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Example: the Kuroshio current

Figure : Top: Mean flow paths in the large meander state. Bottom:
Mean flow paths in the small meander state
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In the case of the meander transition of the Kuroshio we might
like to know:

How does this event occur, i.e. what rearrangements have
to happen to trigger the event?
How does the frequency or severity of the event depend on
various environmental parameters?
Can we predict the event from data in real-time?

Similar questions are relevant for chemical reactions or the
failure of a reliable electronic device or dramatic swings in
a stock price.
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Answering any of these questions requires not only that we can
simulate the underlying system but that we can simulate the
rare event itself (many times).

When numerical stability and accuracy require you to simulate
on a timescale orders of magnitude smaller than timescale of
the event of interest (5–10 years in the case of the Kuroshio)
this is a problem.
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Data assimilation

What happens to the data assimilation problem when the
underlying system undergoes rare dramatic fluctuations like the
Kuroshio’s meander transitions?

We’ll model the underlying system by a small noise stochastic
differential equation

dX ε(t) = b(X ε(t)) dt +
√
ε σ(X ε(t)) dW (t)

and, at a sequence of discrete times t1, t2, t3, . . . , record
observations of the form (for example)

Y ε(tn) = X ε(tn) +
√
ε ξn,

where the ξn are (for example) i.i.d. standard Gaussian.
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We would like to generate sample trajectories of the system
given a particular sequence of observations.

The parameter ε appears in both the dynamics and the
observation model. We trust the dynamics and the
observations roughly equally. What do we do when they
disagree?

In other words what happens when the observation at time ti+1
lies in the tail of the distribution of our prediction of the state at
time ti+1?

By taking ε→ 0 we can identify the most important
consequences of this point of view and address them.
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The two step recursive filtering procedure:

1 Starting from an ensemble of copies of X ε(ti) evolve each
copy forward to the next observation time (ti+1) and
compute the contribution to the weight from the next
observation

W ε
j (ti+1) = exp

(
−1
ε
‖y(ti+1)− X ε

j (ti+1)‖2
)

2 Resample the copies of X ε(ti+1) according to the weights,
i.e. duplicate copies with large weights and eliminate
copies with low weight.

3 Repeat for next observation.

Various approximations are needed to make this scheme
practical on large problems (e.g. the ensemble Kalman filter).
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Now imagine that you apply this scheme to the Kuroshio:

Suppose at observation time ti all of your copies of the system
are in states consistent with the large meander.

Suppose that between ti and ti+1 the true state of the Kuroshio
transitions from the large meander to the small meander. The
observation generated at time ti+1 will probably be consistent
with the small meander.

However, at best only a very small portion of your copies will
make the transition to the small meander between times ti and
ti+1.

The few copies that make the transition will have relatively huge
weights and you have no or very little resolution in the region
that is suddenly important.
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One can measure of the statistical quality of the weighted
ensemble generated by our filter by:

R =
E
[
(W ε

j (ti+1))2
]

E
[
W ε

j (ti+1)
]2

Roughly an ensemble of N weighted samples has the quality of
N/R independent unweighted samples from the target
distribution.

More generally this is a very severe (stronger than total
variation) measure of the difference between forecast
distribution and posterior.

R ≥ 1 and we’d like it to be as close to 1 as possible.
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Considering only one observation window and treating the
observation as fixed, note the the weights are of the form

W ε
j (ti+1) = e−

1
ε
g(X ε(ti+1))

The Laplace Principle for X ε gives us constants γ1 and γ2
such that

E
[
e−

1
ε
g(X ε)

]
= e

−γ1+o(1)
ε and E

[
e−

1
ε
2g(X ε)

]
= e

−γ2+o(1)
ε

Therefore

R = exp
(
γ2 − 2γ1 + o(1)

ε

)
Since γ2 ≤ 2γ1 this is very bad news. We’ll need exponentially
many samples.
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More precisely

R = exp
(
γ2 − 2γ1 + o(1)

ε

)
where, for a fixed position x of the system at time ti ,

γ1 = inf
ϕ,

ϕ(ti )=x

{∫ ti+1

ti

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ(ti+1))

}
, (1)

and

γ2 = inf
ϕ,

ϕ(ti )=x

{∫ ti+1

ti

1
2
‖σ−1(ϕ̇− b)‖2 ds + 2g (ϕ(ti+1))

}
, (2)
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One possibility: Between observations we can try to “pull”
each copy toward the region where the likelihood is relatively
large.

Instead of sampling the solution, X ε, of

dX ε(t) = b(X ε(t)) dt +
√
ε σ(X ε(t)) dW (t)

sample the solution, X̂ ε, of

dX̂ ε(t) =
(

b(X̂ ε(t)) + σ(X̂ ε(t))v(t , X̂ ε(t))
)

dt+
√
ε σ(X̂ ε(t)) dW (t).

Where v will be chosen to direct our samples to regions where
the likelihood is larger.

An old idea... and a disaster if not done very carefully.
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To correct for the bias we’ll have to multiply our weights by

Z ε(ti+1) = exp

(
− 1√

ε

∫ ti+1

ti
v(t , X̂ ε

j (t)) dWj (t)−
1
2ε

∫ ti+1

ti
v(t , X̂ ε

j (t))2 dt

)
.

at each observation.

So now we also have to worry about the behavior of these new
weights.

The relative variation of the weights is measured by

R =

E
[(

W ε
j (ti+1)Z ε(ti+1)

)2
]

E
[
W ε

j (ti+1)
]2

Unless we are very careful this number will grow exponentially
as ε→ 0.

Jonthan Weare



Large deviations tells us that, for small ε, a transition like the
Kuroshio’s occurs along a predictable pathway. That path is the
minimizer of the cost functional

inf
ϕ∈AC([ti ,ti+1]),

ϕ(ti )=x

{∫ ti+1

ti

1
2
‖σ−1(ϕ̇− b)‖2 ds

}
.

where the minimization is restricted to paths undergoing the
transition.

It also tells us how a particular observation y(ti+1) is generated
in the low noise regime:

inf
ϕ∈AC([ti ,ti+1]),

ϕ(ti )=x

{∫ ti+1

ti

1
2
‖σ−1(ϕ̇− b)‖2 ds + g(ϕ(ti+1))

}
.
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Based on this it’s tempting to choose

v(t , x) = σ−1(x)( ˙̂ϕ(t)− b(x))

and
dX̂ ε(t) = ˙̂ϕ(t) dt +

√
ε σ(X̂ ε(t)) dW (t).

where ϕ̂ minimizes

inf
ϕ∈AC([ti ,ti+1]),

ϕ(ti )=x

{∫ ti+1

ti

1
2
‖σ−1(ϕ̇− b)‖2 ds + g(ϕ(ti+1))

}
.

This sometimes works but on some problems it can be a
disastrous choice.

But a related choice works extremely well.
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Focusing again on a single observation interval, consider the
function

Φε(t , x) = Et ,x

[
e−

1
ε
g(X ε(ti+1))

]
.

Assuming X ε(ti) = x , it’s not hard to see that if we choose

v ε = −εσ
T Φε

x
Φε

we get Rε = 1. In other words this choice of v is the best
possible.

Φε solve a linear second order parabolic PDE with terminal
condition Φε(ti+1, x) = e−

1
ε
g(x).

Of course there’s no hope of finding a global solution of the
PDE in more than a few dimensions.

Jonthan Weare



Focusing again on a single observation interval, consider the
function

Φε(t , x) = Et ,x

[
e−

1
ε
g(X ε(ti+1))

]
.

Assuming X ε(ti) = x , it’s not hard to see that if we choose

v ε = −εσ
T Φε

x
Φε

we get Rε = 1. In other words this choice of v is the best
possible.

Φε solve a linear second order parabolic PDE with terminal
condition Φε(ti+1, x) = e−

1
ε
g(x).

Of course there’s no hope of finding a global solution of the
PDE in more than a few dimensions.

Jonthan Weare



Instead we’ll consider the ε→ 0 limit of the log transform of Φε,

Gε = −ε log Φε

which solves the second order Hamilton-Jacobi Equation

−Gε
t −bGε

x +
1
2

(
σT Gε

x

)2
− ε

2
σσT Gε

xx = 0, Gε(ti+1, x) = g(x)

(3)
In terms of Gε

v ε = −σT Gε
x .

So we can set
v0 = −σT Gx

where G is the viscosity solution of

−Gt − bGx +
1
2

(
σT Gx

)2
= 0, G(ti+1, x) = g(x)

and hope for the best.
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G has the control representation

G(t , x) = inf
ϕ∈AC([t ,T ]),
ϕ(t)=x

{∫ T

t

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ(T ))

}
.

Notice that γ1 = G(0, x0).

G is the rate appearing in the Laplace Principle.

Furthermore, where G is differentiable,

b(t , x) + σ(t , x) v0(t , x) = ˙̂ϕt ,x (t)

where

ϕ̂t ,x = arg min
ϕ∈AC([t ,T ]),
ϕ(t)=x

{∫ T

t

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ(T ))

}
.
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For v0 we have that

dX̂ ε(t) = ˙̂ϕt ,X̂ ε(t) dt +
√
ε σ(X̂ ε(t)) dW (t).

Roughly this says take a step in the most likely direction,
compute the new most likely direction from your new position,
take another step.

This procedure can be carried out at reasonable cost and, as
we prove, the estimator has very favorable error properties.

Jonthan Weare



Theoretical points:
A result in

Rare event simulation for small noise diffusions (with E. Vanden-Eijnden), CPAM
(2012)

implies that for this method (for one observation step) R → 1 as
ε→ 0.

So vanishing statistical error in contrast to the exponentially
growing error before.

That paper also address the errors introduced by numerical
discretization.
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Application to a simple Kuroshio model:

Data assimilation in the small noise regime and application to the Kuroshio (with
E. Vanden-Eijnden), Monthly Weather Review (2012)
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∂tX +
∂

∂x
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∂
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(vX ) + f

(
fx
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r

)
u

+ f
(
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−

ry

r

)
v = ν∆X + ση

X =
∂

∂x

(
1
r
ψx

)
+

∂

∂y

(
1
r
ψy

)
X is the vorticity and ψ is the volume transport streamfunction.

40 observations of ψ(x∗, y∗) are taken every 2.63 days (with
mean 0, standard deviation 0.1, Gaussian errors).

The observations are taken from a segment of a long run
undergoing a transition from the small meander to the large
meander.
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Figure : Projected view of transitions.
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The particle filter, the ensemble Kalman filter, and Algorithm 4
are all run with 100 particles while Algorithm 3 is run with 10
particles.
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