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ADbstract

We apply the implicit particle filter to a model of
nearshore circulation

This Is a model with~ 30,000 state variables.

We assimilate gridded observations of the two
norizontal velocity components

n the implicit particle filter the trajectory of each
particle Is informed by observations.

n its simplest form, the implicit particle filter
reduces to the method of optimal importance
sampling.

The system runs efficiently on a single
workstation
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A Shallow Water Moda of
Near shore Circulation

—_— JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C11019, doi:10.1029/2007JC004117, 2007
ic

Here
for
Full
Article

Representer-based variational data assimilation in a
nonlinear model of nearshore circulation

Alexander L. Kurapov,' Gary D. Egbert,' J. S. Allen,' and Robert N. Miller'

Received 20 January 2007; revised 2 August 2007; accepted 17 August 2007; published 30 November 2007.

Why did | choose this model?

« It's a highly nonlinear model with large state
dimension

» Kurapov et al. described problems with
application of 4DVAR to this problem that bear
Investigating
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A Shallow Water Moda of
Near shore Circulation

- Shallow water, forcing by parameterized wave
breaking
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Model Domain
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Steady Momentum Forcing

Derived from parameterized wave breaking, Thornton
& Guza, JGR 1983
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Why Did | Choose This Model?

* The linearized system is unstable, and the
calculations blow up in a time comparable to the
assimilation cycle

* Interesting behavior of 4DVAR

« Two distinct cases are considered:
« High drag case, regular wavelike flow
» Low drag case, aperiodic flow

« Assimilation fails for low drag case with
assumption of steady forcing

» Must useancorrect assumption of unsteady
forcing to get a solution to 4DVAR in the low
drag case
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Equilibrated Wave Regime
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Aperiodic Wave Regime
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Projections

EOF traj rOO4nonoise[1:600]lmin Poincare map [PC3=0]
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Poincare map [PC1=—4.6537e—-05]
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Thelmplicit Particle Filter

« Dynamical model is an Ito SDE:
dx = f(x)dt + GdW

« ¥ Is a Brownian motion with independent
Increments each increment having zero mean anc
variancedt
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The Discrete M odel
« The discretized SDE

Xji1 = X; + [(x))AL + (A1)2G; 4

Wherebj ~ N(O, ]), E(b]bg) = ]5]k
 The deterministic forecast model:

x]. = %; + f(x;)A
* Observations:
zjy1 = Hxj1 + 07

¢ E( §+1bz£1) = R5]k
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Thelmplicit Particle Filter

Xit1 —Xj — Atf(x;) = Xj41 — X;:Ll
~ N(0, AtGG")

For thei'” particle, the pdf of the state'”
conditioned on an observatiamt timet,;; IS

x exp(—F%), where

FO = (x—xDT(AGCT) (x — x\11) /2
+(z — Hx)' R '(z — Hx)/2
Obs & model noise assumed independent
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Thelmplicit Particle Filter

after a bit of algebra.- -

F = 6+ (x—m) (P") ! (x —m)/2

¢ = min(F)
— (z— Hx)'(HQH" + R) '(z — Hx')/2
m = X§+1—|—K(Z—HX§+1)
Q = AtGGF
K = QH'(HQH' +R)™!
P* = (I - KH)Q
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Thelmplicit Particle Filter

- Consider the!" particle, at state; at timet;

- Its location at tim€;, 1, conditioned on the
observatiorg, is a random variable with pdf
x exp(—F®)

FO = (x —x"DI(AGGET) H(x — %) /2
+(z — Hx)' R ' (z — Hx)/2

o+ (x—m)" (P") "} (x —m)/2
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Thelmplicit Particle Filter

F @)

(x — x\ )T (AGGT) M x — x1) /2

+(z — Hx)' R (z — Hx)/2
= ¢+ (x—m) (P") "} (x —m)/2

* ¢ and P are derived from algebra that is
formally identical to the Kalman filter

 This is nothing more or less than minimization of
a positive definite quadratic form, known long

before Kalman’s famous article was published in
1960.
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Tnis 1S not the Ensambpble
Kalman Filter

* \We never use sample statistics from the collection
of particles

« Theonly interaction among particles occurs at
resampling

« \We make no assumptions about sample moments
In fact the sample moments need not exist

« \We have examples in which the implicit particle
filter significantly outperforms the EnKF
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Recipetor [ nelmplicit Particle
Filter

For each patrticle:

1. Generate a random vectgr of state dimension,
drawn fromN (0, 7)

2. Calculaten;, the most probable state given the
initial value ofx(¥ and the minimizer of~®

3. Choose the updated staié of the ;' particle so
that

(XD —m) (P (X —my) = & &
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A THTALION RESUILS,
Case, 10 Particles
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Assimilation rResults, High Drag

Case




Particle Count, High Drag Case

particles= 1/ w?. Blue curve: number of particles
after resampling.



A THTALION RESUILS,
Case, 50 Particles

“D[‘I 1f.}rn|r|] nonoiser. D{]’?

/D[110min] assim/r.002 LO[110min] noisy/r.002

50 1000 150 200 250 50 100 150 200 250 50 100 150 200 250

¢/D[120min] assim/r.002 t/D[120min] noisy/r.002

o/D[120min] nonoise/r.002

0.05

Potentlal vortlc:lty I to f||tered reference noise
free; Top to bottom1hr 50man, 2hr

Application of the Implicit Particle Filter to a Model of Neshore Circulation — p. 23/26



Low Drag Case, Point Compar -
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Particle Count, Low Drag Case

particles. Blue curve: number of particles after
resampling. Black line: N=1

Application of the Implicit Particle Filter to a Model of Neshore Circulation — p. 25/26



Conclusions

* The good news:

« The implicit particle filter, (in this case, the
optimal importance filter) can be implemented
efficiently on models of geophysical interest

« The resulting analysis looks good
« The bad news: We are still cursed by
dimensionality!
* Next steps, no particular order
« Sparse observations in time
» Direct appeal to dynamical structure
« Parameter estimation
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