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�(p, t) = xp(t)

Sep 26, 2013 M. Budišić: Mesochronic Analysis 2

The term “mesochronic” means “time-averaged”.

ẋp = f(t, xp), xp(0) = p

(p, t) 7! xp(t)

�(p, T ) = p+
R T
0 f(⌧, xp(⌧))d⌧

f̃(p, T ) = 1
T

R T
0 f(⌧, xp(⌧))d⌧

�(p, T ) = p+ T f̃(p, T )
Flow map

Mesochronic
velocity field

Flow map can be interpreted as a Lagrangian average of the velocity field.

Jf̃ (p, T ) =
J�(p, T )� Id

T
=

2
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Mesochronic Jacobian captures the linear deformation by the flow.

Character of deformation: elliptic (rigid rotation), hyperbolic (stretching) or parabolic (shear).

Flow Jacobian

p
P
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Mesochronic Jacobian is evaluated using a 
numerical semi-Lagrangian method.
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Ṁp(t) = �Mp(t)
t�t0

+ Ap(t)
|t�t0| +Ap(t) ·Mp(t), Mp(t0) = Ap(t0)

Mesochronic J. Advected J.

�JnK := trMJnK + nh detMJnK ⇡ 0

Accuracy proxy: 
numerical compressibility

ẋp = f(t, xp), xp(0) = p

@dF (p) ⇡ F (p+"p̂d)�F (p�"p̂d)
2"

Mp(t) ⇡ M

s
t� t0
h

{

1. Compute a particle trajectory 
(dynamics of the fluid flow).

2. Evaluate the advected Jacobian 
along the particle trajectory.

3. Solve the mesochronic Jacobian 
matrix ODE.

[MacLachlan, Quispel, JPhysA, 2006]
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Deformation class of the flow is requires 
only one quantity for incompressible flows in 2D.
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0 tr Jf̃

det Jf̃

tr Jf̃ = 0

Incompressibility
constraint

4
T 2

tr Jf̃ + T det Jf̃ = 0

Incompressibility
constraint

tr Jf̃

det Jf̃

0

T = 0+Okubo-Weiss: T > 0
[Mezic, Loire, et al., Science, 2010]

Elliptic

Hyperbolic
Flipping

Hyperbolic
Non-flipping

Mesochronic Analysis:
Mesochronic Vector Field =
Instantaneous Vector Field
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[Mezic et al., Science, 2010] [Rypina et al., JAtmSci, 2007]
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Deformation class of the flow requires 
two quantities for incompressible flows in 3D.

6

det Jf̃ = 0

7

Elongating node Elongating focus

Flattening node Flattening focus

det Jf̃

trCof Jf̃

T = 0+ Okubo-Weiss-Chong:

0

Okubo-Weiss-Chong

Vortex

Vortex

Vortex

Mixing

Mixing

Vortex

Vortex

Criterion yields non-intuitive results even for steady flows: 
boundaries do not match understanding of invariant structures.

Non-hyperbolic

Boundaries of
invariant regions

ABC Flow (z=0 slice)
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Introducing non-zero time intervals increases complexity.

7

tr Jf̃ + T trCof Jf̃ + T 2
det Jf̃ = 0

T > 0

det Jf̃

trCof Jf̃

Elongating 
node

Elongating 
focus

Flattening 
node

Flattening 
focus

Non-hyperbolic

�

⌃

Elongating
Node

Non-hyperbolic

Flattening
Focus

Elongating
Focus

Flattening
Node

Introduce two new quantities
that separate hyperbolic classes:

⌃�

Incompressibility:

[Collaboration w/ S. Siegmund, TU Dresden and Doan Thai Son, Imperial College, London]
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Results for ABC flow match the intuition.
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T=1 T=5 T=10 T=50

Non-hyperbolic

Mixture: non-hyperbolic, 
flattening and elongating

Hyperbolicity
with rotation

Hyperbolicity dominates 
at short time scales.

Mesochronic Classes
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(a) Six clusters in the state space. Chaotic sea (cluster 1)

cropped for clarity.
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(b) Projection of the ergodic quotient onto

di↵usion modes  
k

, k = 2, 4, 6.

Figure IV.2: Six primary vortices extracted by k-means clustering (k = 7) of projection of the ergodic

quotient onto first 30 di↵usion coordinates. Parameters in Table IV.2. (Physica D: Nonlinear Phenomena by

Elsevier [BM12]. Reproduced with permission of Elsevier Publishing in the format reuse in a dissertation/thesis via

Copyright Clearance Center.)

Observables k 2 [�10, 10]3 \ Z3

Initial conditions
N = 1002, uniformly with x = 0,

(y, z) 2 [0.35, 0.8] ⇥ [0.6, 0.9]

Averaging T
min

= 500, T
ext

= 500, ATOL = 2 ⇥ 10�4

Di↵usion Maps N
min

= 70

Table IV.3: Parameters of the analysis of a primary vortex of the ABC flow.

consist of a core vortex (green), and two pairs of side vortices (yellow and blue).

The side vortices are in 2 : 1 resonance with the vortex core, i.e., the non-adjoint lobes

connect to each other at boundaries of the periodicity box. In Fig. IV.4 we illustrate this phenomenon

by combining the k-means and eigenfunction analysis. The k-means was used to extract the set

corresponding to the central vortex and the side lobes. Based on Fig. IV.3b, the pseudo-color was

based on the di↵usion coordinate �10 which varies through half of its range over the core vortex

(green in Fig. IV.3a) and one of the lobe vortices (blue).

The reason that the projection coordinates chosen in Fig. IV.3b are of relatively high index,

compared to those in Fig. IV.2b, lies in the character of the boundary between the primary vortex

region and the chaotic sea, respectively colored red and teal in Fig. IV.3a. Due to slow convergence

in this region that contains zones of intermittency, certain trajectories have been mapped away

from the main bulk; one of such points can be seen as a dark-red dot at the center of Fig. IV.3b.

Such numerical artifacts result in an increase in algebraic multiplicity of the � ⇡ 1 eigenvalues

of the di↵usion kernel: each disconnected component introduces a � = 1 eigenfunction that is a
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Invariant sets (z=0 slice)

Boundaries of
invariant regions



signR(1�R) = signE
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Mesochronic Classes relates to 
Greene criteria for KAM tori breakdown.
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J� =


a+ d c+ b
c� b a� d

�
Q(x, y) = (b� c)x2 + 2d xy + (b+ c)y2

E := b2�(c2+d2)
b2+(c2+d2)

Ellipticity

R := 1
2 (1� a)

Residue

✓ := 1
2 arctan

c
d

Orientation

J�

R

✓

Level-set of Q

Jf̃ =
1

T


a+ d� 1 c+ b
c� b a� d� 1

�
R = T 2

4 det Jf̃

Connection to mesochronic Jacobian:

lnR ⇠ ln |�|

Greene: Convergence of R over periodic orbits as they approach orbits with 
irrational winding numbers indicates a structurally stable KAM surface.

Greene: For strong hyperbolicity, residue 
behaves like an eigenvalue, but is 
a real analytic function of the perturbation.
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Haller-Iacono shear and stretch are 
mesochronic quantities in the Frenet frame.
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⌘p(0) := Lt0
t0(p)⇠(0), ⌘p(t) := Lt

t0(p)

Frenet frame

⌘̇p = At
t0(p)⌘p,

At
t0(p) :=

"
S(t)
k S(t)

�

0 �S(t)
k

#
+


0 �b(t)

b(t) 0

�

⌘p(t) =


exp

�
��t

t0

�
µt
t0 exp�

t
t0

0 exp�t
t0

�
· ⌘p(0)

⇠̇p(t) =
z }| {
Jf (xp(t)) ⇠p(t)

Advected Jacobian

Steady Flows

Steady state flow map is triangularized

�t
t0(p) :=

Z t

t0

�S(s)
k (p)ds

µt
t0(p) :=

Z t

t0

S(s)
� (p) exp

⇥
�2�t

s(p)
⇤
ds.

Stretching

Shearing

Computed from 
ROS tensor 

and v.f.

[Haller, Iacono, PRE, 2003]
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The Frenet frame mesochronic classes.
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•Understand how the classes are advected 
as material or “dye”.

•Understand the importance of values of 
quantities, not just class.

•Understand bifurcation of structures with 
the change of time-interval endpoints.

•The 2D code available for download, 
3D needs some polishing but coming soon.

To-Do:

https://bitbucket.org/mbudisic/mesochronic-toolbox

https://bitbucket.org/mbudisic/mesochronic-toolbox
https://bitbucket.org/mbudisic/mesochronic-toolbox

