Relation Generation in Quadratic Number and Function Fields

Michael J. Jacobson, Jr.
jacobs@cpsc.ucalgary.ca

Joint work with J.-F. Biasse, A. Stein, and W. Trei

ANTD 2013

Imaginary Quadratic Number Fields

$\mathbb{Q}(\sqrt{\Delta})=\{x+y \sqrt{\Delta} \mid x, y \in \mathbb{Q}\}:$ quadratic field

- $\Delta \equiv 0,1(\bmod 4)$: discriminant $(\in \mathbb{Z}, \Delta$ or $\Delta / 4$ square-free $)$
- $\Delta<0$: imaginary quadratic field
$\mathcal{O}_{\Delta} \subset \mathbb{Q}(\sqrt{\Delta})$: maximal order of $\mathbb{Q}(\sqrt{\Delta})$ (ring of algebraic integers)
- \mathcal{I}_{Δ} : group of invertible, fractional ideals of \mathcal{O}_{Δ}
- \mathcal{P}_{Δ} : principal, fractional ideals, subgroup of \mathcal{I}_{Δ}
- $C l_{\Delta}=\mathcal{I}_{\Delta} / \mathcal{P}_{\Delta}$: class group
- $h_{\Delta}=\left|C l_{\Delta}\right|$: class number
- unique reduced ideal representatives of group elements

Relations

Relation: power-product of prime ideals that is principal

Used in index-calculus algorithms for:

- invariant computation (class number, class group structure, regulator/fundamental unit)
- discrete logarithm computation, principality testing / norm equations
- computing large-degree isogenies and endomorphism rings of ordinary elliptic curves over finite fields

Efficiency of all depends on quickly finding relations

Example: Computing the Class Group

Outline:

- factor base $F B$: prime ideals \mathfrak{p}_{i} of norm $p_{i} \leq B$, must generate $C l_{\Delta}$
- surjective homomorphism (assume $|F B|=k$)

$$
\begin{aligned}
\varphi: \mathbb{Z}^{k} & \rightarrow C l_{\Delta} \\
\left(v_{1}, \ldots, v_{k}\right) & \mapsto\left[\mathfrak{p}_{1}^{v_{1}} \ldots \mathfrak{p}_{k}^{v_{k}}\right]
\end{aligned}
$$

- $\mathbb{Z}^{k} / \Lambda \cong C l_{\Delta}$, where $\Lambda=\operatorname{ker} \varphi$ is the lattice of all relations wrt $F B$
- randomly construct generating system of Λ, linear algebra (Smith normal form) to compute group structure

Expected run time $(G H R): L_{\Delta}(1 / 2, \sqrt{2})$, where

$$
L_{\Delta}(\alpha, \beta)=\exp \left((\beta+o(1))(\log |\Delta|)^{\alpha}(\log \log |\Delta|)^{1-\alpha}\right)
$$

Example: Computing Large-Degree Isogenies

$E \|_{t, u}\left(\mathbb{F}_{q}\right)$: isomorphism classes of elliptic curves over \mathbb{F}_{q} with trace t and endomorphism ring $\mathcal{O}_{u^{2} \Delta_{K}} \in \mathbb{Q}\left(\sqrt{\Delta_{K}}\right)$

Theorem

Let $\mathfrak{a} \subset \mathcal{O}_{u^{2} \Delta_{K}}$ be prime of norm ℓ. Then \mathfrak{a} acts on $E \|_{t, u}\left(\mathbb{F}_{q}\right)$ via a degree ℓ isogeny, defining a faithful group action by $C l_{u^{2} \Delta_{K}}$.

Jao, Soukharev 2010: idea (compute isogeny of degree ℓ):

- Compute relation $\mathfrak{p}_{\ell} \prod \mathfrak{p}_{i}^{e_{i}}$ in $C l_{u^{2} \Delta_{K}}$ for p_{i} small, $N\left(\mathfrak{p}_{\ell}\right)=\ell$
- $\left[\mathfrak{p}_{\ell}\right]=\prod\left[\mathfrak{p}_{i}\right]^{-e_{1}} \in C l_{u^{2} \Delta_{K}}$
- Evaluate the degree ℓ isogeny via evaluations of degree p_{i} isogenies

Expected run time $(G R H): L_{q}(1 / 2, \sqrt{3} / 2) \log \ell$

Finding Relations

Main idea:

- Compute $\mathfrak{a} \sim \prod \mathfrak{p}_{i}^{e_{i}}$ (but not equal!)
- If $\mathfrak{a}=\prod \mathfrak{p}_{i}^{v_{i}}$, then $\prod \mathfrak{p}^{e_{i}-v_{i}}$ is principal

One approach: random selection of \mathfrak{a} via choice of e_{i} (or random walks)

Better approach: sieving

- let $\alpha=a x+(b+\sqrt{\Delta}) / 2 y \in \mathfrak{a}=a \mathbb{Z}+(b+\sqrt{\Delta}) / 2 \mathbb{Z}$
- $N(\alpha)=a\left(a x^{2}+b x y+c y^{2}\right)$ where $c=\left(b^{2}-\Delta\right) /(4 a)$
- there exists ideal \mathfrak{b} with $N(\mathfrak{b})=a x^{2}+b x y+c y^{2}$ and $(\alpha)=\mathfrak{a b}$
- find $x, y \in \mathbb{Z}$ such that $f(x, y)=a x^{2}+b x y+c y^{2}$ factors over the p_{i}

Sieving

Finding relations \leftrightarrow finding smooth values of $f(X, Y)=a X^{2}+b X Y+c Y^{2}$
One approach: find all $x \leq M, x \in \mathbb{Z}$, with $f(x, 1)=a x^{2}+b x+c$ smooth
For each prime ideal of norm p_{i} :

- compute root(s) r such that $f(r, 1) \equiv 0\left(\bmod p_{i}\right)$
- $p_{i} \mid r$, and $p \mid k p_{i}+r$ for all $k \in \mathbb{Z}$
- use analogue of Sieve of Eratosthenes to factor all $f(x, 1)$ by "marking off" every p_{i} th cell in an array, starting at r

Can adapt quadratic sieve methods from integer factoring, including self-initialization

Some Results

Biasse (2010): class group for $\Delta=-4 \times 10^{110}-4$

$$
C I_{\Delta} \cong \mathbb{Z} / 8576403641950292891121955131452148838284294200071440 \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{11}
$$

Biasse, J. (2010): class group and regulator for $\Delta=4 \times 10^{110}+4$
$C I_{\Delta} \cong \mathbb{Z} / 12 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
$R_{\Delta} \approx 70795074091059722608293227655184666748799878533480399.67302$
4 days for relations (2602.4 GHz Xeons), 4 days for linear algebra (2.4 GHz Opteron, 32 GB RAM), 4 days for GRH-verification

Isogeny and Endomorphism Ring Computation: Obstacles

Parameter tuning is really hard

- Composition of factor base can affect results dramatically
- Eg. (J. 1999), computing $C l_{\Delta}$
- typical 70-decimal digit $\Delta: 18 \mathrm{~h}$
- 70-decimal digit Δ with no $p_{i} \leq 353$ in factor base: 6.5 days

Need really small factor bases for isogeny and endomorphism ring computation

- only small prime degree isogenies are efficient to compute
- sieving becomes more effective with larger factor bases

Our Approach (on-going work)

Analytic model to estimate smoothness probabilities given a particular factor base

- extend numerical methods to approximate $\psi(x, y)$ to ideals of quadratic fields
- would take into account differing splitting behavior of small primes
- use as basis of search for optimal parameters

Use Sutherland's improvements to evaluation of low-degree isogenies

- feasible to evaluate isogenies of larger prime degree
- may be sufficient to realize benefits from sieving

Imaginary Quadratic Function Fields

$C: y^{2}+h(t) y=f(t)$ non-singular, $h, f \in \mathbb{F}_{q}[t]$
C is imaginary (genus g) if

- q is odd, $h=0, f$ monic and square-free with $\operatorname{deg}(f)=2 g+1$
- q is even, $h \neq 0$ with $\operatorname{deg}(h) \leq g$ and f monic with $\operatorname{deg}(f)=2 g+1$
(a.k.a. hyperelliptic curves)
deg 0 divisor class group (ideal class group of $\mathbb{F}_{q}(C)$):
- finite abelian, size $\approx q^{g}$
- unique reduced divisor/ideal representatives of group elements

Example Application: Weil Descent

Reduce elliptic curve discrete logarithm problem (over $\mathbb{F}_{2^{n g}}$) to hyperelliptic curve discrete logarithm problem (genus g over $\mathbb{F}_{2^{n}}$)

- Enge, Gaudry (index-calculus): if $g>\log q$, expected run time $L_{q g}(1 / 2,5.73+o(1))$
- J, Menezes, Stein: implementation, parameter optimization
- solved ECDLP over $\mathbb{F}_{2^{31}}, \mathbb{F}_{2^{64}}, \mathbb{F}_{2^{93}}$, and $\mathbb{F}_{2^{124}}$
- genus 31 hyperelliptic curves defined over $\mathbb{F}_{2}, \mathbb{F}_{2^{2}}, \mathbb{F}_{2^{3}}$, and $\mathbb{F}_{2^{4}}$
- Velichka, J., Stein: application of sieving, solved ECDLP over $\mathbb{F}_{2^{155}}$
- genus 31 hyperelliptic curve defined over $\mathbb{F}_{2^{5}}$

Overview of Index Calculus and Sieving

Same general approach as in quadratic fields

- factor base: prime ideals \mathfrak{p} with $\operatorname{deg} p_{i} \leq B$ (p_{i} irreducible)
- find random relations
- solve linear algebra problem (linear system modulo group order)

Can apply same approach to finding relations, including sieving

- relation generation reduces to finding smooth values of $f(X)=a X^{2}+b X+c$ defined over $\mathbb{F}_{q}[t]$
- same improvements (eg. self-initialization) are possible

Challenges with Sieving

Need to find all $x \in \mathbb{F}_{q}[t]$ with $\operatorname{deg}(x) \leq M$ such that $f(x)$ is B-smooth
How to map $x \in \mathbb{F}_{q}[t]$ to a cell in an array?

- Natural map (Flassenburg, Paulus 1998), $q=p^{d}$:

$$
\begin{aligned}
\nu: \mathbb{F}_{q}[t] & \rightarrow \mathbb{Z} \\
x_{m} t^{m}+\cdots+x_{0} & \mapsto \nu_{0}\left(x_{i}\right) q^{i}+\cdots+\nu_{0}\left(x_{0}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\nu_{0}: \mathbb{F}_{q} & \rightarrow\{0, \ldots, q-1\} \\
\nu_{0}\left(a_{d} \alpha^{d}+\cdots+a_{0}\right) & =a_{d} p^{d}+\cdots+a_{0}
\end{aligned}
$$

Works, but painful to evaluate frequently

Challenges with Sieving, cont.

For irreducible $p_{i} \in \mathbb{F}_{q}[t]$ and $r \in \mathbb{F}_{q}[t]$ such that $f(r) \equiv 0\left(\bmod p_{i}\right)$:

- how to rapidly find all $\nu\left(k p_{i}+r\right)$ for $k \in \mathbb{F}_{q}[t]$ such that $\operatorname{deg}\left(k p_{i}+r\right) \leq M$?
- map ν does not lead to regular spacing through the sieve array

Velichka, J., Stein 2008: enumerate all k of appropriate degree, evaluate $\nu\left(k p_{i}+r\right)$ directly using previous results and precomputations

- use $k^{\prime} p_{i}+r=\left(k p_{i}+r\right)+\left(k^{\prime}-k\right) p_{i}($ add appropriate multiple of $p)$

Trei, J. Stein 2013: further optimizations, including

- evaluation at q using Horner's rule
- better use of intermediate results
- observation that $\nu(x+y)=\nu(x) \oplus \nu(y)$ (all ops on integers)

Numerical Results

VJS 2008 results (278 Intel P4 Xeon 2.4 GHz CPUs, 262.8 GHz):

- ECDLP over $\mathbb{F}_{2^{124}}$ (HCDLP with $g=31, q=2^{4}$):
- 9 hours, 7.5 hours for relations (24 hours with random walks)
- First solution of ECDLP over $\mathbb{F}_{2^{155}}$ (HCDLP with $g=31, q=2^{5}$):
- 3 weeks, 1 week for relations (random walks estimate 5 weeks)

TJS 2013 results (64 Intel Xeon X7560 2.27 GHz CPUs):

- $\mathbb{F}_{2^{124}}: 3$ hours (27 min . for relations)
- $\mathbb{F}_{2^{155}}$: in progress (2.5 days for relations)

Future Work

Complete analytic model to aid parameter selection
Two dimensional (lattice) sieving?

Batch smoothness test for candidates produced by the sieve?
Function fields:

- add double large primes
- try odd characteristic
- lower genus?

