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m Assume no temporal periodicity on v(x, t)

m v can solve a PDE (e.g. Navier-Stokes) or be obtained
from physical measurements

m Relevant structures are time-varying and only exist for
finite time (e.g. fronts, oceanic eddies)
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Sckeround m Sarcasm aside, examples include

ackgroun . . .
and Forcasting for natural disasters (Olascoaga, Haller, Mezic,

motivation

Peacock etc.),
Agulhas eddies and climate change (Haller, Beron-Vera,
Froyland, Beal, etc.)
Plasma fusion (del-Castillo-Negrete, Morrison, B., etc.)
Zonal jets (del-Castillo-Negrete, Rypina, Olascoaga,
Beron-Vera, Haller, Froyland, Farazmand, B., etc.)
Biological systems (Green, Rowley, Ouellette,
Komoutsakous, Dabiri, Shadden, Ross, etc.)
@ Theoretical descriptions (Haller, Froyland, Mezic, Mancho,
Budisic, Allshouse, Thiffeault, Pratt, Kirwan, B., etc.)
Last, but not least, “etc.”
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m Shear LCSs locally maximize tangential shear o

Tansport a,fo (x0, n0) = |V th) (x0)no — (n, V F,_% (x0)no)ne|
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m Transport barriers are hyperbolic or shear LCSs

!D.B. and G. Haller, Hyperbolic and Elliptic Transport Barriers in
Three-Dimensional Unsteady Flows, submitted
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oy m Theorem characterizing hyperbolic and shear LCSs:
——c m Let Cf = (VFL)" VF{ be the Cauchy-Green strain
tensor, &;, \; be the eigenvectors and eigenvalues
m If M(t) is a repelling (resp. attracting) LCS, then
./\/l(to) 1 & (resp. fl)
. m If M(t) is a shear LCS then M(tp) L ny or M(tp) L n_
ransport

Barriers in 3D

Vi VA,

m &3, &1, ng are the optimal directions of repulsion,
attraction, and shear.
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vanishes on M(tp). (General geometric, mathematical
constraint for orthogonal surfaces)

m Consider a cut v of M(tp) with a plane X.
pransport m The intersection + is tangent to the the reduced field

S 7 =m x n, where n L Y. 7 is a vector field on &

b
T

m Geometry of the reduced
fields
Think of 7 as £1,&3 or n4

m Punchline: A cut v of a strain/shear surface is a curve of
zero helicity and an integral curve of &1, &3 or fi
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dimersiona) flow (steady solution of 3D Euler's equation)

unsteady flows

D. Blazevski x = Asinz+ Ccosy
y = Bsinx + Acosz
z=Csiny 4+ Bcosx

m Poincare plot on {z = 0} visually shows KAM-like vortex

structures
Examples: .
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ABC Flow
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reduced field iy on {z =0}

unsteady flows

Examples: to _|_ T — 40 to —|— T = 150

Steady and
Unstead . . . . .
ons. m Trajectories are integrated for a fixed time for the full 3D

Versions of

e ABE Flow flow (i.e. we do not do a 2D analysis of the Poincare map)

m Significance: Reconstructed 3D KAM tori without using
notions of invariance, steadiness, conjugacy to rotation,
Birkhoff Egrodic Theorem, etc.
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Examples: m See that they separate finite-time dynamics of upward and
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Examples:

Steady and
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0

X

m Coherent Lagrangian vortices maintain their shape over
the integration time, and are boundaries of vortices in
unsteady flows
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Concluding Remarks
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three- m Presented a theory of shear and hyperbolic transport
dimensional

unsteady flows barriers for 3D Unsteady ﬂOWS

SR m Based on a rigorous mathematical /physical description
(i.e. no heuristics, e.g. from steady flows) that was shown
to capture vortices in steady flows.

m Ongoing work includes using the theory to detect elliptic
barriers in 3D velocity data

Examples: -1
2

Steady and
Unsteady

Versions of
the ABC Flow w0

30
a0
-50

m Thank you for your attention!
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