The Painlevé Equations and Discrete Asymptotics

Nalini Joshi

P_{1}

Questions

- Do we know all possible solutions?
- What are their global properties?
- Is the solution space connected?

Okamoto’s Space of Initial Values

- Okamoto (1979) showed that the space of initial values of the Painlevé equations can be compactified and regularised after exactly nine blow-ups.
- Sakai (2001) classified all equations (differential and discrete) with this property, thereby providing a set of all possible Painlevé systems.
- We study Okamoto's space of initial values in the asymptotic limit

Boutroux's Coordinates

Boutroux (1913) showed that

$$
w(t)=t^{1 / 2} u(z), z=4 t^{5 / 4} / 5
$$

transforms P_{I} to

$$
\ddot{u}=6 u^{2}+1-\frac{\dot{u}}{z}+\frac{4 u}{25 z^{2}}
$$

or in system form
where

$$
\left\{\begin{array}{l}
\dot{u}_{1}=u_{2}-\frac{2 u_{1}}{5 z} \\
\dot{u}_{2}=6 u_{1}^{2}+1-\frac{3 u_{2}}{5 z}
\end{array}\right.
$$

$$
u_{2}=\dot{u}_{1}+2 u_{1} /(5 z)
$$

Perturbation of Elliptic Pencil

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{u_{2}}{6 u_{1}^{2}+1}-\frac{1}{5 z}\binom{2 u_{1}}{3 u_{2}}
$$

A perturbation of an elliptic curve:

$$
\begin{aligned}
u_{2}^{2} & =4 u_{1}^{3}+u_{1}+2 E \\
\Rightarrow \frac{d E}{d z} & =\frac{1}{5 z}\left(6 E+4 u_{1}\right)
\end{aligned}
$$

Perturbation of Elliptic Pencil

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{u_{2}}{6 u_{1}^{2}+1}-\frac{1}{5 z}\binom{2 u_{1}}{3 u_{2}}
$$

A perturbation of an elliptic curve:

$$
\begin{aligned}
u_{2}^{2} & =4 u_{1}^{3}+u_{1}+2 E \\
\Rightarrow \frac{d E}{d z} & =\frac{1}{5 z}\left(6 E+4 u_{1}\right)
\end{aligned}
$$

In the projective plane

$$
\begin{aligned}
& \overbrace{\left[1: \frac{u_{011}}{u_{010}}: \frac{u_{012}}{u_{010}}\right]}^{\text {Affine coordinates }} \Leftrightarrow \overbrace{\left[u_{010}: u_{011}: u_{012}\right]}^{\text {Hoomogeneous coordinates }} \\
& u_{010}=0 \Leftrightarrow \mathcal{L}_{0}
\end{aligned}
$$

First chart:

$$
\left[u_{1}^{-1}: 1: u_{1}^{-1} u_{2}\right]=\left[u_{021}: 1: u_{022}\right]
$$

Second chart:

$$
\left[u_{2}^{-1}: u_{1} u_{2}^{-1}: 1\right]=\left[u_{031}: u_{032}: 1\right]
$$

Transformed PI

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{u}_{021}=-u_{021} u_{022}+2(5 z)^{-1} u_{021} \\
\dot{u}_{022}=u_{021}+6 u_{021}^{-1}-u_{022}^{2}-(5 z)^{-1} u_{022}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{u}_{031}=-u_{031}^{2}-6 u_{032}^{2}+3(5 z)^{-1} u_{031} \\
\dot{u}_{032}=-u_{031} u_{032}-6 u_{031}^{-1} u_{032}^{3}+1+(5 z)^{-1} u_{032}
\end{array}\right.
\end{aligned}
$$

Base point: $\quad b_{0}: u_{031}=0, u_{032}=0$

Blowing up

from JJ Duistermaat, QRT maps and elliptic surfaces, Springer 2010

First blow-up

$$
\begin{aligned}
& {\left[1: u_{111}: u_{112}\right]=\left[1: u_{031} / u_{032}: u_{032}\right]} \\
& {\left[1: u_{121}: u_{122}\right]=\left[1: u_{031}: u_{032} / u_{031}\right]} \\
& \left\{\begin{array}{l}
\dot{u}_{111}=-u_{111} u_{112}^{-1}+2(5 z)^{-1} u_{111} \\
\dot{u}_{112}=1-u_{111} u_{112}^{2}-6 u_{111}^{-1} u_{112}^{2}+(5 z)^{-1} u_{112}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{u}_{121}=u_{121}^{2}\left(-6 u_{122}^{2}-1\right)+3(5 z)^{-1} u_{121} \\
\dot{u}_{122}=u_{121}^{-1}-2(5 z)^{-1} u_{122}
\end{array}\right.
\end{aligned}
$$

Base point: $\quad b_{1}: u_{111}=0, u_{112}=0$

$$
L_{1}: u_{112}=0, L_{0}^{(1)}: u_{111}=0
$$

First blow-up

$$
\begin{aligned}
& {\left[1: u_{111}: u_{112}\right]=\left[1: u_{031} / u_{032}: u_{032}\right]} \\
& {\left[1: u_{121}: u_{122}\right]=\left[1: u_{031}: u_{032} / u_{031}\right]} \\
& \left\{\begin{array}{l}
\dot{u}_{111}=-u_{111} u_{112}^{-1}+2(5 z)^{-1} u_{111} \\
\dot{u}_{112}=1-u_{111} u_{112}^{2}-6 u_{111}^{-1} u_{112}^{2}+(5 z)^{-1} u_{112}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{u}_{121}=u_{121}^{2}\left(-6 u_{122}^{2}-1\right)+3(5 z)^{-1} u_{121} \\
\dot{u}_{122}=u_{121}^{-1}-2(5 z)^{-1} u_{122}
\end{array}\right.
\end{aligned}
$$

Base point: $\quad b_{1}: u_{111}=0, u_{112}=0$

$$
L_{1}: u_{112}=0, L_{0}^{(1)}: u_{111}=0
$$

Exceptional lines

Between first and eight blow-ups

The base points and
blow-up coordinates as the same as those of the anti-canonical pencil (the autonomous system). But the 9th base pt is

L_{8}			
$L_{7}^{(1)}$	$\left(L_{6}^{(2)}\right.$		

Ninth blow-up I

$$
\begin{aligned}
& \dot{u}_{911}=\left(4+32 u_{912}^{4}+u_{911} u_{912}^{6}-\frac{2^{8}}{(5 z)} u_{912}^{5}\right)^{-1} \\
& \times\left[u_{912}(\right.-2^{11}-2^{6} \cdot 5 u_{911} u_{912}^{2}+2^{13} \cdot 7 u_{912}^{4} \\
&-3^{2} u_{911}^{2} u_{912}^{4}+2^{12} u_{911} u_{912}^{6}+2^{16} \cdot 3 u_{912}^{8}+2^{3} \cdot 3^{2} u_{911}^{2} u_{912}^{8} \\
&\left.+2^{12} \cdot 5 u_{911} u_{912}^{10}+2^{6} \cdot 11 u_{911}^{2} u_{912}^{12}+2^{3} u_{911}^{3} u_{912}^{14}\right) \\
&-\frac{2}{(5 z)}\left(2^{2} \cdot 3 u_{911}-2^{12} \cdot 3^{2} u_{912}^{2}-2^{5} \cdot 3^{2} \cdot 7 u_{911} u_{912}^{4}\right. \\
&+2^{15} \cdot 3 \cdot 5 u_{912}^{6}+3 u_{911}^{2} u_{912}^{6}+2^{10} \cdot 17 u_{911} u_{912}^{8} \\
&\left.+2^{17} \cdot 19 u_{912}^{10}+2^{13} \cdot 3 \cdot 7 u_{911}^{12} u_{912}^{12}+2^{7} \cdot 23 u_{911}^{2} u_{912}^{14}\right) \\
&+2^{9}(5 z)^{-2} u_{912}^{3}\left(-2^{6} \cdot 3 \cdot 5+3 u_{911} u_{912}^{2}+2^{13} u_{912}^{4}\right. \\
&\left.\left.+2^{14} \cdot 5 u_{912}^{8}+2^{8} \cdot 11 u_{911} u_{912}^{10}\right)-2^{24} \cdot 7(5 z)^{-3} u_{912}^{12}\right]
\end{aligned}
$$

Ninth blow-up II

$$
\begin{aligned}
\dot{u}_{912}= & -\left(4+32 u_{912}^{4}+u_{911} u_{912}^{6}-\frac{2^{8}}{(5 z)} u_{912}^{5}\right)^{-1} \\
\times & {\left[2-2^{4} u_{912}^{4}-u_{911} u_{912}^{6}+2^{8} u_{912}^{8}\right.} \\
& +2^{3} u_{911} u_{912}^{10}+2^{10} u_{912}^{12}+2^{6} u_{911} u_{912}^{14}+u_{911}^{2} u_{912}^{16} \\
- & (5 z)^{-1} u_{912}\left(2^{2}-2^{5} \cdot 7 u_{912}^{4}-u_{911} u_{912}^{6}+2^{11} u_{912}^{8}\right. \\
& \left.\left.+2^{14} u_{912}^{12}+2^{9} u_{911} u_{912}^{14}\right)+2^{8}(5 z)^{-2} u_{912}^{6}\left(1+2^{8} u_{912}^{8}\right)\right]
\end{aligned}
$$

- There are no further base points.
- The zero set of the denominator gives $L_{0}^{(9)}$
- The Painlevé vector field is regular and transversal to L_{9}

Intersection diagram

A snapshot

P॥
$E_{7}^{(1)}$

P॥

$E_{7}^{(1)}$

P॥

$E_{7}^{(1)}$

Piv

$E_{6}^{(1)}$

Joshi \& Radnovic, 2016

Piv

$E_{6}^{(1)}$

Joshi \& Radnovic, 2016

Piv

$E_{6}^{(1)}$

autonomous eqn
Joshi \& Radnovic, 2016

The infinity set and the limit set

For $z \in \mathbb{C} \backslash\{0\}$

- Let $\mathcal{S}=\bigcup S_{9}(z)$
- The infinity set is $I(z):=\bigcup_{i=0}^{8} L_{i}^{(9-i)}(z)$
- For each solution $U(z) \in S_{9}(z) \backslash I(z)$, let Ω_{U} denote the set of

$$
\begin{aligned}
& s \in S_{9}(\infty) \backslash I(\infty) \text { s.t. } \exists z_{j} \in \mathbb{C} \text { with } z_{j} \rightarrow \infty \\
& \text { and } U\left(z_{j}\right) \rightarrow s \text { as } j \rightarrow \infty
\end{aligned}
$$

Global results for $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{IV},} \mathrm{P}_{\mathrm{V}}$

- The union of exceptional lines is a repeller for the flow.
- There exists a complex limit set, which is non-empty, connected and compact.
- Every solution of $P_{ı}$, every solution of $P_{\|}$whose limit set is not $\{0\}$, and every non-rational solution of Piv and Pv intersects the last exceptional line(s) infinitely many times => infinite number of movable poles and movable zeroes in every neighbourhood of the limit point.

Duistermaat \& J, Arch Rational Mech. Anal 2011
Howes \& J, Constr. Approx 2014
J \& Radnovic, Constr. Approx 2016 J \& Radnovic, 2016

Special Solutions

FIG. 3.1. Magnitude of the solution $u(z)$ to the P_{I} equation in case of ICs $u(0)=-0.1875$, $u^{\prime}(0)=0.3049$, displayed over the domain $z=x+i y,-10 \leq x \leq 10,-10 \leq y \leq 10$.

Fornberg and Weideman 2009

Sectors

FIG. 3.3. The approximation (3.3) applied to a numerical near-tritronquée solution in the vicinity of the origin (cf. Figures 1.1c and 3.1). The level curve 0.001 (solid line) is an example of a suitable pole field edge description.

Consider Pı

Hidden Solutions of P

- Solutions asymptotic to

$$
\Pi_{ \pm}=\{(x, y) \mid x>0, y= \pm \sqrt{x / 6}\}
$$

have formal expansions

$$
\begin{aligned}
& y_{f}=\frac{x^{1 / 2}}{\sqrt{6}} \sum_{k=0}^{\infty} \frac{a_{k}}{\left(x^{1 / 2}\right)^{5 k}} \\
& a_{k}=\underset{k \rightarrow \infty}{=}-2 c((k-1)!)^{2}(25 /(8 \sqrt{6}))^{k}
\end{aligned}
$$

The coeffts a_{k} are important in 2D quantum gravity (Di Francesco, Ginsparg, Zinn-Justin 1994).

The Real Tritronquée

- Theorem: \exists unique solution $\mathrm{Y}(\mathrm{x})$ of PI which has asymptotic expansion

$$
\begin{aligned}
& y_{f}=-\sqrt{\frac{x}{6}} \sum_{k=0}^{\infty} \frac{a_{k}}{\left(x^{1 / 2}\right)^{5 k}}, \text { in }|\arg (x)| \leq 4 \pi / 5 \\
& \text { and }
\end{aligned}
$$

- $Y(x)$ is real for real x
- Its interval of existence / contains \mathbb{R}
- $Y(x)$ lies below Π.
- It is monotonically decaying in I.

What about discrete Painlevé equations?

Symmetric dP1

$$
w_{n+1}+w_{n}+w_{n-1}=\frac{\alpha n+\beta}{w_{n}}+\gamma
$$

Fokas, Its \& Kitaev 1991

- Consider $n \rightarrow \infty$ by taking local iterates in a nhd of infinity: $n=\eta^{2}+m, \eta=\epsilon^{-1 / 2} \rightarrow \infty$

J. 1997
Vereschagin 1995
J. \& Takei 2016

degenerate autonomous limit Initial Value Space of dPI

degenerate autonomous limit Initial Value Space/of dPı

degenerate autonomous limit Initial Value Space/of dPı

Late Terms

For an asymptotic series

$$
f(z) \sim \sum_{n=0}^{\infty} \epsilon^{n} f_{n}(z), \quad \epsilon \rightarrow+0
$$

with factorially growing coefficients, we write

$$
f_{n}(z) \sim \frac{F(z) \Gamma(n+\gamma)}{\chi(z)^{n+\gamma}}
$$

Remainder

It follows that

$$
f(z)=\sum_{n=0}^{N} \epsilon^{n} f_{n}(z)+R_{N}(z)
$$

implies

$$
R_{N}(z) \sim \mathcal{S} F(z) e^{-\chi(z) / \epsilon}
$$

with Stokes lines following

$$
\Im(\chi(z))=0
$$

See e.g. Olde Daalhuis et al 1995

Scaling

$$
\left\{\begin{array}{ll}
w_{2 k} & =\frac{u(s)}{\epsilon^{1 / 2}} \\
w_{2 k-1} & =\frac{v(s)}{\epsilon^{1 / 2}}
\end{array} \quad s=\epsilon n\right.
$$

- dPI becomes

$$
\begin{aligned}
& (v(s+\epsilon)+u(s)+v(s-\epsilon)) u(s)=\alpha s+\epsilon \beta+\epsilon^{1 / 2} \gamma u(s) \\
& (u(s+\epsilon)+v(s)+u(s-\epsilon)) v(s)=\alpha s+\epsilon \beta+\epsilon^{1 / 2} \gamma u(s)
\end{aligned}
$$

- Series expansions as $\epsilon \rightarrow 0$

$$
\begin{aligned}
& u(s) \sim \sum_{m=0}^{\infty} \epsilon^{m / 2} u_{m}(s) \\
& v(s) \sim \sum_{m=0}^{\infty} \epsilon^{m / 2} v_{m}(s) \\
& \text { J. \& Lustri } 2015
\end{aligned}
$$

Types of solutions

- Type A

$$
\begin{aligned}
& u \sim \pm \sqrt{-\alpha s}+\frac{\gamma \epsilon^{1 / 2}}{2} \mp \frac{\left(4 \beta-\gamma^{2}\right) \epsilon}{8 \sqrt{-\alpha s}}+\ldots \\
& v \sim \mp \sqrt{-\alpha s}+\frac{\gamma \epsilon^{1 / 2}}{2} \pm \frac{\left(4 \beta-\gamma^{2}\right) \epsilon}{8 \sqrt{-\alpha s}}+\ldots
\end{aligned}
$$

- Type B

$$
u=v \sim \pm \sqrt{\frac{\alpha s}{3}}+\frac{\gamma \epsilon^{1 / 2}}{6} \mp \pm \frac{\sqrt{3}\left(12 \beta+\gamma^{2}\right) \epsilon}{72 \sqrt{\alpha s}}+\ldots
$$

Late-order terms: Type A

$$
\begin{aligned}
& u_{m} \sim \frac{\Lambda_{1} \Gamma\left(\frac{m-1}{2}\right)}{(i \pi s / 2)^{\frac{m-1}{2}}}+\frac{\Lambda_{2} \Gamma\left(\frac{m-1}{2}\right)}{(-i \pi s / 2)^{\frac{m-1}{2}}} \\
& v_{m} \sim \frac{\Lambda_{3} \Gamma\left(\frac{m-1}{2}\right)}{(i \pi s / 2)^{\frac{m-1}{2}}}+\frac{\Lambda_{4} \Gamma\left(\frac{m-1}{2}\right)}{(-i \pi s / 2)^{\frac{m-1}{2}}}
\end{aligned}
$$

- Optimal truncation

$$
u(s) \sim \sum_{m=0}^{N_{o}} \epsilon^{m / 2} u_{m}(s)+S_{1} \Lambda_{1}(-i)^{s / \epsilon}+S_{2} \Lambda_{2} i^{s / \epsilon}
$$

Stokes Sectors: Type A

Symmetric dP2

$$
w_{n+1}+w_{n-1}=\frac{(\alpha n+\beta) w_{n}+\gamma}{1-w_{n}^{2}}
$$

There are two scalings:

$$
\begin{aligned}
& \text { (i) } w_{n}=\epsilon f_{n} \\
& \text { (ii) } w_{n}=\frac{g_{n}}{\epsilon}
\end{aligned}
$$

Stokes Sectors Type (i)

(a) First special asymptotic solution.

(b) Second special asymptotic solution. Joshi, Lustri \& Luu 2016

Stokes Sectors Type (ii)

(a) Composite general asymptotic solution.

(b) Composite special asymptotic solution.
q-discrete Painlevé equations

$$
\begin{gathered}
\text { qP1 } \\
\Rightarrow \quad \bar{w} \underline{w}=\frac{1}{w}-\frac{1}{\xi w^{2}} \quad\left(\mathrm{qP}_{\mathrm{I}}\right) \\
\bar{w}=w(q \xi), w=w(\xi), \underline{w}=w(\xi / q)
\end{gathered}
$$

$\mapsto \mathrm{PI}: \quad y^{\prime \prime}=6 y^{2}-t \quad$ in continuum limit.

Behaviours near fixed points

$$
\begin{aligned}
\bar{w} & \sim w, \quad \underline{w} \sim w, \quad|\xi| \rightarrow \infty \\
& \Rightarrow \quad w^{4}=w+\mathcal{O}(1 / \xi) \\
& \Rightarrow \quad w= \begin{cases}\omega+\mathcal{O}(1 / \xi) \\
\mathcal{O}(1 / \xi) & \omega^{3}=1\end{cases}
\end{aligned}
$$

- $q P_{ı}$ is invariant under rotation by argument $2 \pi / 3$, so ω can be replaced by unity.
- The second case lies in neighbourhood of a merger of two base points: $(1 / \xi, 0),(q / \xi, 0)$.

Near zero

- Near $w=1 / \xi, \underline{w}=q / \xi, \exists$ a formal series solution
where

$$
w(\xi)=\sum_{n=1}^{\infty} \frac{b_{n}}{\xi^{n}}
$$

$$
\begin{aligned}
& b_{1}=1, b_{2}=0, b_{3}=0 \\
& b_{n}=\sum_{r=2}^{n-2} \sum_{k=1}^{r-1} \sum_{m=1}^{n-r-1} b_{k} b_{r-k} b_{m} b_{n-r-m} q^{(r-2 k)}, n \geq 4
\end{aligned}
$$

Divergence

The coefficients of the asymptotic series grow very fast:

$$
\begin{gathered}
b_{3_{p+1}} \underset{p \rightarrow \infty}{=} \mathcal{O}\left(|q|^{3 p(p-1) / 2} \prod_{k=0}^{p-1}\left(1+q^{-3 k}\right)^{2}\right),|q|>1 \\
b_{3 p+2}=0, b_{3 p+3}=0, \forall p \geq 0
\end{gathered}
$$

so the series diverges for all ξ, except $1 / \xi=0$

Quicksilver solution

- The vanishing solution occurs in a neighbourhood of two merging base points.
- Although the series expansion is divergent, we can prove a true solution exists with this behaviour.
- We gave it a new name: quicksilver solution
- It is unstable in initial-value space.

Joshi, Stud Appl Math (2014)

Summary

- Global dynamics of solutions of non-linear equations, whether they are differential or discrete, can be found through geometry.
- Questions about global dynamics of discrete problems remain open.
- Special transcendental solutions give rise to Stokes phenomena in asymptotic limits.
- Connection problems for q-discrete Painlevé equations remain unsolved.
- Tantalising questions about finite properties of solutions remain open.

