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Macdonald polynomials

A: dominant weight for classical subsystem of untwisted affine root
system.

Px(x; g, t): Weyl group invariant polynomials, orthogonal,
generalizing the corresponding irreducible characters = Py(x; 0, 0).

Defined in the DAHA setup, as common eigenfunctions of the
Cherednik operators Y),.

Recursive construction procedure (for the non-symmetric ones
E.(x;q,t)), based on Cherednik's intertwiners /;.
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Braverman-Finkelberg g-Whittaker functions

W, (x; q): same (a priori different) than those of lon, Cherednik;
generalize the type A ones of Gerasimov-Lebedev-Oblezin.

Viewed as functions of A, they are defined as the universal
eigenfunction of the quantum difference Toda integrable system
(Etingof, Sevostyanov).

Let
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Theorem (Braverman-Finkelberg, lon)

We have R
Pr(x;q,t =0) = W)(x;q).
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Flag variety G/B, Schubert variety X,, = B-wB/B, for w € W.

H*(G/B) and K(G/B) have bases of Schubert classes; for
K-theory, they are the classes [0, ] = [Ox,, ] of structure sheaves
of X, .

The quantum cohomology algebra QH*(G/B) still has the
Schubert basis, but over C[qu, ..., q/].

The structure constants (for multiplying Schubert classes) are the
3-point Gromov-Witten (GW) invariants.

A k-point GW invariant (of degree d) counts curves of degree d
passing through k given Schubert varieties.
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Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying
the K-theory Euler characteristic when the space of curves
(through given Schubert varieties) is infinite.

The structure constants for the quantum K-theory QK(G/B) are
defined based on the 2- and 3-point invariants (complex formula).

The K-theoretic J-function is the generating function of 1-point
K-theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function V(x; q) (viewed
as a function of \) coincides with the K-theoretic J-function.
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Kirillov-Reshetikhin (KR) modules

W"s: finite dimensional modules for g (r € I, s > 1).
Let p = (p1, p2, . ..) be a composition, and
WeP = WPl WPle . . A=wp +wp ...

X\(x; q): the (graded) character of W®P.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

For all untwisted affine root systems Agl_)l - G2(1), we have

PA(x; ,0) = Xi(x; q) -

Remarks. (1) The result is believed to extend to the twisted types.

(2) In simply-laced types, certain affine Demazure characters were
identified with Py(x; g, 0) (lon), and X\(x; q) (Fourier-Littelmann).
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The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the
mentioned structures:

» the specialized Macdonald polynomials Py(x; g,0) and the
g-Whittaker functions (Ram-Yip formula),

» the quantum K-theory of G/B (conjecture by L.-Postnikov;
evidence by L.-Maeno),

> the tensor products of one-column KR modules (LNSSS).

The model is uniform for all Lie types A,—1— Go.
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Finite root systems ® C b5

Reflections s,, v € ©.
The Weyl group W = (s, : o € ®T).
Length function: ¢(w).

The quantum Bruhat graph QBG(W) on W is the directed graph
with labeled edges
w - ws,

where
l(wsy) = ¢(w) 4+ 1 (covers of the Bruhat order), or
l(wsy) = £(w) — 2ht(a") + 1 (ht(a¥) = (p, ")) .
Comes from the multiplication of Schubert classes in the quantum
cohomology of flag varieties QH*(G/B) (Fulton and Woodward).
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Quantum Bruhat graph for Ss3:
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The quantum alcove model

Given a dominant weight A, we associate with it a sequence of
roots, called a A-chain:

r:(/B].’"'?Bm)'

Fact. The construction of a A-chain is based on a reduced
decomposition of the affine Weyl group element corresponding to
Ao — A. This gives a sequence of alcoves from A, to A, — .
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The quantum alcove model (cont.)

Given ' = (B1,...,0m), let ri :== sa,.
The objects of the model: subsets of positions in I
J=(<...<Js) €A{L,...,m}.
For w € W and J, construct the chain 7(w, J) of elements in W:
Wo =W, ..., Wj:=Wwr...r, ..., ws=end(w,J).
Important structures:

Ag(T,w) :={J : m(w,J) path in QBG(W)},
AL (T,w) :={J: w(w,J) saturated chain in (W, <)}.

Let Ag(T) := Aq(T, 1w) and AL(T) := AL(T, 1w).
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Macdonald polynomials: the Ram-Yip formula
Given a dominant weight A, consider a A\-chain ' := (f1,...,m).

Given J € A4(T), we associate with it
> a weight weight(J),
» a statistic height(J), which “measures” the down steps
wj—1 > w; in the path 7(w, J) in QBG(W).

Theorem (Ram-Yip, L.)

P)\(X; q, O) — Z qheight(J) Xweight(J) )
JeAL(T)

Remark. For ¢ = 0, we retrieve the alcove model (L. and
Postnikov, cf. Gaussent and Littelmann, Littelmann):

Pa(X;0,0) =ch(Vy) = > x"eiehit))
JeAL(N)
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K(G/B) and QK(G/B): Chevalley formulas

Recall: K(G/B) and QK(G/B) have bases of Schubert classes
[Ox,] =[Ow], we W.

Let ey = reverse of an wy-chain (wk a fundamental weight).

Theorem (L.-Postnikov, L.-Shimozono)
In K(G/B) (finite-type or Kac-Moody), we have

[Ow] - [O5]= > (=D Ocnaqw. )]
JEA(Trerw\(0)

Conjecture (L.-Postnikov)
In QK(G/B) (finite-type), we have:

? -1 _x *
[OW] * [OSk] = E (_1)“‘ ! qir---4r [Oend(w,J)] :
JEAG(Mrev,w)\{0}

Remark. Restricting the RHS, we retrieve the Chevalley formula in
QH*(G/B) (Fulton-Woodward).
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Evidence for the conjectured formula in QK(G/B)

e Computer experiments (A. Buch).

e The work of Braverman-Finkelberg connecting QK(G/B) to
specialized Macdonald polynomials.

e (L.-Maeno) Based on some relations in QK (SL,/B) discovered
by Kirillov-Maeno, we constructed polynomials &,,(x; q), called
quantum Grothendieck polynomials.

- They specialize to the usual polynomial representatives in
K(SL,/B) and QH*(SL,/B).

- They multiply as in the conjectured Chevalley formula.

- They are conjectured to represent Schubert classes [O,,] in

QK(SLn/B).
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Recall the KR modules, as modules for Uq(g): W"* and
WeP — wrrl g Wrolg .

Kashiwara (crystal) operators are modified versions of the
Chevalley generators (indexed by the simple roots): fy, ..., f.

Fact. W®P has a basis (crystal basis) B = B®P such that in the
limit g — 0 we have

f:B—BU{0}, fib=b < b-—b.
So B®P is a colored directed graph (connected).

Fact. The crystal structure on B®P is defined by a tensor product
rule: B¥P = BPrlg Pl ... .
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Models for KR crystals

Fact. In the classical types A — D there are tableau models (the

usual column-strict fillings in type Af,l_)l, but more involved in the

other types, particularly for B,(,l) and D,(,l)).

Goal. Uniform model for all types AE,l_)l— G2(1), based on the

quantum alcove model.
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The quantum alcove model for KR crystals

Given p = (p1, p2, .- .) and an arbitrary Lie type, let
A=wp +wp, +....
Let I' be a A-chain, and consider Aq(I").

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators fy,. .., f, and fo on Aq(IN).

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

The (combinatorial) crystal Aq4(T") is isomorphic to the tensor
product of KR crystals B®P.
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The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components
(no 0-arrows) of B = B®P (Schilling and Tingley).

More precisely, Dg : B — Zx> satisfies the following conditions:
> it is constant on classical components (0-arrows removed);

> it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the
combinatorial data associated with a crystal vertex (type A:
Lascoux—Schiitzenberger charge statistic).
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The energy via the quantum alcove model

Consider J = {j1 < jo < ... <Jjs}in Ag(') for I = (B1,...,Bm),
i.e., we have a path in the quantum Bruhat graph

Biy B Bis
lw=wy —w — ... = ws.
Recall that height(J) measures the down steps in the above path.

Theorem (L.-Naito-Sagaki-Schilling-Shimozono)
Given J € Aq4(T), which is identified with B®P, we have

Dg(J) = —height(J) .
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The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes
factors in the tensor product of KR crystals B®P (the swap
a® b b® ais not a crystal isomorphism!).

In type A, it is realized by Schiitzenberger's jeu de taquin (sliding
algorithm) on two columns, but already in type C it is hard.

Theorem (L.-Lubovsky)

We give a uniform realization, based on the quantum alcove
model, of the combinatorial R-matrix.

We use combinatorial moves based on certain operators on W
defined by QBG(W), which satisfy the Yang-Baxter equation
(Brenti-Fomin-Postnikov).



Example in type As.

p:(1,2,2,1):’ ‘; )\:w1+w2—|—wz+w1:(4,2,0).




Example in type As.

p:(1,2,2,1):’ ‘; A=wi +wr+wr w1 =(4,2,0).

A A-chain as a concatenation of wi-, ws-, wy-, and wy-chains:

r=0@2), 1,3)1(23), (1,3) ] (23), (1,3) [ (1,2), (1,3) ).
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quantum Bruhat graph is
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Example. Let J ={1,2,3,6,7,8}.

( 1,2, 1,3)[(23), (1,3) [ (23), (1.3) [ (1L,2), (1,3) ).

Claim: J is admissible. Indeed, the corresponding path in the
quantum Bruhat graph is

The corresponding element in B®P = BL! ® B%1 @ B! @ B!
represented via column-strict fillings:

2] _[1
®®®.



The energy calculation

Example. Consider the running example: A = w1 + w2 +wa +wq in
type As.



The energy calculation

Example. Consider the running example: A = w1 + w2 +wa +wq in
type As.
We considered the A-chain I and J = {1,2,3,6,7,8} € A(I):
r= ((1,2),13) [ (23),(1,3) ] (23),(1.3) | (1,2),(1,3) ),
(h)=( 2, 4 | 2 3 | 1, 2 | 1, 1 ).




The energy calculation

Example. Consider the running example: A = w1 + w2 +wa +wq in

type As.
We considered the A-chain I and J = {1,2,3,6,7,8} € A(I):

M= ((12),13)](23),(1,3) [ (23), (1,3 | (1,2),(1,3) ),

(hl) = ( 2, 4 ‘ 2, 3 ‘ L, 2 ‘ L, 1 )

We have
height(J) = 2.



