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The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If|z2% <1 forae AT and A = (A1 > X\o > -+ > A\pi1) is @ dominant weight for
GL,+1((C), then

W(t) = /N(F) £ (wonta)t(n) dn = 62 (t)xa(2) ] (1—q 2%,

acAt

where t), = diag(@™, ..., @), @ is a uniformizer in 0, and A is the root
system of GL,,1(C).
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GL,+1((C), then

W(t) = /N(F) £ (wonta)t(n) dn = 62 (t)xa(2) ] (1—q 2%,

acAt

where t), = diag(@™, ..., @), @ is a uniformizer in 0, and A is the root
system of GL,,1(C).

> The term [, ca- (1 — ¢ *2%)x(2) is a g-deformation of a Weyl character
for the irreducible highest weight representation V(X + p).

> Expresses the value of the spherical Whittaker function in terms of a Weyl
character.
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The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If|lz%| <1 fora € AT and A= (A1 > Xy > -+ > A\,41) is a dominant weight for
GL,+1((C), then

W(t,) = / o Elmont)u(n)dn = 6/2()(2) ag(l —q'2%),

where t), = diag(@™, ..., @), @ is a uniformizer in 0, and A is the root
system of GL,,1(C).

> The term [, ca- (1 — ¢ *2%)x(2) is a g-deformation of a Weyl character
for the irreducible highest weight representation V(X + p).

> Expresses the value of the spherical Whittaker function in terms of a Weyl
character.

Express the product as a sum over the crystal B(\ + p) realized as the set of
semistandard Young tableaux.
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BZL paths

Definition
For a given reduced word i = (i1, i, ..., i) for the longest element wy of
the Weyl group, define the BZL path of b € B(\ + p) as follows.
Inductively, let

ay = max{k : &b #0},  a; = max{k: &e - E7E b # 0}

for j=1,...,N. Then we define ¥;(b) = (a1, ..., an)-

These are also known as string parameterizations or i-Kashiwara data.

P. Littelmann proved that such a path terminates at the highest weight
vector byy, € B(A+ p).
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r=2,i=(1,2,1), A+p>0

Yi(b) = (1;1,1)
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r=2,i=(2,1,2), A+p>0

Yi(b) = (1;2,0)
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The circling and boxing rules

Write the BZL paths in triangles of the following form:

ai a1,1
a a3 a1 axp

Yi(b) = as as ae - a31 a2 a33
This triangular array looks more natural if we use Littelmann’s result that

a11>0; a1 >a2>0; az1>azp>az3>0;

Entries outside the triangle are understood to be 0.
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The circling and boxing rules

Write the BZL paths in triangles of the following form:

ai a1,1

a az ai azn
)= 2 a5 a =

431 432 a33
This triangular array looks more natural if we use Littelmann’s result that
a11>0; a1 >a2>0; az1>azp>az3>0;

Entries outside the triangle are understood to be 0.

Definition (Brubaker-Bump-Friedberg, 2011; Bump-Nakasuji, 2010)

> If the entry a; o1 = aj ¢, then we circle a; ;1.

e
> If e’ &%b =0, then box aj.
V-1 t)
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BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)
Ifi=(1,2,1,3,2,1,...,r,r—1,...,2,1), then

xA(2) H (1- qflza) - Z Gi(b)q*(wo(wt(b)*%p),p)ZWO(wt(b)*p)
acAt beB(A+p)
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BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)
Ifi=(1,2,1,3,2,1,...,r,r—1,...,2,1), then

xA(2) H (1- qflza) - Z Gi(b)q*(wo(wt(b)*%p),p)ZWO(wt(b)*p)
acAt beB(A+p)

Applying the longest element wy to both sides gives

z’x\(2) H 1-qg1lz7%) = Z Gi(b) gL} =A=p.0) Zut(b)
N beB(A+p)
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BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)
Ifi=(1,2,1,3,2,1,...,r,r—1,...,2,1), then

xA(2) H (1- qflza) - Z Gi(b)q*(wo(wt(b)*%p),p)ZWO(wt(b)*p)
acAt beB(A+p)

Applying the longest element wy to both sides gives
2002 [[ (1-gl27%) = 3 G(b)giB) el pmld
aEAt beB(A-p)
Essentially, the right-hand side has the form
Z (_qfl)#boxeS(l - qfl)#neither circled nor boxedzwt(b).
beB(A+p)

However, b with an entry in v;(b) which is both circled and boxed yields a

coefficient of 0.
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Crystals of tableaux

Theorem (M. Kashiwara and T. Nakashima, 1994)

The vertices of the highest weight sl,1-crystal B(\ + p) are in bijection with the
semistandard Young tableaux of shape \ + p over the alphabet {1,... r+ 1}.
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a(T) and b(T)

Let T € B(\ + p) be a tableau. Define a; j to be the number of (j + 1)-colored
boxes in rows 1 through i for 1 < < j < r, and define

a3,1 ad12 - aAir
do '+ Az,

a(T) =
ar,r
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a(T) and b(T)

Let T € B(\ + p) be a tableau. Define a; j to be the number of (j + 1)-colored
boxes in rows 1 through i for 1 < < j < r, and define

a3,1 ad12 - aAir
do '+ Az,

a(T) =
ar,r

Definition
Let T € B(A + p) be a tableau. The number b; ; is defined to be the number of

boxes in the ith row which have color greater or equalto j+1for1 <i<j<r.
Set

b1 by --- by,
by, -+ by,

b(T) = . .
br r

)
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Boxing and circling from tableaux

For A € P™, write A + p as
Abp=U1>0lp> >l >l =0),

and define 0; = ¢; — ljy1 fori=1,...,r. Let 0 = (61,...,0,).
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Boxing and circling from tableaux

For A € P™, write A + p as
Abp=U1>0lp> >l >l =0),
and define 0; = ¢; — ljy1 fori=1,...,r. Let 0 = (61,...,0,).

Attach 6 to the array b(T):

bii bio -+ by, (61)
boo -+ by, (62)

(b(T),0) = . :
br,r (er)

Ben Salisbury (CMU CS formula and tableaux 10/2013 10 / 22



New circling and boxing rules

Definition

Box aj;j if b,'J =0;+ b,'+1’j_|_1. Circle aj; if ajj =aj—1,-
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New circling and boxing rules

Definition

Box aj;j if b,'J =0;+ b,'+1’j_|_1. Circle aj; if ajj =aj—1,-

Consider the tableaux

1/1]2]2]3]
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New circling and boxing rules

Definition

Box aj;j if b,'J =0; + b;+1J+1. Circle aj; if ajj =aj—1,-

Consider the tableaux

1[1]2]2]3]
T=[2]3]3 :
3[4
Then
2 10 310 (2
a(T)= 3 0, (b(T),0)= 2 0 (1).
1 1 (2
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New circling and boxing rules

Definition
Box ajj if b,'J =0; + b,'+17j+1.

Circle ajj if ajj =4aji-1,-

Consider the tableaux

1[1]2]2]3]
T=[2[3]3 :
3[4
Then
2 1 (v 310 (2
a(T) = © ., (b(T),0)= 20 (1).
1 1 (2
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Comparison of circling and boxing rules

Let T € B(A+ p). Then the sequences ¢;(T) = (a;j) and a(T) = (a; )
are related via the formula a; j = a;_j 1 ;.
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Comparison of circling and boxing rules

Lemma
Let T € B(A+ p). Then the sequences ¢;(T) = (a;j) and a(T) = (a; )
are related via the formula a; j = a;_j 1 ;.

Proposition

An entry a;j in ¢;(T) is circled (by the original rule) if and only if the
corresponding entry in a(T) is circled (by the new rule).
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An entry a;j in ¢;(T) is circled (by the original rule) if and only if the
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Comparison of circling and boxing rules

Lemma
Let T € B(A+ p). Then the sequences ¢;(T) = (a;j) and a(T) = (a; )
are related via the formula a; j = a;_j 1 ;.

Proposition

An entry a;j in ¢;(T) is circled (by the original rule) if and only if the
corresponding entry in a(T) is circled (by the new rule).

Proposition

An entry a; j in ¢i(T) is boxed (by the original rule) if and only if the
corresponding entry in a(T) is boxed (by the new rule).

Definition

Say T € B(\+ p) is strict if no entry of a(T) is both circled and boxed.
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The CS formula using tableaux

Let T € B(A+p).

» non(T) = number of entries in a(T) which are neither circled nor

boxed
» box(T) = number of entries in a( T) which are boxed
Define
_4—1\box(T)(q _ ,—1ynon(T) ; . .
oy (=97) (1-qg77) if T is strict,
GT:a7) = { 0 otherwise.
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The CS formula using tableaux

Let T € B(A+p).

» non(T) = number of entries in a(T) which are neither circled nor

boxed
» box(T) = number of entries in a( T) which are boxed
Define
_4—1\box(T)(q _ ,—1ynon(T) ; . .
-y (=a7) (1-q977) if T is strict,
GT:a7) = { 0 otherwise.

Theorem (K.-H. Lee, P. Lombardo, and S)

2"xx\(2) H (1-g'z %)= Z C(T; g7 1)zt (D).

aEA+ TeB(A\+p)
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Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

1faafafaafrafuf2. 2[5 34 4]
r:3:>5’(oo): 2(2...212[3...3|4...2
344
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Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

1faafafaafrafuf2. 2[5 34 4]
r:3:>B(OO): 2(2...212[3...3|4...2
3[4...4

Theorem (Gindikin-Karpelevich formula)

If |z%| < 1 for all « € AT, then

/ £ (wonty) dn = H ﬂ (51/27_ )(t))
NE) z (VELIDN 1_ zo woz )

acAt
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Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

1ooafufaafrafaf2- 23 3] 4]
r:3:>B(OO): 2(2...212[3...3|4...2
3[4...4

Theorem (Gindikin-Karpelevich formula)

If |z%| < 1 for all « € AT, then

/ £ (wonty) dn = H ﬂ (51/27_ )(t))
NE) z (VELIDN 1_ zo woz )

acAt

Theorem (Lee-S, 2012; Kim-Lee, 2011; Bump-Nakasuji, 2010)
1

1—qg 2¢ _ -
[1 5= > gy,
aeAt TeB(c0)
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Segments and the Gindikin-Karpelevich formula

There exists an embedding
\U)\+p: B()\ + p) — B(OO) ® 7—)\+p

which commutes with each & and is weight-preserving.
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Segments and the Gindikin-Karpelevich formula

There exists an embedding

\U)\+p: B()\ + p) — B(OO) ® 7—)\+p

which commutes with each & and is weight-preserving.

1[1]2]2]2]3]3]4] 1[afafafafa]a]a]a]2]2]2]2]3]3]4]
Vase [ [2][2]3]3]3]4 = [2[2]2]2[2]3]3]3]4
4144 3]4]4]4
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seg(T) and flush(T) for T € B(\ + p)

Let T € B(A+ p) be a tableau.
© Let T € B(\+ p) be a tableaux. We define a k-segment of T (in the
ith row) to be a maximal consecutive sequence of k-boxes in the ith
row for any i + 1 < k < r 4+ 1. Denote the total number of
k-segments in T by seg(T).
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seg(T) and flush(T) for T € B(\ + p)

Let T € B(A+ p) be a tableau.

© Let T € B(\+ p) be a tableaux. We define a k-segment of T (in the
ith row) to be a maximal consecutive sequence of k-boxes in the ith
row for any i +1 < k < r + 1. Denote the total number of
k-segments in T by seg(T).

©Q Let1 << k<r+1 and suppose ¢ is the smallest integer greater
than k such that there exists an /-segment in the (i + 1)st row of T.
A k-segment in the ith row of T is called flush if the leftmost box in
the k-segment and the leftmost box of the /-segment are in the same
column of T. If, however, no such ¢ exists, then this k-segment is
said to be flush if the number of boxes in the k-segment is equal to
0;. Denote the number of flush k-segments in T by flush(T).
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Calculation of C,(T,q 1)

Corollary

Let T € B(\ + p) be a tableau.
Q Letl << k<r. Suppose the following two conditions hold.

(@) There is no k-segment in the ith row of T.
(b) Let ¢ be the smallest integer greater than k such that there exist an
{-segment in the ith row. There is no p-segment in the (i + 1)st row,

for k+1 < p </, and the {-segment is flush.?
Then Cy\(T;q71) =0.
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Calculation of C,(T,q 1)

Corollary

Let T € B(\ + p) be a tableau.
Q Letl << k<r. Suppose the following two conditions hold.

(@) There is no k-segment in the ith row of T.
(b) Let ¢ be the smallest integer greater than k such that there exist an
{-segment in the ith row. There is no p-segment in the (i + 1)st row,

for k+1 < p </, and the {-segment is flush.?
Then Cy\(T;q71) =0.
@ If condition (1) is not satisfied, then
C)\(T; qfl) _ (_qfl)flush(T)(l - qfl)seg(T)fflush(T)_

“By convention, if no such £ exists, then condition (b) is not satisfied.
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Let A\ =ws + w3, r =3, and

1]1]1[3]4]

T —

N
N

Ben Salisbury (CMU CS formula and tableaux 10/2013 18 / 22



Let A\ =ws + w3, r =3, and

T —

N
S

» There is no 2-segment in the first row nor is there a 3-segment in the
second row.
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Let A\ =ws + w3, r =3, and

1]1]1]3]4]

T —

N
S

» There is no 2-segment in the first row nor is there a 3-segment in the
second row.

» The 3-segment in the first row is flush, so Cy\(T; g !) = 0.
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Let A\ =ws + w3, r =3, and

1]1]1]3]4]

T —

N
S

» There is no 2-segment in the first row nor is there a 3-segment in the
second row.

» The 3-segment in the first row is flush, so Cy\(T; g !) = 0.

As a check, we have

@ O &© 2 2

al)= " @ 2. (b(T),0)=
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Let A = w1 + 2wy + 2ws3, r =3, and
1]1]2]2]2]3]3]4]
T=[2[2]3[3]3]4
4044
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Let A = w1 + 2wy + 2ws3, r =3, and
1]1]2]2]2]3]3]4]
T=[2[2]3]3]3]4
4]4]4

Then
> all possible segments are included in T, so Cy(T;q7!) # 0 and

seg(T) =6, and
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Let A = w1 + 2wy + 2ws3, r =3, and
1]1]2]2]2][3]3]4]
T=[2]2]|3]3]3]4
4]4]4

Then

> all possible segments are included in T, so Cy(T;q7!) # 0 and
seg(T) =6, and

> flush(T) = 3.
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Let A = w1 + 2wy + 2ws3, r =3, and
1]1]2]2]2][3]3]4]
T=[2]2]|3]3]3]4
4]4]4

Then

> all possible segments are included in T, so Cy(T;q7!) # 0 and
seg(T) =6, and

> flush(T) = 3.

Hence
A(Tig ) = (- PA-q )
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Let A = w1 + 2wy + 2ws3, r =3, and
1]1]2]2]2][3]3]4]
T=[2]2]|3]3]3]4
4]4]4

Then
> all possible segments are included in T, so Cy(T;q7!) # 0 and

seg(T) =6, and

> flush(T) =3.
Hence
A(Tig ) = (- PA-q )
As a check,
1 6 3 1 (2
a(T) = 5 2, (b(7),0)= 4 1 (3).
3 (3)
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Application of the C\(—; g 1)

For B € @, define a polynomial Hy\(3;q~!) € Z[g~*] by

HaBig )= > G(T,q7)
TeB(M\p)
wt(T)=A+p—p
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Application of the C\(—; g 1)

For B € @, define a polynomial Hy\(3;q~!) € Z[g~*] by

HaBig )= > G(T,q7)
TeB(M\p)
wt(T)=A+p—p

Theorem (Brubaker, Bump, and Friedberg, 2011)

The function Hx(B; q~1) is the p-part of a nonmetaplectic Weyl group multiple
Dirichlet series of type A,.

Ben Salisbury (CMU CS formula and tableaux 10/2013 20 / 22



Application of the C\(—; g 1)

For B € @, define a polynomial Hy\(3;q~!) € Z[g~*] by

HaBig )= > G(T,q7)
TeB(M\p)
wt(T)=A+p—p

Theorem (Brubaker, Bump, and Friedberg, 2011)

The function Hx(B; q~1) is the p-part of a nonmetaplectic Weyl group multiple
Dirichlet series of type A,.

Proposition (H. Kim and K.-H. Lee, 2012)

> Hy\(5;0) is the multiplicity of X — 8 in V(\);
> H\(B; —1) is the multiplicity of X+ p — B in V()\) ® V(u);

(=)™ w(A+p)—p=\—p for somew € W,
0 otherwise.

> H\(B;1) = {
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Extensions and future directions

» Casselman-Shalika formula in types B,, C,, D,, and G, (in progress
with P. Lombardo)

e Metaplectic version?
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http://dx.doi.org/10.1016/j.jcta.2012.01.011

Extensions and future directions

» Casselman-Shalika formula in types B,, C,, D,, and G, (in progress
with P. Lombardo)

e Metaplectic version?

» Gindikin-Karpelevich formula in types A,, B,, C;, D,, and G;. (Lee
and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and
arXiv:1205.6006)

e Does (some version of) seg apply to types E and F?
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Extensions and future directions

Casselman-Shalika formula in types B,, C,, D,, and G, (in progress
with P. Lombardo)

e Metaplectic version?

v

v

Gindikin-Karpelevich formula in types A, B., C;, D,, and G,. (Lee
and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and
arXiv:1205.6006)

e Does (some version of) seg apply to types E and F?

v

Gindikin-Karpelevich formula in affine types (Kang, Lee, Ryu, and S:
arXiv:1203.1640)

v

Are seg and flush useful elsewhere in combinatorics?
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