.0000(0.0000)
VIQ	0.1870(0.2566)	0.1581(0.2512)	0.5776(0.1169)	0.7021(0.1152)
PerflQ	0.1393(0.2502)	0.1075(0.2082)	0.8335(0.0962)	0.7004(0.0949)
Full4IQ	0.0308(0.1358)	0.0028(0.0154)	0.8279(0.0990)	0.9100(0.0917)
Med	0.2517(0.3213)	0.1806(0.2513)	0.0432(0.0323)	0.0273(0.0234)
QC	0.1776(0.2587)	0.0000(0.0000)	0.3637(0.0715)	0.4786(0.0831)
0D PL	0.1882(0.2814)	na	0.6762(0.1219)	na
1D PL	0.2078(0.2578)	na	0.2133(0.0724)	na
2D PL	0.0000(0.0000)	na	0.4236(0.1010)	na
RMSE	1.9695(0.2009)	1.9682(0.1548)	3.1642(0.0265)	3.1670(0.0126)

(Banff-NDA)

3

イロト イヨト イヨト イヨト

Acknowledgment

- Banff NDA orginizers: Hongtu Zhu and Linglong Kong
- Violeta Kovacev-Nikolic, Dragan Nikolić, Peter Bubenik, and Jisu Kim
- NSERC
- McIntyre Memorial Funding in the School of Dentistry

References

- Acar, E., Dunlavy, D. M., and Kolda, T. G. (2011), "A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions," *Journal of Chemometrics*.
- Adler, R. J., Bobrowksi, O., Borman, M. S., Subag, E., and Weinberger, S. (2010), "Persistent Homology for Random Fields and Complexes," *IMS collections*, 6, 124–143.
- Bader, B. W., Kolda, T. G., et al. (2015), "MATLAB Tensor Toolbox Version 2.6," Available online.
- Bubenik, P. (2015), "Statistical topological data analysis using persistence landscapes," *Journal of Machine Learning Research*, 16, 77–102.
- Kovacev-Nikolic, V., Bubenik, B., Nikolić, D., and Heo, G. (2015), "Using persistent homology and dynamical distances to analyze protein binding," .
- Lu, H., Plataniotis, K., and Venetsanopoulos, A. (2008), "MPCA: Multilinear Principal Component Analysis of Tensor Objects," *IEEE Transactions on Neural Networks*.
- Rotman, J. (1988), An Introduction to Algebraic Topology, New York: Springer.
- Zhou, H. (2013), "Matlab TensorReg Toolbox Version 0.0.2," .
- Zhou, H., Li, L., and Zhu, H. (2013), "Tensor regression with applications in neuroimaging data analysis," *Journal of the American Statistical Association* 108, 540–552
- Zomorodian, A. and Carlsson, G. (2005), "Computing persistent Aondbey," Discrete and Computational Geometry, 33, 249–274.

(Banff-NDA)