Latent class modeling using matrix-valued covariates with application to identifying early placebo responders based on EEG signals

Bei Jiang Department of Mathematical and Statistical Sciences University of Alberta

Joint work with

Eva Petkova (NYU), Thad Tarpey (Wright State), Todd Ogden (Columbia)

BIRS 2016, Banff

February 1, 2016

Introduction The proposed methodology Numerical investigation

Numerical investigation Application Summary

Motivating study: placebo response

Placebo response, i.e., a positive medical response due to placebo effect, as if there were an active medication, to antidepressant treatment is highly prevalent.

▶ For example, 96 placebo or drug treated depression patients

- Hamilton Depression (HAM-D) scale is a clinical measure to rate severity of depression
- Higher HAM-D scores indicate more severe depression
- An antidepressant takes more than 2 weeks to show real drug effect
- Subjects may cluster into two clinically relevant subgroups: early responder vs. non-responder.

Introduction The proposed methodology

Numerical investigation Application Summary

Motivating study: scientific goals

- Interest has focused on studying patient's characteristics that could contribute to placebo response
- However, typically measured clinical phenotypes, e.g. symptom severity and treatment history, have shown low predictive power.
- Now explore predictive ability of neuroimaging phenotypes, e.g, the electrical brain activity under certain tasks measured through Electroencephalography (EEG)

https://en.wikipedia.org/wiki/Electroencephalography http://www.lsa.umich.edu/psych/danielweissmanlab/whatiseeg.htm Introduction

The proposed methodology Numerical investigation Application Summary

Motivating study: statistical goals

- ► For clinical outcome HAM-D scores, formulate a latent class model
 - take into account uncertainty of latent class membership
- EEG covariate to predict latent class membership
 - 14 × 45 matrix (order-2 tensor)
 - captures brain activity measured at 14 electrodes, crossed with 45 frequencies within the theta (4 - 7 hz) and alpha (7 - 15 hz) bands.

Introduction

The proposed methodology Numerical investigation Application Summary

Motivating study: statistical goals

- Our approach: extend latent class models to incorporate matrix-valued EEG covariate
 - utilizes low rank CANDECOMP/PARAFAC (CP) decomposition (Kolda and Bader 2009) to represent the target coefficient matrix
 - reduce model dimensionality
 - explicitly capture bilinear structure
 - CP decomposition was previously considered by Hung and Wang (2013); Zhou et al. (2014) (penalized maximum likelihood approach)
 - In contrast, we adopt a hierarchical approach in formulating the CP decomposition and a Bayesian method for estimation (next)
 - provides a flexible way to incorporate prior knowledge on the patterns of covariate effect heterogeneity
 - provides a data-driven method of regularization
 - associated measures of uncertainty can be quantified through credible intervals

- ∢ ⊒ ▶

The proposed methodology

The manifest model for clinical outcome y_i

$$y_i = \eta_0 + \eta_1 \gamma_i + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

- $\gamma_i = 1$ indicates a placebo responder; $\gamma_i = 0$ a non-responder;
- ► Constrain η₀ + η₁ > 0: placebo responders are expected to experience improved mood and hence positive clinical outcome values.

- ∢ ⊒ ▶

The proposed methodology

► The low rank probit model:

$$\Phi^{-1}[p\{\gamma_i = 1\}] = \theta^T \boldsymbol{z}_i + \langle \boldsymbol{\Theta}, \boldsymbol{x}_i \rangle,$$

$$= \theta^T \boldsymbol{z}_i + \left\langle \sum_{r=1}^R \boldsymbol{\alpha}_r \boldsymbol{\beta}_r^T, \boldsymbol{x}_i \right\rangle,$$

$$= \theta^T \boldsymbol{z}_i + \left\langle \boldsymbol{A} \boldsymbol{B}^T, \boldsymbol{x}_i \right\rangle,$$

- x_i is $p \times q$ matrix covariate
- z_i is a vector of scalar covariates
- $\boldsymbol{\Theta} \in \mathbb{R}^{p imes q}$ denotes the target coefficient matrix
- $\bullet \ \langle \boldsymbol{\Theta}, \boldsymbol{x}_i \rangle = \langle vec(\boldsymbol{\Theta}), vec(\boldsymbol{x}_i) \rangle$
- CP decomposition: express $\Theta = \sum_{r=1}^{R} \alpha_r \beta_r^T$, where $\alpha_r \in \mathbb{R}^p$ and $\beta_r \in \mathbb{R}^q$, $r = 1, \cdots, R < \min(p, q)$
- ► let $\boldsymbol{A} = [\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_R] \in \mathbb{R}^{p \times R}$ and $\boldsymbol{B} = [\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_R] \in \mathbb{R}^{q \times R}$, we can re-write $\boldsymbol{\Theta} = \boldsymbol{A} \boldsymbol{B}^T$
- Now reduced to estimating **A** and **B**: a total of R(p+q) parameters

The proposed methodology

▶ Alternatively: re-express **A** and **B** w.r.t. their row vectors

- $\boldsymbol{A} = [\tilde{\boldsymbol{\alpha}}_1, \cdots, \tilde{\boldsymbol{\alpha}}_p]^T, \ \boldsymbol{B} = [\tilde{\boldsymbol{\beta}}_1, \cdots, \tilde{\boldsymbol{\beta}}_q]^T$
- $\tilde{\alpha}_j \in \mathbb{R}^R$ and $\tilde{\beta}_k \in \mathbb{R}^R$ can be interpreted as representing the effects due to the row and column components of the matrix covariate
- $\mathbf{\Theta}_{j,k} = \langle \tilde{\pmb{lpha}}_j, \tilde{\pmb{eta}}_k \rangle$ is equivalent to modeling the two-way interaction effects
- ▶ next we propose hierarchical priors on {ã_i}^p_{i=1} and {β̃_k}^q_{k=1}

- A 🗐 🕨

The hierarchical formulation of CP decomposition

 For the row and column effect vectors in the CP decomposition, we consider the following hierarchical priors,

$$ilde{lpha}_1,\cdots, ilde{lpha}_{
ho} \stackrel{ ilde{u}d}{\sim} {\sf MVN}(oldsymbol{\mu}_lpha,oldsymbol{\Sigma}_lpha); ext{ and } ilde{eta}_1,\cdots, ilde{eta}_q \stackrel{ ilde{u}d}{\sim} {\sf MVN}(oldsymbol{\mu}_eta,oldsymbol{\Sigma}_eta)$$

•
$$\tilde{\alpha}_j^T$$
 is the j^{th} row of **A** and $\tilde{\beta}_k^T$ is the k^{th} row of **B**

- allows borrowing information and also provides a data-driven method of regularization.
- To complete the specification of these hierarchical priors, we define the following hyper-priors,

$$\mu_{lpha}, \mu_{eta} \sim \mathsf{MVN}(\mathbf{0}, \mathbf{\Sigma}_0); \text{ and } \mathbf{\Sigma}_{lpha}, \mathbf{\Sigma}_{eta} \sim \mathsf{inverse Wishart}(\mathbf{S}_0, s_0)$$

- ▶ let $\Sigma_0 = 9/4I$ to bound $\Pr(\gamma_i = 1)$ to be away from 0 and 1
- a diffuse prior for $\boldsymbol{\Sigma}_{\alpha}$ and $\boldsymbol{\Sigma}_{\beta}$ with $\boldsymbol{S}_0 = 10\boldsymbol{I}$, and $\boldsymbol{s}_0 = R+1$.

The hierarchical formulation of CP decomposition

- The CP decomposition of Θ suffers from non-identifiability of A and B separately, since AB^T = AΛΛ⁻¹B^T, for any R × R non-singular matrix Λ.
- A consequence of this complication is that μ_α, μ_β, Σ_α, Σ_β are not individually identifiable either.
- However, from a Bayesian perspective, good mixing and convergence can be achieved for all parameters in the identifiable Θ = AB^T.

priors for other model parameters

- ▶ In the manifest model, we assume diffuse priors: $\eta_0 \sim N(0, \tau_0^2)$, $\eta_1 \sim N(0, \tau_0^2) I(-\eta_0, \infty)$ with $\tau_0^2 = 100$ and $\sigma^2 \sim \text{inverse gamma}(a_0, b_0)$ with $a_0 = b_0 = 0.01$.
- For covariate effect parameters in the probit model, we let θ ~ N(0, V₀), where V₀ = (9/4)I would bound the probability to be away from 0 and 1.

글 🖌 🖌 글 🕨

Posterior computation

• note that $\langle \boldsymbol{A}\boldsymbol{B}^{T}, \boldsymbol{x}_{i} \rangle$ in the probit model can be rewritten as a linear function with respect to $\tilde{\alpha}_{1}, \cdots, \tilde{\alpha}_{p}$ or $\tilde{\beta}_{1}, \cdots, \tilde{\beta}_{q}$ as follows,

$$\left\langle \boldsymbol{A}\boldsymbol{B}^{\mathsf{T}}, \boldsymbol{x}_{i} \right\rangle = \sum_{j=1}^{p} \tilde{\boldsymbol{\alpha}}_{j}^{\mathsf{T}} \boldsymbol{u}_{ij} = \sum_{k=1}^{q} \tilde{\boldsymbol{\beta}}_{k}^{\mathsf{T}} \boldsymbol{v}_{ik}$$

- u_{ij} denotes the j^{th} row of $x_i^T \boldsymbol{B} \in \mathbb{R}^{p \times R}$, $j = 1, \cdots, p$;
- ▶ \mathbf{v}_{ik} denotes the k^{th} row of $\mathbf{x}_i^T \mathbf{A} \in \mathbb{R}^{q \times R}$, $k = 1, \cdots, q$.
- ▶ We introduce a latent variable w_i such that $\gamma_i = I(w_i > 0)$ and $w_i \sim N(\theta^T z_i + \langle AB^T, x_i \rangle, 1)$ (Albert and Chib,1993).
- $\{\tilde{\alpha}_j\}_{j=1}^p$ and $\{\tilde{\beta}_k^T\}_{k=1}^q$ can be updated iteratively in a similar fashion as in a regular regression model

Simulation study I: known rank

- the degree of overlapping in latent classes is fixed: $\eta_0 = 0$, $\eta_1 = 1.0$ & $\sigma^2 = 0.2^2$ (well separated).
- true values for R, (p, q), and n vary under different simulation scenarios.

$$\mathsf{MSE} = \\ \frac{1}{5} \sum_{s=1}^{S} \left\{ \frac{1}{pq} \| \hat{\boldsymbol{\Theta}}^{(s)} - \boldsymbol{\Theta}^{(s)}_{\mathsf{true}} \|_{F}^{2} \right\}$$

Simulation study I: known rank

Table: AUC for prediction of binary latent class indicator.

		true ran	k <i>R</i> = 1		true rank $R = 2$							
	n = 200	<i>n</i> = 400	n = 600	n=800	<i>n</i> = 200	<i>n</i> = 400	n = 600	n=800				
	within sample AUC											
(p,q) = (15,15)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
(p,q) = (25,25)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
		out of sample AUC										
(p,q) = (15,15)	0.86	0.90	0.90	0.91	0.80	0.88	0.91	0.92				
(p,q) = (25,25)	0.87	0.93	0.94	0.95	0.74	0.88	0.92	0.94				

ヨト イヨト

Simulation study II: misspecified rank

- true rank R = 3, (p,q) = (15,15); n = 200 or 800.
- η₁ = 0.4 and η₁ = 1.0 indicate high and low degrees of overlapping.
- the models are fit with varying assumed rank values

Simulation study II: misspecified rank

Table: AUC for prediction of binary latent class indicator.

	high degree overlapping					low degree overlapping						
assumed rank	R=1	R=2	R=3	R=4	R=5	R=1	R=2	R=3	R=4	R=5		
	within sample AUC											
	0.94	0.96	0.96	0.95	0.93	1.00	1.00	1.00	1.00	1.00		
	out of sample AUC											
	0.80	0.84	0.84	0.81	0.79	0.82	0.88	0.88	0.86	0.84		

프 + + 프 +

э

Application to identify placebo responder subgroup using EEG data

- ▶ let *y_i* denote the change in HAM-D (baseline week 1)
- ▶ let $\mathbf{x}_i^* \in \mathbb{R}^{14 \times 45}$ denote Current Source Density amplitude spectrum values $(\mu V/m^2)$ (Keyser and Tenke, 2006) at 14 electrodes in brain's posterior region, crossed with 45 frequency bands within the theta (4 7 hz) and alpha (7 15 hz) frequency waves
 - ► Multilinear Principal Component Analysis (MPCA) to reduce the original dimension of EEG data from (p, q) to (p₀, q₀).
 - ▶ The dimension (*p*₀, *q*₀) and rank *R* are determined by the widely applicable information criterion (WAIC) proposed by Watanabe (2010).
- let z_i denote gender and depression chronicity

伺き くほき くほき

Application to identify placebo responder subgroup using EEG data

Table: WAIC from fitting different models for the prediction of the placebo responder subgroup using EEG data.

	rank R=1							rank R=2					
p_0 / q_0	2	3	4	5	6		2	3	4	5	6		
2	603.4	605.5	601.3	600.2	601.9		604.4	604.6	601.0	601.3	599.1		
3	602.8	601.2	594.2	593.9	594.8		604.0	599.2	596.2	596.5	603.8		
4	602.7	603.9	583.7	590.2	595.1		604.1	601.7	595.1	596.0	602.0		
5	601.1	602.4	591.6	598.0	598.1		603.5	602.3	598.5	597.8	598.0		
6	598.1	600.1	577.3	577.9	582.1		600.6	601.7	589.9	588.6	588.7		
7	582.9	591.1	571.9	578.7	578.7		599.2	595.4	588.1	593.9	596.2		
8	584.7	589.4	573.3	574.7	575.0		599.3	597.3	590.1	589.8	594.0		
9	587.1	594.4	568.8	573.1	573.5		602.3	600.6	591.8	594.4	592.8		
10	588.4	594.2	571.1	574.1	583.8		600.5	600.0	590.6	588.8	590.3		

Note: WAIC for no-mixture model is 845.6.

ヨト イヨト

Application to identify placebo responder subgroup using EEG data

- the proportion of placebo responders for the placebo arm and drug arm: 9/50=18% and 7/46=15% respectively.
- a chi-square test indicates no significant difference

Application to identify placebo responder subgroup using EEG data

Figure: left: posterior density estimate of the probability of being in the placebo responder subgroup; right: posterior density estimate of $\langle \Theta, x_i \rangle$.

Application to identify placebo responder subgroup using EEG data

Heatmap of the estimated coefficient matrix (* indicates significance at

▶ being chronically depressed is less likely for placebo response ($\hat{\theta}_2 = -1.65$ (95% CI: -3.59, -0.12)), while gender is not a contributing factor ($\hat{\theta}_1 = -1.34$ (95% CI: -3.14, 0.02))

Bei Jiang

- We consider a low rank hierarchical latent class model to incorporate matrix-valued covariates.
- The proposed approach readily extends to incorporate the covariates that are multi-dimensional arrays in general regression settings.
- Our simulation studies have shown that our proposed hierarchical approach is robust against rank misspecification.
- The findings in the application raise hope for utilizing EEG measures to differentiate potential placebo responders from non-responders in clinical practice to further guide the selection of effective treatment for depression patients.

4 E b

Simulation study: setup

For all simulation scenarios, $(y_i, x_i, z_i, \gamma_i)$ are generated as follows,

- 1. each element in x_i , $\{x_i\}_{j,k} \stackrel{iid}{\sim} uniform(-1,1);$
- 2. let $z_i = (1, z_{i1})^T$ with $z_{i1} \sim uniform(0, 1)$;
- 3. let $\theta = (0, 1)^T$, generate γ_i given x_i and z_i , with Θ generated from: When rank R > 1,

3.1 let $\mu_{\alpha} = \mu_{\beta} = (0, \dots, 0)^{T}$ and $\Sigma_{\alpha} = \Sigma_{\beta}$ be diagonal with all

diagonal elements equal to 0.5²; generate $\tilde{\pmb{lpha}}_{j}\overset{\textit{iid}}{\sim} \textit{N}(\pmb{\mu}_{lpha},\pmb{\Sigma}_{lpha})$,

 $j = 1, \cdots, p \text{ and } \tilde{\boldsymbol{\beta}}_k \stackrel{iid}{\sim} N(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}), \ k = 1, \cdots, q;$ 3.2 set $\boldsymbol{A} = [\tilde{\boldsymbol{\alpha}}_1, \cdots, \tilde{\boldsymbol{\alpha}}_p]^T$ and $\boldsymbol{B} = [\tilde{\boldsymbol{\beta}}_1, \cdots, \tilde{\boldsymbol{\beta}}_q]^T$, then $\boldsymbol{\Theta} = \boldsymbol{A}\boldsymbol{B}^T$. When rank R = 1,

3.1 let $\mu_{\alpha} = \mu_{\beta} = 0$ and $\sigma_{\alpha}^2 = \sigma_{\beta}^2 = 0.5^2$; generate $\tilde{\alpha}_j \stackrel{iid}{\sim} N(\mu_{\alpha}, \sigma_{\alpha}^2)$, $j = 1, \cdots, p$ and $\tilde{\beta}_k \stackrel{iid}{\sim} N(\mu_{\beta}, \sigma_{\beta}^2)$, $k = 1, \cdots, q$; 3.2 set $\alpha_1 = (\tilde{\alpha}_1, \cdots, \tilde{\alpha}_p)^T$ and $\beta_1 = (\tilde{\beta}_1, \cdots, \tilde{\beta}_q)^T$, then $\Theta = \alpha_1 \beta_1^T$.

4. We generate y_i given γ_i , where we fix $\eta_0 = 0$ and $\sigma = 0.2$, but we vary the value of η_1 in different scenarios.