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Motivating study: placebo response

I Placebo response, i.e., a positive medical response due to placebo
effect, as if there were an active medication, to antidepressant
treatment is highly prevalent.

I For example, 96 placebo or drug treated depression patients

change in HAM−D (Baseline − Week 1)
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joint 2−component mixture
early responders (17%)
early non−responders (83%) I Hamilton Depression (HAM-D) scale is a

clinical measure to rate severity of
depression

I Higher HAM-D scores indicate more
severe depression

I An antidepressant takes more than 2
weeks to show real drug effect

I Subjects may cluster into two clinically
relevant subgroups: early responder vs.
non-responder.
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Motivating study: scientific goals

I Interest has focused on studying patient’s characteristics that could
contribute to placebo response

I However, typically measured clinical phenotypes, e.g. symptom
severity and treatment history, have shown low predictive power.

I Now explore predictive ability of neuroimaging phenotypes, e.g, the
electrical brain activity under certain tasks measured through
Electroencephalography (EEG)

https://en.wikipedia.org/wiki/Electroencephalography

http://www.lsa.umich.edu/psych/danielweissmanlab/whatiseeg.htm
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Motivating study: statistical goals

I For clinical outcome HAM-D scores, formulate a latent class model
I take into account uncertainty of latent class membership

I EEG covariate to predict latent class membership
I 14× 45 matrix (order-2 tensor)
I captures brain activity measured at 14 electrodes, crossed with 45

frequencies within the theta (4 - 7 hz) and alpha (7 - 15 hz) bands.
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Motivating study: statistical goals

I Our approach: extend latent class models to incorporate
matrix-valued EEG covariate

I utilizes low rank CANDECOMP/PARAFAC (CP) decomposition
(Kolda and Bader 2009) to represent the target coefficient matrix

I reduce model dimensionality
I explicitly capture bilinear structure

I CP decomposition was previously considered by Hung and Wang
(2013); Zhou et al. (2014) (penalized maximum likelihood approach)

I In contrast, we adopt a hierarchical approach in formulating the CP
decomposition and a Bayesian method for estimation (next)

I provides a flexible way to incorporate prior knowledge on the patterns
of covariate effect heterogeneity

I provides a data-driven method of regularization
I associated measures of uncertainty can be quantified through credible

intervals
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The proposed methodology

I The manifest model for clinical outcome yi

yi = η0 + η1γi + εi , εi
iid∼ N(0, σ2)

I γi = 1 indicates a placebo responder; γi = 0 a non-responder;
I Constrain η0 + η1 > 0: placebo responders are expected to experience

improved mood and hence positive clinical outcome values.
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The proposed methodology

I The low rank probit model:

Φ−1[p{γi = 1}] = θT z i + 〈Θ, x i 〉,

= θT z i +

〈
R∑

r=1

αrβ
T
r , x i

〉
,

= θT z i +
〈
ABT , x i

〉
,

I x i is p × q matrix covariate
I z i is a vector of scalar covariates
I Θ ∈ Rp×q denotes the target coefficient matrix
I 〈Θ, x i 〉 = 〈vec(Θ), vec(x i )〉
I CP decomposition: express Θ =

∑R
r=1 αrβ

T
r , where αr ∈ Rp and

βr ∈ Rq, r = 1, · · · ,R < min(p, q)
I let A = [α1, · · · ,αR ] ∈ Rp×R and B = [β1, · · · ,βR ] ∈ Rq×R , we can

re-write Θ = ABT

I Now reduced to estimating A and B: a total of R(p + q) parameters
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I Alternatively: re-express A and B w.r.t. their row vectors
I A = [α̃1, · · · , α̃p]T , B = [β̃1, · · · , β̃q]T

I α̃j ∈ RR and β̃k ∈ RR can be interpreted as representing the effects
due to the row and column components of the matrix covariate

I Θj,k = 〈α̃j , β̃k〉 is equivalent to modeling the two-way interaction
effects

I next we propose hierarchical priors on {α̃j}pj=1 and {β̃k}qk=1

Bei Jiang Bayesian hierarchical low rank model



Introduction
The proposed methodology

Numerical investigation
Application

Summary

The hierarchical formulation of CP decomposition

I For the row and column effect vectors in the CP decomposition, we
consider the following hierarchical priors,

α̃1, · · · , α̃p
iid∼ MVN(µα,Σα); and β̃1, · · · , β̃q

iid∼ MVN(µβ ,Σβ)

I α̃T
j is the j th row of A and β̃

T

k is the k th row of B
I allows borrowing information and also provides a data-driven method

of regularization.

I To complete the specification of these hierarchical priors, we define
the following hyper-priors,

µα,µβ ∼ MVN(0,Σ0); and Σα,Σβ ∼ inverse Wishart(S0, s0)

I let Σ0 = 9/4I to bound Pr(γi = 1) to be away from 0 and 1
I a diffuse prior for Σα and Σβ with S0 = 10I , and s0 = R + 1.
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The hierarchical formulation of CP decomposition

I The CP decomposition of Θ suffers from non-identifiability of A and
B separately, since ABT = AΛΛ−1BT , for any R × R non-singular
matrix Λ.

I A consequence of this complication is that µα,µβ ,Σα,Σβ are not
individually identifiable either.

I However, from a Bayesian perspective, good mixing and convergence
can be achieved for all parameters in the identifiable Θ = ABT .
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priors for other model parameters

I In the manifest model, we assume diffuse priors: η0 ∼ N(0, τ 2
0 ),

η1 ∼ N(0, τ 2
0 )I(−η0,∞) with τ 2

0 = 100 and
σ2 ∼ inverse gamma(a0, b0) with a0 = b0 = 0.01.

I For covariate effect parameters in the probit model, we let
θ ∼ N(0,V 0), where V 0 = (9/4)I would bound the probability to
be away from 0 and 1.
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Posterior computation

I note that
〈
ABT , x i

〉
in the probit model can be rewritten as a

linear function with respect to α̃1, · · · , α̃p or β̃1, · · · , β̃q as follows,

〈
ABT , x i

〉
=

p∑
j=1

α̃T
j u ij =

q∑
k=1

β̃
T

k v ik

I u ij denotes the j th row of xT
i B ∈ Rp×R , j = 1, · · · , p;

I v ik denotes the k th row of xT
i A ∈ Rq×R , k = 1, · · · , q.

I We introduce a latent variable wi such that γi = I(wi > 0) and
wi ∼ N(θT z i + 〈ABT , x i 〉, 1) (Albert and Chib,1993).

I {α̃j}pj=1 and {β̃T

k }
q
k=1 can be updated iteratively in a similar fashion

as in a regular regression model
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Simulation study I: known rank
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I the degree of overlapping in latent

classes is fixed: η0 = 0, η1 = 1.0

& σ2 = 0.22 (well separated).

I true values for R, (p, q), and n

vary under different simulation

scenarios.

I MSE =

1
S

S∑
s=1

{
1

pq
‖Θ̂

(s)
−Θ

(s)

true‖
2
F

}
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Simulation study I: known rank

Table: AUC for prediction of binary latent class indicator.

true rank R = 1 true rank R = 2
n = 200 n = 400 n = 600 n=800 n = 200 n = 400 n = 600 n=800

within sample AUC

(p, q) = (15, 15) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(p, q) = (25, 25) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

out of sample AUC

(p, q) = (15, 15) 0.86 0.90 0.90 0.91 0.80 0.88 0.91 0.92
(p, q) = (25, 25) 0.87 0.93 0.94 0.95 0.74 0.88 0.92 0.94
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Simulation study II: misspecified rank

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

R=1 R=2 R=3 R=4 R=5

0
1

2
3

4

η1 = 0.4, n=200

assumed rank

ro
ot

 M
S

E

●
● ●●

●●

●●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

R=1 R=2 R=3 R=4 R=5

0
1

2
3

4

η1 = 1, n=200

assumed rank

ro
ot

 M
S

E

● ● ●

●

●

●

●

●

●

R=1 R=2 R=3 R=4 R=5

0
1

2
3

4

η1 = 0.4, n=800

assumed rank

ro
ot

 M
S

E

● ● ●

R=1 R=2 R=3 R=4 R=5

0
1

2
3

4

η1 = 1, n=800

assumed rank

ro
ot

 M
S

E

I true rank R = 3, (p, q) = (15, 15);

n = 200 or 800.

I η1 = 0.4 and η1 = 1.0 indicate

high and low degrees of

overlapping.

I the models are fit with varying
assumed rank values
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Simulation study II: misspecified rank

Table: AUC for prediction of binary latent class indicator.

high degree overlapping low degree overlapping
assumed rank R=1 R=2 R=3 R=4 R=5 R=1 R=2 R=3 R=4 R=5

within sample AUC

0.94 0.96 0.96 0.95 0.93 1.00 1.00 1.00 1.00 1.00
out of sample AUC

0.80 0.84 0.84 0.81 0.79 0.82 0.88 0.88 0.86 0.84
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Application to identify placebo responder subgroup using
EEG data

I let yi denote the change in HAM-D (baseline - week 1)

I let x∗
i ∈ R14×45 denote Current Source Density amplitude spectrum

values (µV /m2) (Keyser and Tenke, 2006) at 14 electrodes in
brain’s posterior region, crossed with 45 frequency bands within the
theta (4 - 7 hz) and alpha (7 - 15 hz) frequency waves

I Multilinear Principal Component Analysis (MPCA) to reduce the
original dimension of EEG data from (p, q) to (p0, q0).

I The dimension (p0, q0) and rank R are determined by the widely
applicable information criterion (WAIC) proposed by Watanabe
(2010).

I let z i denote gender and depression chronicity

Bei Jiang Bayesian hierarchical low rank model
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Application to identify placebo responder subgroup using
EEG data

Table: WAIC from fitting different models for the prediction of the placebo
responder subgroup using EEG data.

rank R=1 rank R=2
p0 / q0 2 3 4 5 6 2 3 4 5 6
2 603.4 605.5 601.3 600.2 601.9 604.4 604.6 601.0 601.3 599.1
3 602.8 601.2 594.2 593.9 594.8 604.0 599.2 596.2 596.5 603.8
4 602.7 603.9 583.7 590.2 595.1 604.1 601.7 595.1 596.0 602.0
5 601.1 602.4 591.6 598.0 598.1 603.5 602.3 598.5 597.8 598.0
6 598.1 600.1 577.3 577.9 582.1 600.6 601.7 589.9 588.6 588.7
7 582.9 591.1 571.9 578.7 578.7 599.2 595.4 588.1 593.9 596.2
8 584.7 589.4 573.3 574.7 575.0 599.3 597.3 590.1 589.8 594.0
9 587.1 594.4 568.8 573.1 573.5 602.3 600.6 591.8 594.4 592.8
10 588.4 594.2 571.1 574.1 583.8 600.5 600.0 590.6 588.8 590.3

Note: WAIC for no-mixture model is 845.6.
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Application to identify placebo responder subgroup using
EEG data

change in HAM−D (Baseline − Week 1)

D
en

si
ty

−10 −5 0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

● ●

joint 2−component mixture
early responders (17%)
early non−responders (83%)

I the proportion of placebo
responders for the placebo arm
and drug arm: 9/50=18% and
7/46=15% respectively.

I a chi-square test indicates no
significant difference
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Application to identify placebo responder subgroup using
EEG data
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Figure: left: posterior density estimate of the probability of being in the placebo
responder subgroup; right: posterior density estimate of < Θ, x i >.
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Application to identify placebo responder subgroup using
EEG data

I Heatmap of the estimated coefficient matrix (* indicates significance at

the 0.05 level)
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I being chronically depressed is less likely for placebo response (θ̂2 = −1.65

(95% CI: -3.59, -0.12)), while gender is not a contributing factor

(θ̂1 = −1.34 (95% CI: -3.14, 0.02)).
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Summary

I We consider a low rank hierarchical latent class model to incorporate
matrix-valued covariates.

I The proposed approach readily extends to incorporate the covariates
that are multi-dimensional arrays in general regression settings.

I Our simulation studies have shown that our proposed hierarchical
approach is robust against rank misspecification.

I The findings in the application raise hope for utilizing EEG measures
to differentiate potential placebo responders from non-responders in
clinical practice to further guide the selection of effective treatment
for depression patients.
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Simulation study: setup

I For all simulation scenarios, (yi , x i , z i , γi ) are generated as follows,

1. each element in x i , {x i}j,k
iid∼ uniform(−1, 1);

2. let z i = (1, zi1)T with zi1 ∼ uniform(0, 1);
3. let θ = (0, 1)T , generate γi given x i and z i , with Θ generated from:

When rank R > 1,

3.1 let µα = µβ = (0, · · · , 0)T and Σα = Σβ be diagonal with all

diagonal elements equal to 0.52; generate α̃j
iid∼ N(µα,Σα),

j = 1, · · · , p and β̃k
iid∼ N(µβ ,Σβ), k = 1, · · · , q;

3.2 set A = [α̃1, · · · , α̃p ]T and B = [β̃1, · · · , β̃q ]T , then Θ = ABT .

When rank R = 1,

3.1 let µα = µβ = 0 and σ2
α = σ2

β = 0.52; generate α̃j
iid∼ N(µα, σ2

α),

j = 1, · · · , p and β̃k
iid∼ N(µβ , σ

2
β), k = 1, · · · , q;

3.2 set α1 = (α̃1, · · · , α̃p)T and β1 = (β̃1, · · · , β̃q)T , then Θ = α1β
T
1 .

4. We generate yi given γi , where we fix η0 = 0 and σ = 0.2, but we
vary the value of η1 in different scenarios.
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