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Data

Resting state fMRI
Preprocessing
Anatomical alignment
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Functional Data Model

A model for functional data can be formulated as follows

Xi(t) = µ(t) + Yi(t), (1)

where functional data {Yi(·) : 1 ≤ i ≤ n} and mean function are elements
of L2(T ), where T is some compact set, and EYi(t) = 0.
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A few assumptions and definitions

The covariance function of Yi(·) is given by

s(t, u) = E(Yi(t)Yi(u)).

Let {λk} be the non-negative decreasing sequence of eigenvalues and
{φk(·) : k ≥ 1} a given set of corresponding orthonormal
eigenfunctions of the covariance operator, i.e. they are defined by∫

s(t, u)φl(u) du = λlφl(t), l = 1, 2, . . . , t ∈ T .
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Functional Principal Component Analysis

Yi(·) can then be expressed as

Yi(u) =
∞∑
l=1

ηi,lφl(u),

Further

ηi,l =
∫
Yi(u)φl(u) du i = 1, . . . , n, l = 1, 2, . . . .
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Resting State fMRI Data

Lie in a Scanner for several minutes “at rest”
Used to determine which brain regions are default regions and how
they are connected
Data size approximate 100× 100× 100 in space and 200 in time.
Use separable principal components to find non-stationarities ∆(t) in
the data.

Computational Savings
Full Covariance 106 × 106 elements to be estimated with 200 samples.
Separable Covariance 3× 102 × 102 elements to be estimated with
200× 104 samples.
Sample eigenbasis is 200 dimensional
Separable sample eigenbasis is 106 dimensional.
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The cortical surface
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Smooth-Manifold FPCA
Lila et al, arXiv, 2016

Model
φ̂ first PC function; η̂ n-dimensional score vector

(η̂, φ̂) = argmin
η,φ

n∑
i=1

s∑
j=1

(yi(pj)− ηiφ(pj))2 + ληTη

∫
M

∆2
Mφ(p)dp

yi, i = 1, . . . , n in the model only through its evaluations on p1, . . . , ps ∈M
Empirical Term:

n∑
i=1

s∑
j=1

(yi(pj)− ηiφ(pj))2

Regularization Term:
∫
M∆2

Mφ(p)dp: Laplace-Beltrami operator on the
manifoldM
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Surface Finite Element

MT = ∪T∈Th
T , with Th set of triangles

Surface Finite Element space (Dziuk 1988)

Vh = {v ∈ C0(MT ) : v|τ is linear affine for each τ ∈ Th}

Lagrangian basis ψ1, . . . , ψK associated to the K mesh nodes ξ1, . . . , ξK
Every function φ ∈ Vh has the form

φ(p) =
K∑
k=1

φ(ξk)ψk(p) = φTψ(p)

for each pi ∈MT , with φ = (φ(ξ1), . . . , φ(ξK))T and ψ = (ψ1, . . . , ψK)T .
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Smooth-Manifold FPCA
MV-PCA IHK-PCA K-fold-FPCA
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Functional Time Series and Change Point Detection

We are interested in detecting mean changes in functional observations

Xi(t), t ∈ T , i = 1, . . . , n,

where T is some compact set.
Berkes et al. (2009) and Aue et al. (2009) - at most one
change-point (AMOC) and independent (functional) observations
Hörmann and Kokoszka (2009) - AMOC and specific weak dependent
processes.
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Epidemic Change Model

The epidemic model is given by

Xi(u) = Yi(u) + µ1(u) + (µ2(u)− µ1(u))1{ϑ1n<i6ϑ2n}, (2)

where µj and {Yi(·) : 1 6 i 6 n} are as above, 0 < ϑ1 6 1 marks the
beginning of the epidemic change, while ϑ1 6 ϑ2 6 1 marks the end of the
epidemic change. µ1, µ2 as well as ϑ1, ϑ2 are unknown.
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Implications for Functional Connectivity
Covariance Characterisation under Alternative

The link between activations and functional connectivity:

sA(u, v) = s(u, v) + θ(1− θ)∆(u)∆(v),

where

∆(u) = µ1(u)− µ2(u),
θ = ϑ2 − ϑ1, epidemic change.
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Testing Framework

We are interested in testing the null hypothesis of no change in the mean

H0 : EXi(·) = µ1(·), i = 1, . . . , n,

versus the epidemic change alternative

H1 : EXi(·) = µ1(·), i = 1, . . . , bϑ1nc, bϑ2nc+ 1, . . . , n, but
EXi(·) = µ2(·) 6= µ1(·), i = bnϑ1c+ 1, . . . , bϑ2nc, 0 < ϑ1 < ϑ2 < 1.

Note that the null hypothesis corresponds to the cases where
ϑ1 = ϑ2 = 1.
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Functional Time Series Assumptions

The process ηi = (ηi,1, . . . , ηi,d)T fulfills the following functional limit
theorem 1√

n

∑
16i6nx

ηi : 0 6 x 6 1

 Dd[0,1]−→ {∆d(x) : 0 6 x 6 1},

where ∆d is a d-dimensional Wiener process with covariance matrix
Σ =

∑
k∈Z Γ(k), Γ(h) = EηiηTi+h, h > 0, and Γ(h) = Γ(−h)T for

h < 0 .
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Test statistic

The following then defines a test statistic for an epidemic change in mean
Under H0 it holds:

Tn := 1
n3

∑
16k1<k26n

Sn (k1/n, k2/n)T Σ̂−1Sn (k1/n, k2/n)

L−→
∑

16l6d

∫ ∫
06x<y61

(Bl(x)−Bl(y))2 dx dy

where Σ̂ is a consistent estimator for the long-run covariance matrix and

Sn(x, y) =
∑

nx<j6ny

(
η̂j −

1
n

n∑
t=1
η̂t

)
.
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Component Time Series
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Single Component Time Series
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Data Analysis

Analysis performed on 197 subjects (1 corrupted) - approximately
1.5Gb of Data.
75 subjects (after FDR correction and bootstrap test) found to have
epidemic change point which yielded change point time distribution
estimate

John Aston (Cambridge) Functional Data in Imaging 3 February 2016 24 / 37



Bootstrap Distributions

Bootstrap distribution (change detected)

Bootstrap distribution (no change detected)
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Change Point Locations
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Change Point Locations
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Single Component Time Series
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Single Component Time Series
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Activation?

Subject 01018: Map of ∆(t) for a plane in the middle of the brain. As can
be seen, there is some evidence of bilateral activation (here colour

indicates an increase in fMRI during the epidemic change), along with
some random spatial noise.

John Aston (Cambridge) Functional Data in Imaging 3 February 2016 30 / 37



Outline

1 Data and FPCA

2 Aside: FPCA on Surface

3 Mean Stationarity

4 Covariance Stationarity - work in progress

John Aston (Cambridge) Functional Data in Imaging 3 February 2016 31 / 37



Testing Framework

We are interested in testing the null hypothesis of no change in the
covariance

H0 : EYi(t)Yi(u) = s(t, u), i = 1, . . . , n,
versus the epidemic change alternative

H1 : EYi(t)Yi(u) = s(t, u), i = 1, . . . , bϑ1nc, bϑ2nc+ 1, . . . , n, but
EYi(t)Yi(s) = s̃(t, u) 6= s(t, u), i = bnϑ1c+ 1, . . . , bϑ2nc, 0 < ϑ1 < ϑ2 < 1.

Note that the null hypothesis corresponds to the cases where
ϑ1 = ϑ2 = 1.
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Testing Framework

Under the alternative it holds

E(ηi,lηi,k) =
∫ ∫

s(t, u)φl(t)φk(u)dtdu

+1(ϑ1n<i<ϑ2n)

∫ ∫
(s̃(t, u)− s(t, u))φl(t)φk(u)dtdu

Therefore, we can check to see whether there is a departure from 0 of the
second term.
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Test statistic

The following then defines a test statistic for an epidemic change in mean
Under H0 it holds:

Tn := 1
n3

∑
16k1<k26n

Sn (k1/n, k2/n)T Σ̂−1Sn (k1/n, k2/n)

L−→
∑

16l6d.(d+1)/2

∫ ∫
06x<y61

(Bl(x)−Bl(y))2 dx dy

where Σ̂ is a consistent estimator for the long-run covariance matrix and

Sk(x, y) =
∑

nx<j6ny

(
vech(η̂jηTj − kdiag(λ̂1, . . . , λ̂k))

)
.
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Simulations
Preliminary Results - AMOC change

where δ = |s̃(t, u)− s(t, u)| .
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Summary

Functional Principal Components are a useful concept in brain
imaging.
Can be defined on the volume or on the surface
Can be used to detect general mean shifts in image data
Can potentially be used to look for connectivity changes
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