

University of Wisconsin SCHOOL OF MEDICINE AND PUBLIC HEALTH

The Waisman Laboratory for Brain Imaging and Behavior

February 1, 2016 Banff Station

Learning Large-scale Brain Networks for Twin fMRI

Moo K. Chung

Department of Biostatistics and Medical Informatics Waisman Laboratory for Brain Imaging and Behavior University of Wisconsin-Madison

www.stat.wisc.edu/~mchung

In collaboration with

Paul J. Rathouz Department of Biostatistics and Medical Informatics University of Wisconsin-Madison

Victoria G. Vilalta, David H. Zald Department of Psychology Vanderbilt University

Benjamin B. Lahey Department of Public Health Sciences University of Chicago

Functional MRI

II monozygotic (MZ) pairs

I4 dizygotic (DZ) pairs 9 same-sex DZ pairs (5 male, 4 female) 5 different-sex DZ pairs

MZ-pair

Reward experiment: 120 randomized trial

1st level analysis: general linear model

Contrast map: one subject

Heritability index

MZ-twins

DZ-twins

Heritability index (HI) determines the amount of variation due to genetic influence as percentage (%).

Falconer's formula at voxel V_i :

 $\mathrm{HI}(v_i) = 2 \big[\rho_{\mathrm{MZ}}(v_i) - \rho_{\mathrm{DZ}}(v_i) \big]$

Correlation of MZ-pairs

Correlation of DZ-pairs

p-value via Jackknife resampling (multiple comparisons corrected)

Three aims:

I) Construct a large-scale brain network

2) Compute HI of the large-scale network

3) Determine the statistical significance of HI

(53 x 63 x 46) x (53 x 63 x 46) = 1.3 billion directed edges

Sparse Cross Correlations

Center and scaled data

n paired images in p voxels (n < p)

 $X_k(v_i)$ k-th image intensity value at voxel v_i

 $y_k(v_i)$ k-th image intensity value at voxel v_i

$$\sum_{k=1}^{n} x_k(v_i) = \sum_{k=1}^{n} y_k(v_i) = 0$$

$$x = (x_1, \dots, x_n)'$$
 $y = (y_1, \dots, y_n)'$

$$||x||^2 = x'x = ||y||^2 = y'y = 1$$

Massive regressions between nodes

$$y(v_j) = \sum_{i \neq j} \beta_{ij} x(v_i) + \varepsilon$$
$$y(v_j) = \beta_{ij} x(v_i) + \varepsilon$$

Least-squares estimation:

$$\hat{\beta}_{ij} = x'(v_i)y(v_j)$$

I.3 billion cross-correlations

 $V_4 \bigcirc$

 \mathcal{V}_p

 \mathcal{V}_{p-1}

Sparse cross-correlation network

$$\hat{\beta} = \operatorname{argmin}_{\beta} \frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{p} \left\| x(v_{i}) - \beta_{ij} y(v_{j}) \right\|^{2} + \lambda \sum_{i,j} |\beta_{ij}\rangle$$
Adjacency
matrix

$$b_{ij}(\lambda) = \begin{cases} 1 \text{ if } \hat{\beta}_{ij} \neq 0 \\ 0 \text{ otherwise} \end{cases}$$
Sparse network

$$G(\lambda) = \{V, b(\lambda)\}$$

$$0 \text{ otherwise}$$

$$Adjacency$$

$$G(\lambda) = \{V, b(\lambda)\}$$

$$Adjacency$$

$$Adjacency$$

$$G(\lambda) = \{V, b(\lambda)\}$$

$$Adjacency$$

$$Adjacency$$

$$G(\lambda) = \{V, b(\lambda)\}$$

$$Adjacency$$

$$Ad$$

Soft-thresholding

Threshold correlations at $\pm\lambda$ and get the identical sparse network.

Chung et al. 2015 IEEE Trans. Medical Imaging 34:1928-1939

Heritability graph index

Heritability graph index (HGI): HGI $(v_i, v_j) = 2 \left[\rho_{MZ}(v_i, v_j) - \rho_{DZ}(v_i, v_j) \right]$

18 sec. computation per matrix5.2GB per matrix, 3min to save to hard drive

 $HGI(v_i, v_i) = HI(v_i)$

Heritability Graph Index (HGI) at sparse parameter 0.5

Each voxel is a network node!

Optimal sparse parameter?

Ife rfe ise rse ipe rpe ive rve ife rfe ise rse ipe rpe ive rve ife rfe ise rse ipe rpe ive rve ife rfe ise rse ipe rpe ive rve

0.3

0.4

0.5

Sparse parameter

0.6

0.7

0.2

0.1

0

8 lfc Single optimal rfc Isc 7 0.9 **rsc** parameter VEH lpc 0.8 6 rpc is not useful! lvc 0.7 **rvc** 5 0.6 0.8 0.6 0.2 0.40.5 4 lfc 0.4 rfc Isc 3 CORT 0.3 **rsc** lpc 0.2 Existing 2 rpc Ivc Multi**rvc** 1 tresholding, 0.2 0.8 0.6 0.4Gamma band Multi-scale # of components 8765432 VEH methods CORT

0.8

0.9

Khalid et al. 2014, NeuroImage 101:351-363

8 channel EEG mouse model of depression

Graph filtration / persistent homology

Analyze the infinite collection of networks

$\{G(\lambda), \lambda \in \mathbb{R}^+\}$

 $G(0) \supset G(0.3)$

Graph filtration

$$G(\lambda_1) \supset G(\lambda_2) \supset G(\lambda_3) \supset \cdots$$

for
$$\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$$

Lee et al. 2011 MICCAI 6892:302-309

Topological Inference

$$H_0: \operatorname{HGI}(\lambda) = 0$$
 for all $\lambda \ge 0$

VS.

 $H_1: \operatorname{HGI}(\lambda) \neq 0 \quad \text{for some } \lambda \geq 0$

$$H_0: \rho_{MZ}(\lambda) = \rho_{DZ}(\lambda)$$
 for all $\lambda \ge 0$

VS.

$$H_1: \rho_{MZ}(\lambda) \ge \rho_{DZ}(\lambda)$$
 for some $\lambda \ge 0$

$$H_0: G_{MZ}(\lambda) = G_{DZ}(\lambda)$$
 for all $\lambda \ge 0$

VS.

$$H_1: G_{MZ}(\lambda) \neq G_{DZ}(\lambda)$$
 for some $\lambda \ge 0$

$$H_0: f(G_{MZ})(\lambda) = f(G_{DZ})(\lambda)$$
 for all $\lambda \ge 0$

VS.

$$H_1: f(G_{MZ})(\lambda) \neq (G_{DZ})(\lambda)$$
 for some $\lambda \ge 0$

with monotonic graph function $f(G)(\lambda_1) \le f(G)(\lambda_2) \le f(G)(\lambda_3) \le \dots$

Discussion

Multiscale methods are usually better than monoscale methods. Infinite scale methods will be even better.

Thresholding feature/connectivity is not a bad idea.

The method can be easily generalized to other sparse models: full LASSO with LARS.

