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Banff International Research Station, October 4th 2016

1 / 35



“Integrable” gap probabilities for the Generalized Bessel process

Table of contents

1 Introduction: the Generalized Bessel process

2 First result: differential identity for gap probabilities
Sketch of the proof
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Introduction: the Generalized Bessel process

Random matrix ensemble and determinantal process

Let X(t) be a p× n (assume p ≥ n) matrix with independent standard complex
Brownian entries and set

M(t) = X(t)∗X(t).

Let λ(t) = (λ1(t), . . . , λn(t)) be the vector of (ordered) eigenvalues of M(t),
λj(t) ≥ 0, ∀ t ∈ [0,+∞).

The process {λ(t)}t≥0 is a diffusion on [0,+∞)n and it behaves like n
independent BESQα, α = 2(p− n+ 1), processes conditioned never to collide
(König, O’Connell, ’01).

Its transition probability density is given as

pαt (x, y) =
1

2t

( y
x

)α/2
e−

x+y
2t Iα

(√
xy

t

)
.
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Introduction: the Generalized Bessel process

If we condition {λ(t)}t≥0 in such a way that

λ(0) = (κ, . . . , κ) and λ(T ) = (0, . . . , 0)

for some κ, T > 0, the resulting process is a determinantal point process and the
eigenvalues λ(t) have joint probability density equal to

1

n!
det [Kn(λi, λj ; t)]

n
i,j=1

at every time t ∈ (0, T ).
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Introduction: the Generalized Bessel process

Scaling limit at the critical time

Starting from the correlation kernel Kn, Kuijlaars et al. (’09) performed a scaling
limit in different parts of the domain of the spectrum. In particular, the sine
kernel appears in the bulk, the Airy kernel at the soft edges and the Bessel kernel
appears at the hard edge x = 0.

At a critical time t∗, there is a transition between the soft and the hard edges and
the dynamics at that point is described by a critical kernel:

Theorem (Kuijlaars, Martinez-Finkelshtein, Wielonsky, ’11)

lim
n→+∞

c∗

n3/2
Kn

(
c∗x

n3/2
,
c∗y

n3/2
; t∗ −

c∗τ
√
n

)
= Kcrit

α (x, y; τ) x, y ∈ R+,

with

Kcrit
α (x, y; τ) =

∫
Γ

du

2πi

∫
Σ

dv

2πi

eθτ (u;x)−θτ (v;y)

v − u

(u
v

)α
θτ (u;x) = xu+

τ

u
+

1

2u2
.
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Introduction: the Generalized Bessel process

The Generalized Bessel kernel

Kcrit
α (x, y; τ) =

∫
Γ

du

2πi

∫
Σ

dv

2πi

e
xu+ τ

u
+ 1

2u2−yv−
τ
v
− 1

2v2

v − u

(u
v

)α
=

[q′′(y)− (α− 2)q′(y)− τq(y)] p(x) + [−yq′(y) + (α− 1)q(y)] p′(x) + yq(y)p′′(x)

2πi(x− y)
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Introduction: the Generalized Bessel process

Gap probabilities of the Generalized Bessel process

Our object of study are the “gap probabilities”, meaning the probability of finding
no points in a given domain.

For a generic determinantal process with kernel Kn on R+, the smallest particle
λmin has a distribution

P (λmin > s) = 1 +
∞∑
k=1

(−1)k

k!

∫
[0,s]k

det [Kn(xi, xj)]i,j=1,...,k dx1 . . . dxk =

= det

(
IdL2(R+)−Kn

∣∣∣∣
[0,s]

)
.

and, thanks to the double scaling result above,

det

IdL2(R+)−Kn
∣∣∣∣[

0, c
∗s

n3/2

]
→ det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
as n↗ +∞.
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3 Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)
The simple(r) Bessel case
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First result: differential identity for gap probabilities

Differential identity

Theorem (Girotti, ’14)

Let s > 0 and Kcrit
α be the integral operator acting on L2(R+) with kernel defined

above.
Then, the following differential formula for gap probabilites holds

ds,τ ln det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
= (Y1)2,2 ds−

(
Ỹ −1

0 Ỹ1

)
2,2

dτ

where (Y1)2,2 is the (2, 2)-entry of the residue matrix appearing in the asymptotic
expansion at infinity of the matrix-valued function Y

Y (λ; s, τ) = I +
Y1(s, τ)

λ
+O

(
1

λ2

)
as λ→∞,

Ỹj are the coefficients appearing in the asymptotic expansion of Y in a
neighbourhood of zero

Y (λ; s) = Ỹ0(s, τ) + Ỹ1(s, τ)λ+O
(
λ2
)

as λ→ 0,

and Y is the solution to a RH problem that will be described below.

10 / 35



“Integrable” gap probabilities for the Generalized Bessel process

First result: differential identity for gap probabilities

The Riemann-Hilbert problem

Find a matrix-valued function Y = Y (λ; s, τ) such that

Y is analytic on C\ (Γ ∪ Σ)
Y possesses a limit when approaching the contours from the left Y+ or from
the right Y− (according to their orientation); moreover,

Y+(λ) = Y−(λ)



[
1 −e−λs−

τ
λ
− 1

2λ2−α lnλ

0 1

]
λ ∈ Σ[

1 0

−eλs+
τ
λ

+ 1
2λ2 +α lnλ

1

]
λ ∈ Γ

Y has the following (normalized) behaviour at ∞:

Y (λ) = I +
Y1

λ
+O

(
1

λ2

)
λ→∞.
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First result: differential identity for gap probabilities

Sketch of the proof

Sketch of the proof

Proposition

The following identity holds

det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
= det

(
IdL2(Σ∪Γ)−H

)
where H is an IIKS operator with kernel

H =
f(λ)T g(µ)

λ− µ

f(λ) =
1

2πi

[
e−

λs
2 χΣ (λ)
χΓ (λ)

]
g(µ) =

 e
µs+ τ

µ
+ 1

2µ2 +α lnµ
χΓ (µ)

e
−µs

2
− τ
µ
− 1

2µ2−α lnµ
χΣ (µ)

 .
The result can be proved noticing that Kcrit

α

∣∣∣∣
[0,s]

is unitarily equivalent (via

Fourier transform) to a certain integral operator that can be decomposed as the
above operator H.
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First result: differential identity for gap probabilities

Sketch of the proof

Integrable kernels: Its-Izergin-Korepin-Slavnov (IIKS) theory

Given an integral operator H acting on L2(Σ), with Σ ⊂ C a collection of oriented
contours and with kernel

H(λ, µ) =
f(λ)T g(µ)

λ− µ
, f,g ∈ Vecm(C) f(λ)T g(λ) = 0,

it is possible to define a RH problem as following: find an m×m matrix-valued
function Y such that

Y is analytic on C\Σ
a jump condition holds: Y+(λ) = Y−(λ)

[
I − 2πi f(λ)g(λ)T

]
for λ ∈ Σ

Y (λ) behaves like I +O
(

1
λ

)
as λ→∞.

Then,

Theorem (Its, Izergin, Korepin, Slavnov, ’90)

The RH problem above has solution if and only if the operator Id−H is invertible.

Furthermore, the corresponding resolvent operator R := H(Id−H)−1 is of IIKS
type as well and its kernel can be explicitly built out of the functions f, g and Y .
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First result: differential identity for gap probabilities

Sketch of the proof

The next fundamental step is to link the Fredholm determinant with the RH
problem that we just defined. We make use of a major (and more general) result
due to Bertola (’10) and Bertola-Cafasso (’11) which, if applied to our case, reads
as follows

Theorem (Bertola-Cafasso, ’11)

Define the quantity for ρ = s, τ

ω(∂ρ) :=

∫
Σ∪Γ

Tr

[
Y −1
− Y ′−∂ρJ

crit
(
Jcrit

)−1
]

dλ

2πi
.

Then, we have the equality

ω(∂ρ) = ∂ρ ln det
(

IdL2(Σ∪Γ)−H
)
.

By expanding the solution Y at infinity and at zero, this identity can be further
simplified and explicitly calculated and it yields the final result:

ds,τ ln det
(

IdL2(Σ∪Γ)−H
)

= (Y1)2,2 ds−
(
Ỹ −1

0 Ỹ1

)
2,2

dτ
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First result: differential identity for gap probabilities

A few more words on ω(∂)

In general, the quantity ω(∂) can be defined for any vector field ∂ in the space of
the parameters S on which the integrable kernel (and, thus, its associated RH
problem) depends.

Additionally, assume that the solution to our RH problem solves a rational ODE.
If we restrict ω(∂) to the (sub)-manifold of isomonodromic deformation, then

dω = 0 and e
∫
ω = τJMU

ω is equal to the logarithmic total differential of the isomonodromic τ function of
Jimbo-Miwa-Ueno (Bertola, ’10).

Conclusion

In our case, it is easy to show that Y solves a rational ODE (up to a gauge
transformation) and therefore we give a specific geometrical meaning to a
probabilistic quantity:

τJMU = det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
=


infinitesimal fluctuation of
smallest eigenvalue of BESQα

at the critical time


(up to a normalization constant).
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First result: differential identity for gap probabilities

What now?

Given
ds,τ ln det

(
IdL2(Σ∪Γ)−H

)
= (Y1)2,2 ds−

(
Ỹ −1

0 Ỹ1

)
2,2

dτ

we can further study our RH problem to draw some interesting conclusions:

asymptotic behaviour of gap probability (large/small gap, degeneration
regimes) → Deift-Zhou steepest descent method

integrability and differential equations (Tracy-Widom) → Lax pair,
hamiltonian formalism
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0 Ỹ1

)
2,2

dτ

we can further study our RH problem to draw some interesting conclusions:

asymptotic behaviour of gap probability (large/small gap, degeneration
regimes) → Deift-Zhou steepest descent method

integrability and differential equations (Tracy-Widom) → Lax pair,
hamiltonian formalism

16 / 35



“Integrable” gap probabilities for the Generalized Bessel process
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Painlevé and hamiltonian connection

The simple(r) Bessel case

Inspiration: the Bessel process

Consider the Bessel process with kernel

KBessel(x, y) =
Jα(
√
x)
√
yJα+1(

√
y)− Jα+1(

√
x)
√
xJα(

√
y)

2(x− y)
(1)

Then, applying the same procedure as described before, we have

Theorem (Girotti, ’15)

d

ds
ln det

(
IdL2(R+)−KBessel

∣∣∣∣
[0,s]

)
=

1

2
(Y1)2,2 +

1

2

(
Ỹ −1

0 Ỹ1

)
2,2

where Y1, Ỹ0 and Ỹ1 come from the expansions at infinity and zero of the solution
Y to a RH problem (normalized at infinity) with jumps

Y+(λ) = Y−(λ)



[
1 e

s
2 (λ− 1

λ )−α lnλ

0 1

]
λ ∈ γ[

1 0

−e−
s
2 (λ− 1

λ )+α lnλ 1

]
λ ∈ γ̃
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Painlevé and hamiltonian connection

The simple(r) Bessel case

From the RH problem for Y , we can derive the Lax pair

A = A0 +
A−1

λ
+
A−2

λ2
B = λB1 +B0 +

B−1

λ

with coefficients

A0 =
s

4
σ3, A−1 =

[
−α

2
p(s)

q(s) α
2

]
, A−2 =

[ s
4
− v(s) −v(s)w(s)
v(s)− s

2
w(s)

− s
4

+ v(s)

]

B1 =
1

4
σ3, B0 =

[
0

p(s)
s

q(s)
s

0

]
, B−1 = −

1

s
A−2.

This is the well-known Painlevé III Lax pair (Jimbo, Miwa, Ueno, ’81). By setting

u(s) := −
p(s)

w(s)v(s)

and calculating the compatibility equations, we have that u is a solution to the
PIII equation:

uss =
(us)

2

u
−
us

s
−

4

s

(
Θ0u

2 +
α+ 1

2

)
+ u3 −

1

u
.
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Painlevé and hamiltonian connection

The simple(r) Bessel case

Moreover, we can identify the above quantities with the RH problem Y and link
them to the gap probabilities:

Theorem (Girotti, ’15)

d

ds
ln det

(
IdL2(R+)−KBessel

∣∣∣∣
[0,s]

)
= HIII(u, v; s)

where HIII is the Hamiltonian associated to the Painlevé III equation

HIII (u(s), v(s); s) =
1

s

[
−2u2v2 +

(
su2 + 2αu+ s

)
v −

s2

4

]
.
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Painlevé and hamiltonian connection

Painlevé-type equation

The Lax triplet

Getting back to the Kcrit
α case, we are able to derive from the RH problem Y

Y+(λ) = Y−(λ)



[
1 −e−λs−

τ
λ
− 1

2λ2−α lnλ

0 1

]
λ ∈ Σ[

1 0

−eλs+
τ
λ

+ 1
2λ2 +α lnλ

1

]
λ ∈ Γ

the following Lax triplet

A = A(λ) = A0 +
A−1

λ
+
A−2

λ2
+
A−3

λ3
,

B = B(s) = λB1 +B0,

C = C(τ) =
C−1

λ
.
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Painlevé and hamiltonian connection

Painlevé-type equation

Now, we focus on the couple {A, C}. Performing the change of variables

λ 7→
1

λ

the resulting Lax pair is

A = A1λ+A0 +
A−1

λ
+
A−2

λ2
C = C1λ+ C0

with coefficients

A1 =
1

2
σ3, A0 =

[ τ
2

uw

− 1
w

[
vτ + u

(
v2 −Θ

)]
− τ

2

]
,

A−1 =

[
a−1 b−1

c−1 −a−1

]
, A−2 =

[
v w

− 1
w

(
v2 −Θ

)
−v

]
,

C1 =
1

2
σ3, C0 =

[
0 uw

− 1
w

[
vτ + u

(
v2 −Θ

)]
0

]
.
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Painlevé and hamiltonian connection

Painlevé-type equation

We can recognize the Lax pair associated to the second member of the Painlevé
III hierarchy defined by Sakka (’09).

Throught the compatibility condition

∂τA− ∂λC + [A, C] = 0,

it is possible to derive a system of two coupled 2nd-order differential equations in
τ for u and v (which can be further reduced to a 4th-order equation for the
function u):{

uττ = (6uv − τ)uτ − 6u3v2 + 2τu2v + 2Θu3 − (α+ 1)u+ 1

vττ = −(6uv − τ)vτ − 2u(3uv − τ)(v2 −Θ)− αv + Θ̃.
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Painlevé and hamiltonian connection

Garnier system

Garnier systems

As in the classical Painlevé theory (Jimbo, Miwa, Ueno, ’81), we would like to find
a completely integrable hamiltonian system associated with the Lax triplet
{A,B, C}.

In this case, we have two independent parameters that describe the flow,

the “time” τ and the “space” s,

and two sets of differential equations (from the compatibility conditions).
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Painlevé and hamiltonian connection

Garnier system

Garnier systems

The 2-dimensional Garnier system (Okamoto-Kimura, ’86) is a completely
integrable system for the canonical coordinates (µ1, µ2;λ1, λ2):

∂λj

∂t
=
∂Ht

∂µj
∂µj

∂t
= −

∂Ht

∂λj


∂λj

∂s
=
∂Hs

∂µj
∂µj

∂s
= −

∂Hs

∂λj

with rational Hamiltonians Ht = Ht(λj , µj ; s, t) and Hs = Hs(λj , µj ; s, t).

Remarks:

Garnier systems can be defined for arbitrary N dimension. For N = 1, the
system reduces to the Painlevé VI equation.

In the case N = 2, it is possible to obtain several Hamiltonian systems from
the original Garnier system by the process of step by step degeneration.
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Painlevé and hamiltonian connection

Garnier system

Theorem (Okamoto, Kimura, ’86)

There exists a particular solution to the Hamiltonian system of the form

(µ1, µ2;λ1, λ2) = (0, 0;λ1(s, t), λ2(s, t))

and for j = 1, 2

λ1(s, t) = κ(t) ∂t lnu(s, t) λ2(s, t) = γ(s) ∂s lnu(s, t)

with u(s) a function satisfying a system of linear PDEs.

Hint for our case: starting from the IIKS-integral representation of the kernel,

Kcrit
α (x, y; τ) =

[q′′(y)− (α− 2)q′(y)− τq(y)] p(x) + [−yq′(y) + (α− 1)q(y)] p′(x) + yq(y)p′′(x)

2πi(x− y)
,

we noticed that the function p is a particular solution of the 2-dimensional Garnier
system LH(2 + 3).
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Painlevé and hamiltonian connection

Garnier system

Our Hamiltonians

Action plan: making use of the compatibility equations of our Lax triplet, we
reconstruct the Hamiltonians and the Hamiltonian system for the set of
coordinates (µ1, µ2;λ1, λ2).

By setting

{λj}j=1,2 as the solutions of the equation (A(λ; s, τ))1,2 = 0

{µj}j=1,2 as µj = (A(λj ; s, τ))1,1

we get the systems 
∂λj

∂τ
=
∂Hτ

∂µj
∂µj

∂τ
= −

∂Hτ

∂λj


∂λj

∂s
=
∂Hs

∂µj
∂µj

∂s
= −

∂Hs

∂λj

with rational Hamiltonians Hτ = Hτ (λj , µj ; s, τ) and Hs = Hs(λj , µj ; s, τ).
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Painlevé and hamiltonian connection

Garnier system

Hτ = −
λ2

1µ
2
1

λ1 − λ2
+

λ2
2µ

2
2

λ1 − λ2
−
s2 (λ1 + λ2)

4λ2
1λ

2
2

+
τ2 (λ1 + λ2)

4
−

ks

λ1λ2

−
τ
(
λ2

1 + λ1λ2 + λ2
2

)
2

+
λ3

1

4
+
λ2

1λ2

4
+
λ1λ2

2

4
+
λ3

2

4
−

(α+ 1)λ1 + 2αλ2

2

Hs = −
λ1λ2

(
λ1µ2

1 + µ1

)
s (λ1 − λ2)

+
λ1λ2

(
λ2µ2

2 + µ2

)
s (λ1 − λ2)

+
τ2λ1λ2

4s
−
k (λ1 + λ2)

λ1λ2
−
αλ1λ2

2s

−
s (λ1 + λ2)

4λ2
1λ2

−
τλ2

(
λ2

1 + λ1λ2

)
2s

+
λ1λ2

(
λ2

1 + λ1λ2 + λ2
2 − 2

)
4s

−
s

4λ2
2

Remark

These Hamiltonians are different from the Hamiltonians of the LH(2 + 3) system
defined in Okamoto-Kimura, ’86. The identification process is on-going...
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Conclusions

Conclusive remarks

This method for studying gap probabilities was first introduced by
Bertola-Cafasso (’11) to study the well-known Airy and Pearcey processes.

It has been successfully applied later on for other processes: tacnode process
(Girotti, ’14), hard-edge processes for product of Ginibre or truncated unitary
matrices and Muttalib-Borodin process (Claeys, Girotti, Stivigny, ’16).

The key point is that the restriction of the given operator to an interval K|I is
isometrically equivalent to an IIKS operator. The main clue is the double-contour
integral representation of the type:

K(x, y) =

∫
Σ1

du

2πi

∫
Σ2

dv

2πi

F(u;x)F−1(v; y)

u− v
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Conclusions

New horizons

futurepast

Explicit connection between
Hamiltonians and gap probabilities/RH

problem for Kcrit
α ?

Quantization:

Okamoto/Nagoya style: polynomial
Hamiltonians

Zabrodin/Zotov style: Hamiltonians
of the form p2 + V (q)
(Painlevé-Calogero correspondence).

Further work:

what will the Lax pair {A,B} yield?

asymptotic behaviour?
Conjecture: degeneration of the gap probabilities of Kcrit

α into gap
probabilities of the Airy process (for τ ↘ −∞) or the Bessel process (for
τ ↗ +∞).
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Thanks for your attention!
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