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The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If |zα| < 1 for α ∈ ∆+ and λ = (λ1 ≥ λ2 ≥ · · · ≥ λn+1) is a dominant weight for
GLr+1(C), then

W (tλ) :=

∫
N(F )

f ◦z (w0ntλ)ψ(n) dn = δ1/2(tλ)χλ(z)
∏
α∈∆+

(1− q−1zα),

where tλ = diag($λ1 , . . . , $λr+1 ), $ is a uniformizer in o, and ∆ is the root
system of GLr+1(C).

I The term
∏
α∈∆+ (1− q−1zα)χλ(z) is a q-deformation of a Weyl character

for the irreducible highest weight representation V (λ+ ρ).

I Expresses the value of the spherical Whittaker function in terms of a Weyl
character.

Goal

Express the product as a sum over the crystal B(λ + ρ) realized as the set of
semistandard Young tableaux.
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BZL paths

Definition

For a given reduced word i = (i1, i2, . . . , iN) for the longest element w0 of
the Weyl group, define the BZL path of b ∈ B(λ+ ρ) as follows.
Inductively, let

a1 = max{k : ẽki1b 6= 0}, aj = max{k : ẽkij ẽ
aj−1

ij−1
· · · ẽa2

i2
ẽa1
i1

b 6= 0}

for j = 1, . . . ,N. Then we define ψi(b) = (a1, . . . , aN).

These are also known as string parameterizations or i-Kashiwara data.

P. Littelmann proved that such a path terminates at the highest weight
vector bλ+ρ ∈ B(λ+ ρ).
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r = 2, i = (1, 2, 1), λ+ ρ� 0

•

• •

• • • •

• b • • • •
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ψi(b) = (1; 1, 1)
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The circling and boxing rules

Write the BZL paths in triangles of the following form:

ψi(b) =

a1

a2 a3

a4 a5 a6

. .
. ...

...
. . .

=

a1,1

a2,1 a2,2

a3,1 a3,2 a3,3

. .
. ...

...
. . .

This triangular array looks more natural if we use Littelmann’s result that

a1,1 ≥ 0; a2,1 ≥ a2,2 ≥ 0; a3,1 ≥ a3,2 ≥ a3,3 ≥ 0; . . . .

Entries outside the triangle are understood to be 0.

Definition (Brubaker-Bump-Friedberg, 2011; Bump-Nakasuji, 2010)

I If the entry aj ,`−1 = aj ,`, then we circle aj ,`−1.

I If f̃ij ẽ
aj−1

ij−1
· · · ẽa1

i1
b = 0, then box aj .
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BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)

If i = (1, 2, 1, 3, 2, 1, . . . , r , r − 1, . . . , 2, 1), then

χλ(z)
∏
α∈∆+

(1− q−1zα) =
∑

b∈B(λ+ρ)

Gi(b)q−〈w0(wt(b)−λ−ρ),ρ〉zw0(wt(b)−ρ)

Applying the longest element w0 to both sides gives

zρχλ(z)
∏
α∈∆+

(1− q−1z−α) =
∑

b∈B(λ+ρ)

Gi(b)q〈wt(b)−λ−ρ,ρ〉zwt(b)

Essentially, the right-hand side has the form∑
b∈B(λ+ρ)

(−q−1)#boxes(1− q−1)#neither circled nor boxedzwt(b).

However, b with an entry in ψi(b) which is both circled and boxed yields a
coefficient of 0.
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Crystals of tableaux

Theorem (M. Kashiwara and T. Nakashima, 1994)

The vertices of the highest weight slr+1-crystal B(λ+ ρ) are in bijection with the
semistandard Young tableaux of shape λ+ ρ over the alphabet {1, . . . , r + 1}.

Example

r = 2 =⇒ B(ρ) =

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

2 2
3

1 3
3

2 3
3

1 2

2 1

21

12
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a(T ) and b(T )

Definition

Let T ∈ B(λ+ ρ) be a tableau. Define ai,j to be the number of (j + 1)-colored
boxes in rows 1 through i for 1 ≤ i ≤ j ≤ r , and define

a(T ) =

a1,1 a1,2 · · · a1,r

a2,2 · · · a2,r

. . .
...

ar ,r

Definition

Let T ∈ B(λ+ ρ) be a tableau. The number bi,j is defined to be the number of
boxes in the ith row which have color greater or equal to j + 1 for 1 ≤ i ≤ j ≤ r .
Set

b(T ) =

b1,1 b1,2 · · · b1,r

b2,2 · · · b2,r

. . .
...

br ,r
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Boxing and circling from tableaux

For λ ∈ P+, write λ+ ρ as

λ+ ρ = (`1 > `2 > · · · > `r > `r+1 = 0),

and define θi = `i − `i+1 for i = 1, . . . , r . Let θ = (θ1, . . . , θr ).

Attach θ to the array b(T ):

(b(T ), θ) =

b1,1 b1,2 · · · b1,r (θ1)
b2,2 · · · b2,r (θ2)

. . .
...

br ,r (θr )
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New circling and boxing rules

Definition

Box ai ,j if bi ,j = θi + bi+1,j+1. Circle ai ,j if ai ,j = ai−1,j .

Consider the tableaux

T =
1 1 2 2 3
2 3 3
3 4

.

Then
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Comparison of circling and boxing rules

Lemma

Let T ∈ B(λ+ ρ). Then the sequences ψi(T ) = (ai ,j) and a(T ) = (ai ,j)
are related via the formula ai ,j = ai−j+1,i .

Proposition

An entry ai ,j in ψi(T ) is circled (by the original rule) if and only if the
corresponding entry in a(T ) is circled (by the new rule).

Proposition

An entry ai ,j in ψi(T ) is boxed (by the original rule) if and only if the
corresponding entry in a(T ) is boxed (by the new rule).

Definition

Say T ∈ B(λ+ ρ) is strict if no entry of a(T ) is both circled and boxed.
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The CS formula using tableaux

Let T ∈ B(λ+ ρ).

I non(T ) = number of entries in a(T ) which are neither circled nor
boxed

I box(T ) = number of entries in a(T ) which are boxed

Define

Cλ(T ; q−1) =

{
(−q−1)box(T )(1− q−1)non(T ) if T is strict,

0 otherwise.

Theorem (K.-H. Lee, P. Lombardo, and S)

zρχλ(z)
∏
α∈∆+

(1− q−1z−α) =
∑

T∈B(λ+ρ)

Cλ(T ; q−1)zwt(T ).
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Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

r = 3 =⇒ B(∞) =

 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 4 · · · 4

2 2 · · · 2 2 3 · · · 3 4 · · · 4

3 4 · · · 4



Theorem (Gindikin-Karpelevich formula)

If |zα| < 1 for all α ∈ ∆+, then∫
N(F )

f ◦z (w0ntλ) dn =

( ∏
α∈∆+

1− q−1zα

1− zα

)
(δ1/2τw0z)(tλ).

Theorem (Lee-S, 2012; Kim-Lee, 2011; Bump-Nakasuji, 2010)∏
α∈∆+

1− q−1zα

1− zα
=

∑
T∈B(∞)

(1− q−1)seg(T )z−wt(T ).
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Segments and the Gindikin-Karpelevich formula

There exists an embedding

Ψλ+ρ : B(λ+ ρ) ↪−→ B(∞)⊗ Tλ+ρ

which commutes with each ẽi and is weight-preserving.

Example

Ψλ+ρ

 1 1 2 2 2 3 3 4

2 2 3 3 3 4

4 4 4

 =
1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4

2 2 2 2 2 3 3 3 4

3 4 4 4
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seg(T ) and flush(T ) for T ∈ B(λ+ ρ)

Definition

Let T ∈ B(λ+ ρ) be a tableau.

1 Let T ∈ B(λ+ ρ) be a tableaux. We define a k-segment of T (in the
ith row) to be a maximal consecutive sequence of k-boxes in the ith
row for any i + 1 ≤ k ≤ r + 1. Denote the total number of
k-segments in T by seg(T ).

2 Let 1 ≤ i < k ≤ r + 1 and suppose ` is the smallest integer greater
than k such that there exists an `-segment in the (i + 1)st row of T .
A k-segment in the ith row of T is called flush if the leftmost box in
the k-segment and the leftmost box of the `-segment are in the same
column of T . If, however, no such ` exists, then this k-segment is
said to be flush if the number of boxes in the k-segment is equal to
θi . Denote the number of flush k-segments in T by flush(T ).
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Calculation of Cλ(T , q−1)

Corollary

Let T ∈ B(λ+ ρ) be a tableau.

1 Let 1 ≤ i < k ≤ r . Suppose the following two conditions hold.

(a) There is no k-segment in the ith row of T .

(b) Let ` be the smallest integer greater than k such that there exist an
`-segment in the ith row. There is no p-segment in the (i + 1)st row,
for k + 1 ≤ p ≤ `, and the `-segment is flush.a

Then Cλ(T ; q−1) = 0.

2 If condition (1) is not satisfied, then

Cλ(T ; q−1) = (−q−1)flush(T )(1− q−1)seg(T )−flush(T ).

aBy convention, if no such ` exists, then condition (b) is not satisfied.
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Example

Let λ = ω2 + ω3, r = 3, and

T =

1 1 1 3 4

2 2 2 4

3 4

.

I There is no 2-segment in the first row nor is there a 3-segment in the
second row.

I The 3-segment in the first row is flush, so Cλ(T ; q−1) = 0.

As a check, we have

a(T ) =

0 1 1

1 2
3

, (b(T ), θ) =
2 2 1 (1)

1 1 (2)
1 (1)

.
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Example

Let λ = ω1 + 2ω2 + 2ω3, r = 3, and

T =

1 1 2 2 2 3 3 4

2 2 3 3 3 4

4 4 4

.

Then

I all possible segments are included in T , so Cλ(T ; q−1) 6= 0 and
seg(T ) = 6, and

I flush(T ) = 3.

Hence
Cλ(T ; q−1) = (−q−1)3(1− q−1)3.

As a check,

a(T ) =

3 2 1
5 2

5

, (b(T ), θ) =
6 3 1 (2)

4 1 (3)
3 (3)

.
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Application of the Cλ(−; q−1)

For β ∈ Q+, define a polynomial Hλ(β; q−1) ∈ Z[q−1] by

Hλ(β; q−1) =
∑

T∈B(λ+ρ)
wt(T )=λ+ρ−β

Cλ(T , q−1).

Theorem (Brubaker, Bump, and Friedberg, 2011)

The function Hλ(β; q−1) is the p-part of a nonmetaplectic Weyl group multiple
Dirichlet series of type Ar .

Proposition (H. Kim and K.-H. Lee, 2012)

I Hλ(β; 0) is the multiplicity of λ− β in V (λ);

I Hλ(β;−1) is the multiplicity of λ+ ρ− β in V (λ)⊗ V (µ);

I Hλ(β; 1) =

{
(−1)`(w) w(λ+ ρ)− ρ = λ− β for some w ∈W ,

0 otherwise.
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Extensions and future directions

I Casselman-Shalika formula in types Br , Cr , Dr , and G2 (in progress
with P. Lombardo)

• Metaplectic version?

I Gindikin-Karpelevich formula in types Ar , Br , Cr , Dr , and G2. (Lee
and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and
arXiv:1205.6006)

• Does (some version of) seg apply to types E and F ?

I Gindikin-Karpelevich formula in affine types (Kang, Lee, Ryu, and S:
arXiv:1203.1640)

I Are seg and flush useful elsewhere in combinatorics?
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Y O U !
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