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Outline of Talk

Met Office

 Why are we doing it? What is wrong with 4D-Var?
Why do we need an ensemble?

« Addressed by:

Hybrid-4D-Var. Flow-dependent covariances from
localised ensemble perturbations.

4DEnVar. No need to integrate linear & adjoint
models.

An Ensemble of 4DEnVar. Or alternatives.

* Preliminary results, and plans.



Background

Met Office

« 4D-Var has been the best DA method for operational NWP for
the last decade (Rabier 2005).

« Since then we have gained a day’s predictive skill — the
forecast “background” is usually very good; properly identifying
its likely errors is increasingly important.

* Most of the gain in skill has been due to increased resolution,
which was enabled by bigger computers. To continue to
Improve, we must make effective use of planned massively
parallel computers.

« At high resolution, we can no longer concentrate on a single
“deterministic” best estimate (Lorenc and Payne 2007); an
ensemble sampling plausible estimates is better.
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Outline of 4D-Var

Met Office
Background x? and a transform U based on the error covariance B of x°

Uu' =B
Control variable v which, via transform U, defines likely corrections x to x°
oX = Uv
Prediction y of observed values y° using model M and observation operator H
y=H (M(xb +5x))
Measure misfit J of incremented state to background and observations
J(v)=3vTvei(y-y*) R (y-y°)+Jc

Search for minimum of J, using gradient calculated using adjoint operators

(%Jj:w UTM'H'R™(y-y°)



Key weaknesses of 4D-Var

Met Office

1. Background errors are modelled using a covariance usually
assumed to be stationary, isotropic and homogeneous.

2. The minimisation requires repeated sequential runs of a
(low resolution) linear model and its adjoint.

3. Minimum-variance estimate is only “best” for near-
Gaussians. Cannot handle poorly observed coherent
features such as convection.

The Met Office has already addressed 1 in its
hybrid ensemble-4D-Var (Clayton et al. 2012).

This talk describes our 4DEnVar developments
attempting to extend this to also address 2, and
discusses ensemble approaches to address 3.
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Scalabllity — exploiting
weromee IM1ASSIVElY parallel computers

« 4D-Var requires sequential running of a reduced resolution linear PF
model and its adjoint. It will be difficult to exploit computers with more
(but not faster) processors to make 4D-Var run as fast at higher
resolution.

» Improved current 4D-Var algorithms postpone the problem a few
years, but it will probably return, hitting 4D-Var before the high-
resolution forecast models.

 4DCV 4D-Var can be parallelised over each CV segment (Fisher
2011), but is difficult to precondition well.

« Ensemble DA methods run a similar number of model integrations in
parallel. Itis attractive to replace the iterated running of the PF model
by precalculated ensemble trajectories: 4DEnVar. Other advantages
of VAR can be retained.
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Localised ensemble perturbations —

Al the alpha control variable method

« Met Office code written in late 90’s for 3D-Var or
4D-Var (Barker and Lorenc) then shelved pending
an ensemble.

* Proven to work in NCAR 3D-Var (Wang et al. 2008)

* Proven to be equivalent to EnKF localisation
(Lorenc 2003, Wang et al 2007).

« Eventually implemented in Met Office operational
global hybrid ensemble-4D-Var (Clayton et al 2012).
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Simple Idea — Linear combination

ol of ensemble members

Assume analysis increments are a linear combination of
ensemble perturbations K
i=1

Independent ¢; implies that covariance of oJx is that of the
ensemble.

Allow each q; to vary slowly in space, so eventually we can
have a different linear combination some distance away.

Four-dimension extension: apply the above to ensemble

trajectories: K _
’ 5x=3 (XX ¢,
=1
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Hybrid 4D-Var formulation

Met Office

* VAR with climatological covariance B_:

B, =UU’ o, =Uv=U UU,v

VAR with localised ensemble covariance P, o C,.:

\/% Z(Xi')_() °a;

Note: We are now modelling C,. rather than the full covariance B..

C. =u*u® o, = Urv? 5K, =

loc

y =H(M(x, + B.X, + B.5,))

Hybrid 4D-Var:

J=2vTv+ive v +2(y—y° ) Ry —y°)+J,

Met Office detail: We localise and combine in transformed variable space
to preserve balance and allow a nonlinear U,

. , 4D-Var
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Met Office

4D-Var |

Hybrid 4D-Var |
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Testing of hybrid 4D-Var

Met Office

« Used 23 perturbations from operational MOGREPS
ensemble system (localised ETKF)

 Straightforward to demonstrate that hybrid-3D-Var
performs better than 3D-Var (as in Wang et al. 2008)

« Harder to demonstrate that hybrid-4D-Var performs
better than operational 4D-Varr.

* Modifications and tuning eventually gave a large and
widespread benefit.

« Several more improvements being worked on.
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4D ensemble covariances without

o USING @ linear model — 4DEnVar

« Combination of ideas from hybrid-Var just discussed
and 4DEnKF (Hunt et al 2004).

 First published by Liu et al (2008) and tested for real
system by Buehner et al (2010).

« Potentially equivalent to 4D-Var without needing
linear and adjoint model software.

* Model forecasts can be done in parallel beforehand
rather than sequentially during the 4D-Var iterations.
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Statistical, incremental 4D-Var

Met Office

PF model evolves any simplified perturbatipri,  +——
A ;

| and hence covariance of PDF " = |
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Statistical 4D-Var approximates entire PDF by a
4D Gaussian defined by PF model.

4D analysis increment is a trajectory of the PF model.
Lorenc & Payne 2007



Incremental 4D-Ensemble-Var

Trajectories of perturbations from ensemble mean
Full model evolves mean of PDF
Localised trajectories define 4D PDF of possible increments

4D analysis Is a (localised) linear combination of nonlinear
trajectories. Itis not itself a trajectory.
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Hybrid 4DEnVar —
differences from hybrid-4D-Var

Met Office

4D trajectory is used from background and ensemble, rather than 3D
states at beginning of window.
K

4D localisation fields and i t 5X = D (X-X)ow
ocallsation rieids and incremen e — T — Ai~R)° @,
= JK-1

=1

OX. increment is constant in time, as in 3D-Var FGAT

No model integration inside minimisation, so costs like hybrid-3D-Var

No J, balance constraint, so additional initialisation is necessary.
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Results of First Trials

Met Office

» Target is to match operational hybrid-4D-Var

* 4ADEnVar was set up with:

« Same analysis resolution as 4D-Var

« Same ensemble as hybrid-4D-Var

« Same climatological B (but used as in 3D-Var)
« Same hybrid 3s

100 Iiterations

 |AU-like initialisation

« Baseline is hybrid-3D-Var (=3DEnVar)
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Mean RMS error reduction,
compared to hybrid-3D-Var

Met Office _
[14DEnVar [ hybrid-4D-Var
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ADEnVar beats hybrid-3D-Var

but not hybrid-4D-Var

Met Office
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4DEnVar is not expected to beat

Ayl En-4D-Var, all else equal.

« En-4D-Var uses 4D covariance M(L°B_ )M'. Its time-
correlations are correct as long as M Is accurate.

« 4DEnVar uses perturbations of 4D nonlinear ensemble
trajectories from their mean. Ignoring the nonlinearity of
the model this equals L°(MB,,.MT"). Its time-
correlations are incorrect because L and M do not
commute.

* In spatial dimensions the methods are equivalent.

« Demonstrated in a toy model by Fairbairn et al. (2013).



ADEnVar v 4D-Var-Ben v 4D-Var
Toy model results
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The key Is In the localisation!

Met Office

. Parameter (“balanced” psi & residuals chi, Ap, mu)
. Spectral (Waveband) (Buehner and Charron 2007, Buehner 2012)

1
2
3.
4

Vertical

. Horizontal

Done in the above order — can use this e.g. to apply
“balance aware” spatial localisation and to have different
horizontal scales for each waveband.

Flow following (Bishop and Hodyss 2011)



Spectral localisation smooths Iin space:
o, of pressure at level 21

C: Climatological E: Ensemble

Met Office

p: sigma at level 21 3076m, max=46.5911 p: sigma at level 21 3076m, max=254.821

locVHhwb6I10: Ens + V&varyingH loc + 6 increasing wb, overlapy ElocVH: Ens + vertical & horizontal localisation
p: sigma at level 21 3076m, max=141.148 p: sigma at level 21 3076m, max=197.956




Met Office

Horizontal
correlation along
N-S line

Localisation
scales for each
waveband seem
beneficial

50 F

—-50F

Climatological
C N-S horizontal correlations of p at 984.5mb.

E N-S horizontal ¢

Ensemble
orrelations of p at 984.5mb.
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Ens + V&varyingH loc + 6 increasing wb, overlappir
ElocVHhwb610 N-S horizontal correlations of p at 984.5 ElocVH N-S horizontal correlations of p at 984.5mb.

Ens + vertical

& horizontal localisation




Met Office

Vertical cross-
correlation between
g and divergence at

an active point.

Localisation (except
parameter) retains
plausible correlation
between g and
convergence below,
divergence above.

Ensemble
E1000. Vertical cross-correlations at (73.0,4.7)

Climatological
C1000. Vertical cross-correlations at (73.0,4.7)
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What is “Best”?

Met Office

* Minimum-variance Kalman filter based methods such as
4D-Var have enabled big gains in skill we want to keep.

* Regional NWP already represents coherent structures
whose position Is uncertain.
The ensemble mean is NOT a good forecast.
Global models will soon reach such resolutions
(5km experiments already).

« Lorenc & Payne (2007) proposed using regularised
minimum variance methods for well-known scales. We can
rely on the model to develop and maintain fine-scale
structure. l.e. the model is making a plausible sample on
its attractor from the full, non-Gaussian pdf.

We should have an ensemble of such samples.



|AU-like Iinterface with
wetomre TOrecast model

X 4D-Var control variables gives
yO_H(Xb):.E T initial 6x, implicitly defining 8x.
’ is initiali rm.
Sx=Max} DVar ox is Initialised by Jc te
X* xx —-  Natural to add 8x at beginning
= i> — - of forecast; an outer-loop is
then easy to organise.
X 4DEnVar §x is defined for all
window.
yo-H(Xb)': * . * R S - *
There is no internal initialisation.
OX | ADEnVar cre
NN AN N N N __ Nudge in §x during forecast, as
X : part of an IAU-like initialisation.

(Bloom et al. 1996)
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Interface to forecast model has a

wom. VETY large impact on 4DEnVar.

20[
MEAN PERCENTAGE CHANGE IN RMSE = -2.539

10— =
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How to generate the ensemble?
weromee AllErnatives:

1. Separate EnKF. Our current MOGREPS uses a local
ETKF (Bowler 2009). It was designed for
ensemble forecasting rather than DA.

2. Ensemble of individual 4DEnVar. Worried about
IO and memory contention of parallel reads of the
ensemble trajectory.

3. Ensemble of 4ADEnVar in single executable. ™
Working to reduce run-time cost.

4. EVIL (Tom Augligne). ? Worried about the ability to
determine sufficient Hessian eigenvectors.



The differences between ETKF and
En4dDEnVar in a preliminary experiment

Met Office
MOGREPS ETKF En 4DEnVar
Analysis perturbation is added Analysis Increment is added
to the deterministic analysis to each ensemble member’s
background
Localisation via observation Localisation in model-space
selection in regions (improved balance)
- Broad horizontal localisation - Horizontal localisation with
(2000km radius) 1200km radius
- No vertical localisation - Vertical localisation




Design Choices for En4DENnVar

Met Office

Perturbed obs or DEnKF

Inflation:

* Relaxation to prior is already done in DEnKF

« Adaptive multiplicative, in regions (copied from MOGREPS)

« Additive. Is this necessary in a hybrid scheme?

 Stochastic physics and random parameters (copied from MOGREPS)
Optimisation for massively parallel computer:

* Add another dimension to domain-decomposition.

« Combine OpenMP & message-passing.

Optimisation of algorithm:
 Independent, or mean & perturbations
» Preconditioning etc. (Desrozier & Berre 2012)
« Avoid En4DEnVar by using EVIL



DENKF
werorre  €NSEMDIe of perturbations

Bowler et al. (2012), inspired by Sakov (2008), showed that a DEnKF
can first solve the standard equation for the mean, then a modified
equation for the perturbations from the mean, with 8~ 0.5

7 =x/ + P H (HP'H+R) 1(y° - HGE))
x'* = x'T — sPTHY (BHP'H + R)~1HxX'/.

Similar to “relaxation to prior” inflation. Variational equivalent:
1 TAYS —1r— — 1 — oI D—17— 0
J@) =@ -H®HT @ - + S -y)'RTGE -y
y = HX + 67)

A 1, T, 1, _ 1 T — _
J(6xp) = E(GX""' —o7) 1 (BP1) " (0%, — 07) + E(yk - IR Yy —¥)

Yi = H(X{ + 6xy.)



Optimisation for MPP

Met Office

v’ Parallel read & packing of processed ensemble trajectory OK.

v Observation load imbalance (~50%) is not currently a major
problem.

« Schur product routines are near top: need to use more
Processors.

« Horizontal domain decomposition is no longer sufficient with
more processors: need to add time & ensemble-member.

* Possibly use OpenMP within nodes, with message-passing
domain decomposition between nodes.

Cost of a single 4DEnVar not a problem,
an ensemble of them might be.



-~~~ Horizontal domain decomposition:
144 pes for a 432x325 grid.

Met Office

36 36 36 36 326 36 36 36 36 36 36 36
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Optimisation - Algorithm
Met Office

« Explore perturbation form of DEnKF: fewer iterations
to solve for perturbations?

« Conjugate Gradient Algorithm with Hessian
Eigenvector Preconditioning: existing software (Payne)
& additional ideas (Desroziers & Berre 2012).

« Use Hessian eigenvectors directly to generate
ensemble (EVIL, Auligné)



My understanding of EVIL

(following Tom Auligné)

ADEnVar grand transform U:

M
O0X = IBCUCVC —+ 36 Z 5)({; 0 (UEV;?) — Uv
m=1
Transformed Hessian
92 02T -
~ o = U U=l +H R IH=A"
Ox2 ov2

Background and Analysis error covariances:

Ov2

927\ 1 1 - 1 - T
281" o)) o

Find d,, to recreate a forecast perturbation 5){;’; = Ud,,,. Then

92\t .
B=UU", A=U v’

Lanczos:

_1 - _1 -
ox% =U (1 + Ze (@) 2 — I) zﬂ) dm = ox), + UZje (@) . 1) Zhd,,



Met Office

1000

Properties of Hessian

Heissian Eigenvalues from Global 3D-Var

900

800

700

\

600

500

400

300

200

4

100

0

Tim Payne

0

10 20 30 40 50 60

70 80 90 100



Typical

Met Office

Unified hodel Cutput (Vn 6.4) EXNER PRESSURE [RHO) AFTER TIMESTEPR (Pa)
#% longitude (degrees_east)

y: latitude {degrees_north)

z: hybrid_ht 9.9977731704711314 (level)

t: date / t 2008/02/14:09.00 / 0.000000 (days since 2008-02-14 09:00:00)

90,000
54,000 @
18.000
-18.000

-54,000

-90.000
-180.00 -108.11 -3B.225 . 35,663 107.55 179.44

-0.00011744 -8.8868e-05 -6,0301e-05 -3.1734e-05 -3.1675e-06

-1.7451e-05 1.1116e-05

-4.6018e-05

-0.00013172 -0.00010315 -7.4585e-05

Tim Payne

Hesslan eigenvectors

Unified! Model Qutput (Vn B.4): THETA AFTER TIMESTEP (K)

® longitude [degrees_east)

y: lafitude (degrees_north)

z: hybrid_ht 5199417578125 (level)

t: date / t Z008/02/14:08.00 / 0.000000 (days since 2008-02-14 09:00:00)

30,000
18.000
-18.000
-54.000
-30.000
-180.00 -108.11 -36.225 % 35663 107.55 173.44
-0.50702 -0.31023 -0.11345 0.083342 0.28013

-0.60541 -0.40863 -0.21184 -0.015052 018174 0.37852



Development Plans

Met Office

 EnVar (i.e. both hybrid-4D-Var & 4DEnVar)

» Bigger ensemble. Tune hybrid fs.
» Spectral localisation

 Remove integrated divergence due to vertical localisation.

 4ADEnVar
* Tuning & optimisation
« EDA (i.,e. an ensemble of 4DEnVar assimilations)

* Inflation, perturbed obs or DEnKF, etc
* Preconditioning or other efficient algorithm

« Software optimisation (including ENDGAME model)
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GungHo!

Met Office

Globally
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Met Office 4ADEnVar system -
vetomme  EXPECEAtIONS

* 4ADEnVar is likely to be the best strategy on the timescale of

GungHo: it is suitable for massively parallel computers and avoids
writing the adjoint of the new model (decision 2015).

- We do not expect it to beat the current operational hybrid-

4D-Var at same resolution, we are working to make it of comparable
guality and cheaper.

« May be implemented to enable higher resolution forecasts, or frequent
rapid runs to provide BCs for UK model.

* |[nteresting possibilities for cCONvVective scale and Nowcasting
— need much research:

. An ensemble of 4ADEnVar might beat operational local-ETKF.
Several Options for scientific & software design.
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Nomenclature for Ensemble-
Variational Data Assimilation

Recommendations by WMQ’s DAOS WG:
non-ambiguous terminology based on the most common established usage.

1. En should be used to abbreviate Ensemble, as in the EnKF.
2. No need for hyphens (except as established in 4D-Var)

3. 4D-Var or 4ADVAR should only be used, even with a prefix, for methods
using an adjoint model.

4. EnVar means a variational method using ensemble covariances. More
specific prefixes (e.g. hybrid, 4D) may be added.

5. hybrid can be applied to methods using a combination of ensemble and
climatological covariances.

6. The EnKF generate ensembles. EnVar does not, unless it is part of an
ensemble of data assimilations (EDA).

7. En4DVAR could mean 4DVAR using ensemble covariances, but Liu et
al. (2009) used it for something else. Less ambiguous is 4ADVAR-Ben.
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