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Problem statement

Let consider the following stochastic non necessary linear system :

X0 = xb +V0, V0 ∼ N (0,B)
Xi =Mi(Xi−1) +Vi, Vi ∼ N (0,Qi)
di = Hi(Xi) +Wi, Wi ∼ N (0,Ri)

where

Xi is the n dimensional state at time i ; it is random,

di is the random observation vector at time i,

Mi is the (nonlinear) model propagator at time i,

Hi is the observation operator at time i, it is not linear,

xb is background vector,

B is the background error covariance matrix,

Qi and Ri are respectively the model, and observation, error
covariance matrices at time i,
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Problem statement

X0 = xb +V0, V0 ∼ N (0,B)
Xi =Mi(Xi−1) +Vi, Vi ∼ N (0,Qi)
di = Hi(Xi) +Wi, Wi ∼ N (0,Ri)

Our goal is to find the best estimate of the state X0, . . . , Xk

knowing the data set d1, . . . , dk,

4DVAR method solves this problem, in the sense of
minimizing the sum of the squares of the errors, weighted by
the error covariance matrices.
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Weak constraint 4DVar

We want to determine x0, . . . , xk (xi = state at time i) from
background, model and observations (data)

x0 ≈ xb state at time 0 ≈ the background,
xi ≈ Mi (xi−1) state evolution ≈ by the model ,

Hi (xi) ≈ di value of observation operator ≈ data.

⇒ nonlinear least-squares problem

J(x0:k) = ‖x0 − xb‖2B−1 +
k∑
i=1

‖xi −Mi (xi−1)‖2Q−1
i

+

k∑
i=1

‖di −Hi (xi)‖2R−1
i
→ min

x0:k
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Weak constraint 4DVar

Originally in 4DVar (strong constraint), xi =
Mi (xi−1)(perfect model). The weak constraint
xi ≈Mi (xi−1) accounts for model error (Trémolet, 2007).

In the linear case Kalman Filter and Kalman Smoother (KF
and KS) and their Ensemble variants (EnKF and EnKS)
(Evensen, 2009) give the pdf (mean and covariance) of the
state knowing the data set,

In the non linear case, variants of the Kalman Filter were
proposed such as Extended Kalman Filter (EKF). These
methods may fail to find a minimum of 4DVar, especially for
highly non linear case,

Iterated Kalman filter or 4DVar Incremental approach
(Courtier et al., 1994) may also fail to converge.
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Incremental 4DVar

Incremental approach (Courtier et al., 1994) : linearization

Mi (xi−1 + δxi−1) ≈Mi (xi−1) +M′i (xi−1) δxi−1,
Hi (xi + δxi) ≈ Hi (xi) +H′i (xi) δxi,

gives the Gauss-Newton method, (Bell, 1994), (Nichols et
al., 2007) iterationsx0:k ← x0:k + δx0:k with the linear
least-squares problem for the increments

‖x0 + δx0 − xb‖2B−1 +

k∑
i=1

∥∥di −Hi (xi)−H′i (xi) δxi∥∥2R−1
i

+

k∑
i=1

∥∥xi + δxi −Mi (xi−1)−M′i (xi−1) δxi−1
∥∥2
Q−1
i
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Incremental 4DVar
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Tangent and adjoint code needed,

Is difficult to parallelize,

May fail to converge.

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Weak constraint 4DVAR
Incremental 4DVar

Incremental 4DVar

‖x0 + δx0 − xb‖2B−1 +

k∑
i=1

∥∥di −Hi (xi)−H′i (xi) δxi∥∥2R−1
i

+

k∑
i=1

∥∥xi + δxi −Mi (xi−1)−M′i (xi−1) δxi−1
∥∥2
Q−1
i

Tangent and adjoint code needed,

Is difficult to parallelize,

May fail to converge.

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Weak constraint 4DVAR
Incremental 4DVar

Incremental 4DVar

‖x0 + δx0 − xb‖2B−1 +

k∑
i=1

∥∥di −Hi (xi)−H′i (xi) δxi∥∥2R−1
i

+

k∑
i=1

∥∥xi + δxi −Mi (xi−1)−M′i (xi−1) δxi−1
∥∥2
Q−1
i

Tangent and adjoint code needed,

Is difficult to parallelize,

May fail to converge.

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

Outline

1 Problem statement

2 Globalisation methods

3 A LM-EnKS method

4 Computational results

5 Summary

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

Globalisation methods

Convergence from any starting point obtained with the
globalization techniques based on the control of the size of
the increments.

Trust region method : at each iteration a linearized problem is
solved within a region where the linear approximation is
trusted.
Levenberg-Marquart method a penalized variant of the
nonlinear least-squares problem is solved.
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Levenberg-Marquart Method

Add a penalty (Tikhonov regularization) to control the size of
the increments,

Let consider the following nonlinear least-squares :

arg min
x∈Rn

F (x) = ‖f(x)‖2,

where f from Rn → Rm is a (possibly nonlinear) function.

In the Levenberg-Marquart method, at each iteration we solve
the linear least-squares problem :

FL(xj + δx) = ‖f(xj) + Jf (xj)δx‖2 + γ‖δx‖2 → min
δx
,

where xj is the j-th iterate, Jf (xj) is the Jacobian of f at xj
and γ is the regularization parameter,
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Levenberg-Marquart Method

The solution of this linear least-squares is a solution of the
normal equation

(Jf (xj)
TJf (xj) + γI)δx = −Jf (xj)f(xj) = −∇F (xj),

When γ = 0, δx = −(Jf (xj)TJf (xj))−1∇F (xj) =
Incremental method (Gauss-Newton)(fast convergence).

When γ →∞, δx→ 0 and it is positively proportional to
−∇F (xj) (steepest descent),

When 0 < γ <∞ there is a balance between the
Gauss-Newton direction and steepest descent direction,
⇒ The term γ‖δx‖2 controls the step size as well as rotates
the step direction towards the steepest descent.
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In LM method γ may remain constant over the iterations, or
adaptive :

1 γ remains constant, it must be chosen large enough to ensure
the convergence.

2 γ adaptive : at each iteration we compute

ψ =
F (xj)− F (xj + δx)

F (xj)− FL(xj + δx)

If ψ ≥ σ > 0, we decrease γ,
Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

In LM method γ may remain constant over the iterations, or
adaptive :

1 γ remains constant, it must be chosen large enough to ensure
the convergence.

2 γ adaptive : at each iteration we compute

ψ =
F (xj)− F (xj + δx)

F (xj)− FL(xj + δx)

If ψ ≥ σ > 0, we decrease γ,
Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

In LM method γ may remain constant over the iterations, or
adaptive :

1 γ remains constant, it must be chosen large enough to ensure
the convergence.

2 γ adaptive : at each iteration we compute

ψ =
F (xj)− F (xj + δx)

F (xj)− FL(xj + δx)

If ψ ≥ σ > 0, we decrease γ,
Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

In LM method γ may remain constant over the iterations, or
adaptive :

1 γ remains constant, it must be chosen large enough to ensure
the convergence.

2 γ adaptive : at each iteration we compute

ψ =
F (xj)− F (xj + δx)

F (xj)− FL(xj + δx)

If ψ ≥ σ > 0, we decrease γ,
Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

In LM method γ may remain constant over the iterations, or
adaptive :

1 γ remains constant, it must be chosen large enough to ensure
the convergence.

2 γ adaptive : at each iteration we compute

ψ =
F (xj)− F (xj + δx)

F (xj)− FL(xj + δx)

If ψ ≥ σ > 0, we decrease γ,
Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model

Levenberg-Marquart Method

In 4DVar linearized problem we add regularization as follows,

J̃(x0:k) = ‖x0 + δx0 − xb‖2B−1

+

k∑
i=1

∥∥xi + δxi −Mi (xi−1)−M′i (xi−1) δxi−1
∥∥2
Q−1
i

+

k∑
i=1

∥∥di −Hi (xi)−H′i (xi) δxi∥∥2R−1
i

+ γ

k∑
i=0

‖δxi‖2S−1
i

Assume the model and observation operator are regular and
that γ is larger than a problem dependent constant : The
gradient of the iterates goes to 0 for any initial iterate (global
convergence property).
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Linearized 4DVar as Kalman smoother

Write the linear least-squares problem for the increments
z0:k = δx0:k as

‖z0 − zb‖2B−1 +

k∑
i=1

‖zi −M izi−1 −mi‖2Q−1
i

+

k∑
i=1

‖di −H izi‖2R−1
i

zb = xb − x0, mi =Mi (xi−1)− xi, di = di −Hi (xi) ,
M i =M′i (xi−1) , H i = H′i (xi)

This is the same function as minimized in the Kalman
smoother for the following linear and gaussian system
(Rauch et al., 1965; Bell, 1994)

Z0 = zb +V0, V0 ∼ N (0,B)
Zi = M iZi−1 +mi +Vi, Vi ∼ N (0,Qi)
di = H iZi +Wi, Wi ∼ N (0,Ri)
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di = H iZi +Wi, Wi ∼ N (0,Ri)
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Ensemble Kalman filter (EnKF) and smoother (EnKS)

ZNi|k = [z1i|k, . . . , z
N
i|k] is ensemble of states at time i, conditioned

on all data up to time k.

Algorithm (EnKF)

1. Initialize
z`0|0 ∼ N (zb,B) , ` = 1, . . . , N. (1)

2. For i = 1, . . . , k, advance in time

z`i|i−1 = M iz
`
i−1|i−1 +mi + v`i , v`i ∼ N (0,Qi) , (2)

z`i|i =z
`
i|i−1 − PN

i H
T
i (H iP

N
i H

T
i +Ri)

−1

· (H iz
`
i|i−1 − di − w

`
i ), w`i ∼ N (0,Ri) , (3)

where

PN
i =

1

N − 1
(ZNi|i−1 − zi|i−11

T)(ZNi|i−1 − z
N
i|i−11

T)T (4)

is the sample covariance,

zi|i−1 = ZNi|i−1
1

N

is the sample mean, and 1 is the vector of all ones size N × 1.
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Ensemble Kalman filter (EnKF) and smoother (EnKS)

The EnKS is obtained by applying the same analysis step (3)
as in the EnKF to the composite state Z0:i|i−1from time 0 to
i, conditioned on data up to time i− 1,

ZN0:i|i−1 =

 ZN0|i−1
...

ZNi|i−1

 .
in the place of Zi|i−1.

The observation term H iZ
N
i|i−1 − di becomes

[0, . . . ,H i]Z
N
0:i|i−1 − di = H iZ

N
i|i−1 − di. (5)
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Ensemble Kalman filter (EnKF) and smoother (EnKS)

Algorithm (EnKS)

Given zb,
1. Initialize z`0|0 ∼ N (zb,B) , ` = 1, . . . , N.
2. For i = 1, . . . , k, advance in time,

z`i|i−1 = M iz
`
i−1|i−1 +mi + v`i , v`i ∼ N (0,Qi) , (6)

ZN0:i|i = ZN0:i|i−1 − PN
0:i,0:i−1H̃

T

0:i(H̃0:iP 0:i,0:i−1H̃
T

0:i +Ri)
−1 (7)

· (H̃0:iZ
N
i|i−1 − di − wi), wi ∼ N (0,Ri) , (8)

where H̃0:i = [0, . . . ,H i], and PN
0:i,0:i−1 is the sample covariance

matrix of ZN0:i|i−1.
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Derivative-free implementation of the EnKS - model

The linearized model M i =M′i (xi−1) occurs only in advancing
the time as an action on the ensemble ZN = [zn] = [δxn] ,

M iδx
n
i−1 +mi =M′i (xi−1) δxni−1 +Mi (xi−1)− xi,

Approximating by finite differences with a parameter τ > 0:

M iδx
n
i−1+mi ≈

Mi

(
xi−1 + τδxni−1

)
−Mi (xi−1)

τ
+Mi (xi−1)−xi,

Accurate in the limit τ → 0.
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Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

H iZ
N =

[
H iδx

1, . . . ,H iδx
N
]
.

Approximating by finite differences with a parameter τ > 0 :

H iδx
n
i ≈
Hi
(
xi−1 + τδxni−1

)
−Hi (xi−1)

τ
,

Accurate in the limit τ → 0.

In tests below, τ = 0.1 seems to work well enough. But this is
application dependent : smaller τ may be needed.
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A LM-EnKS method

Given x0, x1, ..., xk, γ, λ > 1, τ ≤ 1, σ < 1.

For outer loop = 1,2,...

Initialize z`0|0 ∼ N (0,B), for ` = 1, . . . , N

for i = 1, . . . , k advance z` in time following (2), with the
linearized operator approximated by finite differences :

z
`
i|i−1 =

Mi

(
xi−1 + τz`i−1|i−1

)
−Mi

(
xi−1

)
τ

+Mi
(
xi−1

)
− xi + v

`
i , v

`
i ∼ N (0,Qi)

followed by the smoother analysis step with matrix-vector
products H izi approximated by finite differences.
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Tikhonov regularization is considered as a further observations

d̃i = 0 = zi + W̃i W̃i ∼ N
(
0,

1

γ
Si

)
,

simply run the analysis step the second time with observation
operator equal to identity and observation error covariance
equal to 1

γSi.

xi ← xi +
1
N

∑N
`=1 z

`
i|k, i = 1, . . . , k
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Towards a convergence theory

In linear case (Mandel et al., 2009), (Le Gland et al., 2011)
show that when N →∞, ∀1 ≤ p <∞ the sample mean and
covariance computed by EnKF converge in Lp to the exact
mean and covariance,

We show the same result for the Kalman Smoother,

When τ → 0 we prove that the LM-EnKS method is
asymptotically equivalent to the method with the derivatives,

When τ → 0 and N →∞, ∀p, 1 ≤ p <∞ we prove that at
each iteration of LM-EnKS method, the sample mean
converges in Lp to the exact solution of the linearized
problem.

When τ → 0 and N →∞, we prove that the gradient of the
iterates goes to 0 for any initial iterate.
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LM-EnKS for Lorenz 63 model
An example where Gauss-Newton does not converge

Computational results

To evaluate the performance of the method, we use the twin
experiment technique.

Truth = an integration of the model over time,

We obtain the background by adding a gaussian perturbation
to the initial state,

We obtain the data di by applying the observation operator
Hi to the truth and then adding a gaussian perturbation,

Try to recover the truth using LM-EnKS method.
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Computational results
Lorenz 63 model

dx
dt = −σ(x− y)
dy
dt = ρx− y − xz
dz
dt = xy − βz

σ, ρ and β are chosen to have the values 10, 28 and 8/3
respectively.
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Computational results
Parameters of the experiment

The system is discretized using the fourth-order Runge-Kutta
method.

B = σ2b diag

(
1,

1

4
,
1

9

)
, Ri = σ2rI,

Hi (x, y, z) =
(
x2, y2, z2

)
.

Qi = εI, σb = 1, σr = 1, and ε = 0.0001.
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Computational results
Lorenz 63 model

Figure : The first component x(t) of the truth and five iterations of
LM-EnKS. The initial conditions for the truth are x(0) = 1, y(0) = 1,
and z(0) = 1, time step dt = 0.1, observations are the full state at each
time, ensemble size is 100. And Root mean square error of LM-EnKS
iterations over 50 timesteps.
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and z(0) = 1, time step dt = 0.1, observations are the full state at each
time, ensemble size is 100. And Root mean square error of LM-EnKS
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An example where Gauss-Newton does not converge

LM-EnKS for Lorenz 63 model

Root mean square error of LM-EnKS iterations over 50 time steps

Iteration 1 2 3 4 5 6

RMSE 20.16 15.37 3.73 2.53 0.09 0.09
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An example where Gauss-Newton does not converge

(x0 − 2)2 + (3 + x31)
2 + 106(x0 − x1)2 → min

Could be seen as 4DVar problem with xb = 2, B = I, M1 = I,
H1(x) = −x3, d1 = 3, Q1 = 10−6

Hybrid 4DVAR and nonlinear EnKS method



Problem statement
Globalisation methods
A LM-EnKS method

Computational results
Summary

References

LM-EnKS for Lorenz 63 model
An example where Gauss-Newton does not converge

Adaptive gamma is better than fix gamma.
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Advantages of LM-EnKS

Solve the linear least-squares from 4DVar by EnKS, naturally
parallel over the ensemble members.

Linear algebra glue is cheap.

Finite differences ⇒ no tangent and adjoint operators needed.

Add Tikhonov regularization to the linear least-squares ⇒
Levelberg-Marquardt method, guaranteed convergence.

Cheap and simple implementation of Tikhonov regularization
within EnKS as an additional observation.
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Thank you for your attention !
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Some related work

The equivalence between weak constraint 4DVar and Kalman
smoothing is approximate for nonlinear problems, but still
useful (Fisher et al., 2005).
(Hamill et al. 2000) estimated backgroud covariance from
ensemble for 4DVar.
Gradient methods in the span of the ensemble for one analysis
cycle (i.e., 3DVAR) (Sakov et al., 2012) (with square root
EnKF as a linear solver in Newton method), and (Bocquet
and Sakov, 2012), who added regularization and use
LETKF-like approach to minimize the nonlinear cost function
over linear combinations of the ensemble.
(Liu et al. 2008), (Liu et al. 2009) combine ensembles with
(strong constraint) 4DVar and minimize in the observation
space.
(Zhang et al. 2009) use EnKF to obtain the covariance for
4DVar, and 4DVar to feed the mean analysis into EnKF.
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