

Structural Brain Connectivity Analysis on HCP Dataset

Zhengwu Zhang Feb. 2 , 2016

Joint work with Hongtu Zhu, Anuj Srivastava and Maxime Descoteaux

•

Mapping structural and functional connections in the human brain

Diffusion in Brain Tissue

- Water molecules in different brain tissues have different diffusion properties.
 - Gray matter: Diffusion is unrestricted isotropy

More diffusion along axon fibers

Diffusion MRI measures the water diffusion movement inside brain

Representation of the Diffusion Directions

- At each voxel, we want to know:
 - What is the orientation of the diffusion?
 - What is the magnitude of diffusion?
 - Two popular representations:
 - Diffusion tensor image (DTI) D

$$= \begin{pmatrix} d_{1,1} & d_{2,1} & d_{3,1} \\ d_{2,1} & d_{2,2} & d_{3,2} \\ d_{3,1} & d_{3,2} & d_{3,3} \end{pmatrix}$$

- High angular resolution diffusion imaging (HARDI)
 - Orientation distribution function [Tuch' 04]
 - Diffusion spectrum [Wedeen' 05]
 - Ball-and-stick [Behren's 03]

Diffusion MRI to Connectome

From dMRI to structural connectomics

dMRI diffus

diffusion directions

streamlines

connectivity matrix

Diffusion MRI to Connectome

From raw data to structural connectomics

From connectomics to brain network analysis

- Inheritance analysis
- Brain network analysis
- Prediction of phenotypes

Introduction of Human Connectome Project

- > May, 2009 : Request for Applications from NIH Blueprint
- Sept. 2010 : NIH awarded HCP grants to two consortia
 - Washington U, U of Minn, Oxford U,...
 - MGH and UCLA,...

Goal of HCP: Characterize human brain connectivity and function

- Scan ~1,200 healthy adults , ages 22-35, including
 - Twins and their non-twin siblings: MZ twins and DZ twins

Dec. 2015: 900 subjects dataset release (Latest release)

Data Acquisition

(1) Imaging Data:

- 4 modalities, 1200 subjects, 1 customized 3T scanner (WashU)
 - Structural MRI (T1-weighted, T2-weighted)
 - Resting-state fMRI (rfMRI)
 - Task fMRI (tfMRI)
 - Diffusion MRI (dMRI)

Improved scanners, pulse sequences: producing high quality data

100.032

Data Acquisition

(1) Imaging Data:

(2) MEG/EEG Data:

Data Acquisition

- (1) Imaging Data:
- (2) MEG/EEG Data:
- (3) Behavioral Data:
 - Measures that have the potential to covary with brain connectivity and function:
 - NIH Toolbox ; Penn Neuropsychological Battery
 - Diverse phonotypes
 - Cognition; Emotional health; Motor skills; Sensory; Personality; Fluid intelligence; Family environmental factors
 - Demographic, physical data
 - Psychiatric status, substance use

Data Acquisition

- (1) Imaging Data:
- (2) MEG/EEG Data:
- (3) Behavioral Data:
- (4) Genetic Data:

Connectome Extraction

➢ We are interested in extracting the connectome from dMRI in HCP dataset.

• Step1. Construct HARDI: better than DTI, can handle fiber crossing

DTI:

Connectome Extraction

➢ We are interested in extracting the connectome from dMRI in HCP dataset.

- Step1. Construct HARDI: better than DTI, can handle fiber crossing
- Step 2. Fiber tracking:
 - Masking
 - Seeding
 - Streamline growing

Masking and Seeding

Masking is used to

- decide the propagation of a streamline
- include the stopped streamlines

Included mask:

Excluded mask:

T1 brain:

Masking and Seeding

Seeding is used to

reduce the bias of streamlines

Seeding mask (the interface between GM and WM):

Streamline Growing

Streamlines growing
 (1) probabilistic
 (2) deterministic
 (3)

Low Dimensional Representations

Whole brain tractography is complicated

> A low dimensional representation is necessary for statistical inference

Connectivity Matrix

Connectivity Matrix

- Connectivity matrix is a summarization of the brain connections
- Given streamlines:
 - Step 1. Brain parcellation freesurfer / other software
 - Use Destrieux atlas in FreeSurfer: ~ 170 ROIs

Connectivity Matrix

- Connectivity matrix is a summarization of the brain connections
- Given streamlines:
 - Step 1. Brain parcellation freesurfer / other software
 - Step 2. Find the fibers connecting each pair of regions

- In order to include more streamlines:
 - ROI dilation
 - Streamline ending points
 expansion

Problems with the Connectivity Matrix

- The connectivity matrix contains millions of fibers
 saving, loading, and analyzing are difficult
 - Compression is needed
- Summarize the connectivity matrix
 - Extract robust measure(s) of connectivity strength

Compression of Connectivity Matrix

Examples of fibers in CM(1,160) for different subjects

1 - left-lateral-ventricle 160 - ctx-rh-S-parieto-occipital

Observations:

They have similar shapes after removing the translation, rotation, scaling and re-paramterization.

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- > Learn basis functions to represent the fibers connecting a pair of regions
- Step 1. Generate atlas for fibers connecting each pair of regions

Randomly select healthy subjects:

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- Learn basis functions to represent the fibers connecting a pair of regions
- Step 1. Generate atlas for fibers connecting each pair of regions

Step 2. Alignment using the Elastic Shapes Analysis framework (Srivastava et al. 2012)

- rotation
- translation
- scaling
- re-parameterization

 $\mu_j \ \{\phi_{i,j}\}$

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- > Learn basis functions to represent the fibers connecting a pair of regions
- Step 1. Generate atlas for fibers connecting each pair of regions
- Step 2. Alignment using the Elastic Shapes Analysis framework (Srivastava et al. 2012)
- Step 3. Use fPCA to learn basis functions for each component

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- Learn basis functions to represent the fibers connecting a pair of regions
- \succ Encoding: given a new fiber f

Step 1. Align f to the mean fiber in the atlas

$$\underset{D \in SO(3), C \in \mathbb{R}^3}{\operatorname{argmin}} \| O * (f - C) - \mu \|$$

$$g = O * (f - C)$$

Step 2. Represent the aligned fiber using basis functions $\hat{g}_j = \mu_j + \sum_{i=1}^{M} c_{j,i} \phi_{j,i}$ Param

Parameters to save

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- Learn basis functions to represent the fibers connecting a pair of regions
- Encoding
- > Decoding: reconstruct f

$$\hat{f} = O' * \hat{g} + C$$

Compression of Connectivity Matrix

- Compression happens at efficiently representing the shapes of fibers
- Learn basis functions to represent the fibers connecting a pair of regions
- Encoding
- Decoding
- Compression Ratio: ~ 90-98%

$$\rho = 100 * (1 - \frac{N_c}{N_r})$$

- $N_c\,$ # parameters after compression
- N_r # parameters before compression

Robust Coupling Strength Measures

1. What is a good measure of the connectivity strength between two ROIs?

Right-Putamen (16)

ID: 104820 | *CM(16,115)* | = 483

ctx rh G occipital sup(115)

ID: 102311 ID: 145836 | *CM*(*16*, *115*) | = 614 | *CM*(*16*, *115*) | = 429

Robust Coupling Strength Measures

1. What is a good measure of the connectivity strength between two ROIs?

Right-Putamen (16)

ID: 104820 I *CM(16,115)* I = 89

ctx_rh_S_parieto_occipital(160)

ID: **102311** | *CM(16,160)* | =76

ID: **145836** | *CM(16,160)* | = 249

Robust Coupling Strength Measures

- 1. What is a good measure of the connectivity strength between two ROIs?
 - Current people use only counts
 - Should include:
 - Diffusion properties: FA values, AFD values along fibers
 - Geometry properties: Shapes, Loops, Clusters
 - Nodes information: Volume of nodes, Connected surface areas
 - Working on extracting them now.

...

• Question: how to verify the measures?

