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Quadratic Fields

Imaginary Quadratic Number Fields

Q(
p
�) = fx + y

p
� j x ; y 2 Qg : quadratic �eld

� � 0; 1 (mod 4) : discriminant (2 Z; � or �=4 square-free)

� < 0 : imaginary quadratic �eld

O� � Q(
p
�) : maximal order of Q(

p
�) (ring of algebraic integers)

I� : group of invertible, fractional ideals of O�

P� : principal, fractional ideals, subgroup of I�
Cl� = I�=P� : class group

h� = jCl�j : class number

unique reduced ideal representatives of group elements
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Quadratic Fields

Relations

Relation: power-product of prime ideals that is principal

Used in index-calculus algorithms for:

invariant computation (class number, class group structure,
regulator/fundamental unit)

discrete logarithm computation, principality testing / norm equations

computing large-degree isogenies and endomorphism rings of ordinary
elliptic curves over �nite �elds

E�ciency of all depends on quickly �nding relations
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Quadratic Fields

Example: Computing the Class Group

Outline:

factor base FB : prime ideals pi of norm pi � B; must generate Cl�

surjective homomorphism (assume jFBj = k)

' : Zk ! Cl�

(v1; : : : ; vk) 7! [pv11 : : : p
vk
k ]

Zk=� �= Cl�; where � = ker' is the lattice of all relations wrt FB

randomly construct generating system of �; linear algebra (Smith
normal form) to compute group structure

Expected run time (GHR): L�(1=2;
p
2); where

L�(�; �) = exp((� + o(1))(logj�j)�(log logj�j)1��)
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Quadratic Fields

Example: Computing Large-Degree Isogenies

Ellt;u(Fq) : isomorphism classes of elliptic curves over Fq with trace t and
endomorphism ring Ou2�K

2 Q(p�K )

Theorem

Let a � Ou2�K
be prime of norm `: Then a acts on Ellt;u(Fq) via a degree

` isogeny, de�ning a faithful group action by Clu2�K
:

Jao, Soukharev 2010: idea (compute isogeny of degree `):

Compute relation p`
Q

p
ei
i in Clu2�K

for pi small, N(p`) = `

[p`] =
Q
[pi ]

�e1 2 Clu2�K

Evaluate the degree ` isogeny via evaluations of degree pi isogenies

Expected run time (GRH): Lq(1=2;
p
3=2) log `
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Quadratic Fields Computing Relations

Finding Relations

Main idea:

Compute a �Q p
ei
i (but not equal!)

If a =
Q

p
vi
i ; then

Q
pei�vi is principal

One approach: random selection of a via choice of ei (or random walks)

Better approach: sieving

let � = ax + (b +
p
�)=2y 2 a = aZ+ (b +

p
�)=2Z

N(�) = a(ax2 + bxy + cy2) where c = (b2 ��)=(4a)

there exists ideal b with N(b) = ax2 + bxy + cy2 and (�) = ab

�nd x ; y 2 Z such that f (x ; y) = ax2 + bxy + cy2 factors over the pi
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Quadratic Fields Computing Relations

Sieving

Finding relations$ �nding smooth values of f (X ;Y ) = aX 2+bXY + cY 2

One approach: �nd all x � M; x 2 Z; with f (x ; 1) = ax2 + bx + c smooth

For each prime ideal of norm pi :

compute root(s) r such that f (r ; 1) � 0 (mod pi )

pi j r ; and p j kpi + r for all k 2 Z
use analogue of Sieve of Eratosthenes to factor all f (x ; 1) by
\marking o�" every pi th cell in an array, starting at r

Can adapt quadratic sieve methods from integer factoring, including
self-initialization
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Quadratic Fields Results and Challenges

Some Results

Biasse (2010): class group for � = �4� 10110 � 4

Cl�
�= Z=8576403641950292891121955131452148838284294200071440Z� (Z=2Z)11

Biasse, J. (2010): class group and regulator for � = 4� 10110 + 4

Cl�
�= Z=12Z� Z=2Z

R� � 70795074091059722608293227655184666748799878533480399:67302

4 days for relations (260 2.4 GHz Xeons), 4 days for linear algebra (2.4
GHz Opteron, 32 GB RAM), 4 days for GRH-veri�cation
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Quadratic Fields Results and Challenges

Isogeny and Endomorphism Ring Computation: Obstacles

Parameter tuning is really hard

Composition of factor base can a�ect results dramatically

Eg. (J. 1999), computing Cl�
typical 70-decimal digit � : 18h
70-decimal digit � with no pi � 353 in factor base: 6:5 days

Need really small factor bases for isogeny and endomorphism ring
computation

only small prime degree isogenies are e�cient to compute

sieving becomes more e�ective with larger factor bases
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Quadratic Fields Results and Challenges

Our Approach (on-going work)

Analytic model to estimate smoothness probabilities given a particular
factor base

extend numerical methods to approximate  (x ; y) to ideals of
quadratic �elds

would take into account di�ering splitting behavior of small primes

use as basis of search for optimal parameters

Use Sutherland's improvements to evaluation of low-degree isogenies

feasible to evaluate isogenies of larger prime degree

may be su�cient to realize bene�ts from sieving
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Function Fields

Imaginary Quadratic Function Fields

C : y2 + h(t)y = f (t) non-singular, h; f 2 Fq[t]

C is imaginary (genus g) if

q is odd, h = 0; f monic and square-free with deg(f ) = 2g + 1

q is even, h 6= 0 with deg(h) � g and f monic with deg(f ) = 2g + 1

(a.k.a. hyperelliptic curves)

deg 0 divisor class group (ideal class group of Fq(C )):

�nite abelian, size � qg

unique reduced divisor/ideal representatives of group elements
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Function Fields

Example Application: Weil Descent

Reduce elliptic curve discrete logarithm problem (over F2ng ) to
hyperelliptic curve discrete logarithm problem (genus g over F2n)

Enge,Gaudry (index-calculus): if g > log q; expected run time
Lqg (1=2; 5:73 + o(1))

J, Menezes, Stein: implementation, parameter optimization

solved ECDLP over F231 ; F264 ; F293 ; and F2124
genus 31 hyperelliptic curves de�ned over F2; F22 ; F23 ; and F24

Velichka, J., Stein: application of sieving, solved ECDLP over F2155

genus 31 hyperelliptic curve de�ned over F25
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Function Fields Index Calculus and Sieving

Overview of Index Calculus and Sieving

Same general approach as in quadratic �elds

factor base: prime ideals p with deg pi � B (pi irreducible)

�nd random relations

solve linear algebra problem (linear system modulo group order)

Can apply same approach to �nding relations, including sieving

relation generation reduces to �nding smooth values of
f (X ) = aX 2 + bX + c de�ned over Fq[t]

same improvements (eg. self-initialization) are possible
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Function Fields Index Calculus and Sieving

Challenges with Sieving

Need to �nd all x 2 Fq[t] with deg(x) � M such that f (x) is B-smooth

How to map x 2 Fq[t] to a cell in an array?

Natural map (Flassenburg, Paulus 1998), q = pd :

� : Fq[t]! Z

xmt
m + � � �+ x0 7! �0(xi )q

i + � � �+ �0(x0)

where

�0 : Fq ! f0; : : : ; q � 1g
�0(ad�

d + � � �+ a0) = adp
d + � � �+ a0

Works, but painful to evaluate frequently
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Function Fields Index Calculus and Sieving

Challenges with Sieving, cont.

For irreducible pi 2 Fq[t] and r 2 Fq[t] such that f (r) � 0 (mod pi ) :

how to rapidly �nd all �(kpi + r) for k 2 Fq[t] such that
deg(kpi + r) � M?

map � does not lead to regular spacing through the sieve array

Velichka, J., Stein 2008: enumerate all k of appropriate degree, evaluate
�(kpi + r) directly using previous results and precomputations

use k 0pi + r = (kpi + r) + (k 0 � k)pi (add appropriate multiple of p)

Trei, J. Stein 2013: further optimizations, including

evaluation at q using Horner's rule

better use of intermediate results

observation that �(x + y) = �(x)� �(y) (all ops on integers)
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Function Fields Numerical Results

Numerical Results

VJS 2008 results (278 Intel P4 Xeon 2:4 GHz CPUs, 26 2:8 GHz):

ECDLP over F2124 (HCDLP with g = 31; q = 24):

9 hours, 7.5 hours for relations (24 hours with random walks)

First solution of ECDLP over F2155 (HCDLP with g = 31; q = 25):

3 weeks, 1 week for relations (random walks estimate 5 weeks)

TJS 2013 results (64 Intel Xeon X7560 2:27 GHz CPUs):

F2124 : 3 hours (27 min. for relations)

F2155 : in progress (2.5 days for relations)

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013 16 / 17



Conclusions

Future Work

Complete analytic model to aid parameter selection

Two dimensional (lattice) sieving?

Batch smoothness test for candidates produced by the sieve?

Function �elds:

add double large primes

try odd characteristic

lower genus?
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