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Directed graphs

A directed graph E consists of a set E 0 of vertices and a set E 1 of
directed edges, with direction determined by range and source
maps r , s : E 1 → E 0. A k-coloured graph is a directed graph with
a map c : E 1 → {c1, . . . , ck}.
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E 0 = {v , u}
E 1 = {e, f , g , h}
v = s(g) = s(h) = r(h) = r(f )
u = s(f ) = s(e) = r(e) = r(g)
c(f ) = c(g) = c1 (= blue)
c(e) = c(h) = c2 (= red)
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Paths: Raeburn Mk II / Australian

I A sequence µ1µ2µ3 . . . of edges is a path if s(µi ) = r(µi+1)
for all i .

r(µ)
µ1

s(µ)
µn

I En = {µ : µ is a path with n (possibly = ∞) edges}
I E ∗ = {µ : µ has finitely many edges}.
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Higher-rank graphs

I A higher-rank graph, or k-graph, is a small category Λ with a
functor d : Λ→ Nk satisfying the unique factorisation
property: if λ ∈ Mor(Λ) has d(λ) = m + n, then there exists
unique µ, ν ∈ Mor(Λ) with d(µ) = m, d(ν) = n and λ = µν.

I Call d the degree functor.

Examples

1. Suppose E is a directed graph. The path category P(E ) of E
has Obj(P(E )) = E 0, Mor(P(E )) = E ∗, range, source and
composition inherited from E . With d(λ) := |λ|, P(E ) is a
1-graph. Moreover, every 1-graph occurs as the path category
of a directed graph

2. Let Tk be the category with a single object and morphisms
Nk . With d = idNk , Tk is a k-graph.
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Skeletons

We may visualise a k-graph Λ by its skeleton: the k-coloured
directed graph EΛ with E 0

Λ = Obj(Λ), E 1
Λ =

⋃
i≤k d−1(ei ), range

and source as in Λ, and colouring c−1(ci ) = d−1(ei ).

Examples

1. P(E ) has skeleton isomorphic to E .

2. The skeleton of Tk has single vertex, and a different coloured
loop for each generator of Nk :

v

e1

ek
...
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Skeletons

Examples

3. For each m ∈ (N ∪ {∞})k there is a k-graph Ωk,m with
objects {p ∈ Nk : p ≤ m}, morphisms
{(p, q) ∈ Nk × Nk : p ≤ q ≤ m}, r(p, q) = p, s(p, q) = q,
(p, q)(q, t) = (p, t), and d(p, q) = q − p. The skeleton of
Ωk,m is denoted Ek,m. The following 2-coloured graph is
E2,(3,2)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)
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k-coloured graphs

A coloured-graph morphism is a range, source and colour
preserving map between two coloured graphs.

u

e

v

f g

h

• •

• •

u v

u v

g

g

e h

A square is a coloured-graph morphism from the coloured graph on
the right into E . We think of this as a labelling of the picture on
the right with elements of our graph.
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Squares

Given a k-coloured graph E , we say a collection of squares C is
complete if for each cicj -coloured path x ∈ E 2, there exists a
unique square in C of which x is a subpath.

u

e

v

f g

h

u v v u

u v v u

g

h

g

e

f

e

f

h

For example: these two squares are a complete collection for E .
Such a collection is not typically unique.
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Associativity of C

Let E be a k-coloured graph and C be a complete collection of
squares. Given a 3-coloured path fgh ∈ E 3, the squares in C give
fi , gi , hi , f

i , g i , hi ∈ E 1 as shown in the following diagram.

•

•

•

•

•

•

•

g1 g

g2

h2

h1 h

f

f 1

f 2

•

•

•

•

•

•

•

f

f1

f2

g1

g

g2

h2 h1

h

We say that C associative if f 2 = f2, g 2 = g2 and h2 = h2.
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k-coloured graphs and k-graphs

I Suppose that E is a k-coloured graph and C complete
collection of squares which is associative.

I For each Λ, {λ ∈ Λ : d(λ) = ei + ej , i 6= j} determines a
complete collection of squares CΛ for EΛ which is associative.

Theorem (Hazlewood-Raeburn-Sims-W)

There is a k-graph ΛE ,C and an isomorphism ψ : EΛE ,C
∼= E such

that ψ ◦ φ ∈ CΛE ,C for each φ ∈ C (i.e. ψ preserves squares).

Theorem (Hazlewood-Raeburn-Sims-W)

Suppose Λ is a k-graph. If E ∼= EΛ preserves squares, then
Λ ∼= ΛE ,C .

Theorem (Hazlewood-Raeburn-Sims-W)

Let ∼ be the equivalence relation on P(E ) generated by C. Then
P(E )/ ∼ is a k-graph which is isomorphic to ΛE ,C .
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Notation and Nomenclature

I A k-graph morphism is a degree preserving functor between
two k-graphs.

I Each λ ∈ Mor(Λ) may be uniquely identified with a k-graph
morphism xλ : Ωk,d(λ) → Λ: for m ≤ n ≤ d(λ) the
factorisation property gives us a unique
xλ(m, n) ∈ d−1(m − n) satisfying λ = λ′xλ(m, n)λ′′. Then
xλ(0, d(λ)) = λ.

I Hence we define Λm for m ∈ (N ∪ {∞})k to be the set of
k-graph morphisms Ωk,m → Λ and identify Λm and d−1(m).

I Unique factorisation property implies that
Λ0 = {idv : v ∈ Obj(Λ)}, hence we identify Λ0 with Obj(Λ).

I We identify Mor(Λ) and Λ. Refer to elements of Λ as paths,
and elements of Λ0 vertices.

I Given a subset F ⊂ Λ and a vertex v ∈ Λ0, define
vF := r−1(v) ∩ F and Fv := s−1(v) ∩ F .
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Example

u

e

v

f g

h

v

v

v

v

v

v

u

u

u

u

u

u

f

f

f

g

g

g

f

f

f

h

h

e

e

h

h

e

e

I Let λ be the path of degree (3, 2) with range v in the k-graph
Λ represented on the left.

I Unique factorisation forces λ = fgfee = feghf = hhfgf = . . .

I λ is represented by the k-graph morphism Ω2,(3,2) → Λ
encoded by the labelling of Ω2,(3,2) on the right.

I The path λ((2, 1), (3, 2)) = fe = hf , the square
on the top right.
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The path space

I Given a k-graph Λ, We call WΛ :=
⋃

m∈(N∪{∞})k Λm the path
space of Λ.

I We endow WΛ with the cylinder set topology (or initial
topology) given by the indicator function χ : WΛ → {0, 1}Λ,
where χx(λ) = 1 if x(0, d(λ)) = λ and 0 otherwise [PW].

I A base for this topology on WΛ consists of the sets

Z(µ \ G ) := Z(µ) \
⋃
ν∈G
Z(µν),

where Z(µ) := {λ ∈WΛ : λ(0, d(µ)) = µ}, µ ∈ Λ, and
G ⊂ Λ. We may insist that G ⊂

⋃
i≤k Λei . [W]

I With this topology WΛ is a locally compact, Hausdorff space
[W, PW].
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Minimal common extensions

Given µ, ν ∈ Λ, we say that λ is a minimal common extension of µ
and ν if λ ∈ Z(µ)∩Z(ν) and d(λ) = d(µ)∨ d(ν). We denote the
set of all such λ by MCE(µ, ν).

Example (1)

Given a directed graph E , and two paths µ, ν ∈ E ∗, then

MCE(µ, ν) =


{µ} if µ ∈ Z(ν)

{ν} if ν ∈ Z(µ)

∅ otherwise.
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Minimal common extensions

Given µ, ν ∈ Λ, we say that λ is a minimal common extension of µ
and ν if λ ∈ Z(µ)∩Z(ν) and d(λ) = d(µ)∨ d(ν). We denote the
set of all such λ by MCE(µ, ν).

Example (2)

•

•

ν

•
µ

•

α1

β1

•

α2

β2

•

•
•

MCE(µ, ν) = {µα1, µα2} = {νβ1, νβ2}
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Minimal common extensions

Given µ, ν ∈ Λ, we say that λ is a minimal common extension of µ
and ν if λ ∈ Z(µ)∩Z(ν) and d(λ) = d(µ)∨ d(ν). We denote the
set of all such λ by MCE(µ, ν).

Example (3)

• • •

v

g0

•

g1

x0
•

g2

x1

•

h0

•

h1

•

h2

MCE(g0, h0) = ∅
MCE(x0x1, h0) = {x0x1h2}
MCE(x0, x0g1) = {x0g1}.
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Finite exhaustive sets

Given v ∈ Λ0, a subset E ⊂ vΛ is exhaustive at v if for each
µ ∈ vΛ, there exists ν ∈ E such that MCE(µ, ν) 6= ∅. We denote
the set of all finite exhaustive sets at v by vFE(Λ).

Example (1)

v w...

(fi )i∈N

We have v ∈ E for every E ∈ vFE(Λ), and wFE(Λ) =
{
{w}

}
.
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Finite exhaustive sets

Given v ∈ Λ0, a subset E ⊂ vΛ is exhaustive at v if for each
µ ∈ vΛ, there exists ν ∈ E such that MCE(µ, ν) 6= ∅. We denote
the set of all finite exhaustive sets at v by vFE(Λ).

Example (2)

v

•

ν

•
µ

•

α1

β1

•

α2

β2

•

•
•

{v}, {ν}, {µ}, {ν, µ}, {µα1, µα2} ∈ vFE(Λ)
{µα1}, {νβ2} /∈ vFE(Λ)
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Finite exhaustive sets

Given v ∈ Λ0, a subset E ⊂ vΛ is exhaustive at v if for each
µ ∈ vΛ, there exists ν ∈ E such that MCE(µ, ν) 6= ∅. We denote
the set of all finite exhaustive sets at v by vFE(Λ).

Example (3)

• • •

v

g0

•

g1

x0
•

g2

x1

•

h0

•

h1

•

h2

{h0, x0, g0}, {g0, x0}, {g0, x0g1, x0x1}, {h0, g0, x0g1, x0x1g2} ∈ vFE(Λ)
{x0}, {x0, h0}, {g0, x0g1, x0x1g2} /∈ vFE(Λ)
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Boundary paths

A path x ∈WΛ is a boundary path if for each n ∈ Nk with
n ≤ d(x) and E ∈ x(n)FE(Λ), there exists m ∈ Nk such that
x(n,m) ∈ E . Denote the set of all boundary paths by ∂Λ.

Examples (1)

Λ∞ = {x : Ωk,(∞)k → Λ : x is a k-graph morphism} ⊂ ∂Λ.

∂Λ = Λ∞ if 0 < |vΛm| <∞ for all v ∈ Λ0 and m ∈ Nk .
If k=1, then ∂Λ = Λ∞ ∪ {x ∈ Λ : |s(x)Λ1| = 0 or ∞}. E.g. if Λ is
the 1-graph

v w...

(fi )i∈N

then ∂Λ = {v ,w} ∪ {fi : i ∈ N}

S.B.G. Webster The path spaces of a graph



Boundary paths

A path x ∈WΛ is a boundary path if for each n ∈ Nk with
n ≤ d(x) and E ∈ x(n)FE(Λ), there exists m ∈ Nk such that
x(n,m) ∈ E . Denote the set of all boundary paths by ∂Λ.

Example (2)

v

•

ν

•
µ

•

α1

β1

•

α2

β2

•

u1

ρ1

λ1

u2

ρ2

λ2

∂Λ = Λu1 ∪ Λu2, where Λv := s−1(v).
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Boundary paths

A path x ∈WΛ is a boundary path if for each n ∈ Nk with
n ≤ d(x) and E ∈ x(n)FE(Λ), there exists m ∈ Nk such that
x(n,m) ∈ E . Denote the set of all boundary paths by ∂Λ.

Example (3)

• • •

v

g0

•

g1

x0
•

g2

x1

•

h0

•

h1

•

h2

v∂Λ = {x0x1h2, g0, x0g1, x0x1g2}
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Boundary paths

A path x ∈WΛ is a boundary path if for each n ∈ Nk with
n ≤ d(x) and E ∈ x(n)FE(Λ), there exists m ∈ Nk such that
x(n,m) ∈ E . Denote the set of all boundary paths by ∂Λ.

Example (4)

• • • • · · ·

v

g0

•

g1

x0
•

g2

x1
•

g3

x2
· · ·

•

h0

•

h1

f0
•

h2

f1
•

h3

f2 · · ·

v∂Λ = {x0 . . . xi−1gi : i ∈ N} ∪ {h0f0 . . . , x0x1 . . . }
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Boundary paths

I Let σ be the shift action of Nk partially defined by
σn(λ)(p, q) = λ(n + p, n + q) for d(λ) ≥ n.

I σn(x) ∈ ∂Λ for each n ∈ Nk and x ∈ ∂Λ with d(x) ≥ n.

I λx ∈ ∂Λ for every λ ∈ Λ and x ∈ s(λ)∂Λ.

I v∂Λ 6= ∅ for all v ∈ Λ0

I Notice that

WΛ \ ∂Λ =
⋃
λ∈Λ

( ⋃
E∈s(λ)FE(Λ)

Z(λ \ E )
)
,

I so ∂Λ is closed in WΛ, and hence a locally compact Hausdorff
space.

S.B.G. Webster The path spaces of a graph



Filters [Exel]

I Give WΛ a partial order ≤ defined by µ ≤ λ ⇐⇒ λ ∈ Z(µ).
I A filter in WΛ is a subset U ⊂WΛ such that

1. if λ ∈ U and µ ≤ λ, then µ ∈ U, and
2. if µ, ν ∈ U, then there exists λ ∈ U with µ, ν ≤ λ.

Denote the set of all filters by Λ̂. Say U is an ultrafilter if U is
a maximal filter. Denote the set of ultrafilters by Λ̂∞.

I Each x ∈WΛ determines a filter
Ux := {x(0, n) : n ∈ Nk , n ≤ d(x)}
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Filters

Example (1)

v w...

(fi )i∈N

I Λ̂∞ = {{w}} ∪ {Ufi : i ∈ N}
I fi → v in WΛ.

I Λ̂∞ is not closed!

I Don’t need infinite receivers to see this.
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Filters

Example (2)

• • • • · · ·

v

g0

•

g1

x0
•

g2

x1
•

g3

x2
· · ·

•

h0

•

h1

f0
•

h2

f1
•

h3

f2 · · ·

I Ug0 , Uh0f0f1...Ux0g1 , Ux0x1g2 , · · · ∈ Λ̂∞
I x0 . . . xn−1gn → x0x1 . . .

I Ux0x1x2... /∈ Λ̂∞ !!!
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Filters

I In path-space terminology, the anologue of Λ̂∞ is denoted
Λ≤∞ (Definition in RSY2004).

I Define ∂Λ̂ to be the filters U ∈ Λ̂ such that for each µ ∈ U,
E ⊂ s(µ)FE(Λ), there exists ν ∈ E such that µν ∈ x

I Then ∂Λ̂ = {Ux : x ∈ ∂Λ}.

I Λ̂∞ = ∂Λ̂

I Λ̂∞ = ∂Λ̂ if Λ is row-finite and locally convex:

I Λ is row-finite if vΛm is finite for each v ∈ Λ0 and m ∈ Nk ,
and

I Λ is locally-convex if for each i 6= j , µ ∈ Λei and ν ∈ r(µ)Λej ,
the sets s(µ)Λej and s(ν)Λei are nonempty.
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C ∗-algebras

I A k-graph Λ is finitely aligned if MCE(µ, ν) is finite (possibly
empty) for all µ, ν ∈ Λ.

I Given a finitely aligned k-graph Λ, a Cuntz-Krieger Λ-family in
a C ∗-algebra B is a map s : Λ→ B such that each sλ is a
partial isometry, and that

CK1. {sv : v ∈ Λ0} are mutually orthogonal projections,
CK2. sµsν = sµν if µν ∈ Λ,
CK3. s∗µsν =

∑
µα=νβ∈MCE(µ,ν) sαs∗β , and

CK4.
∏
λ∈E (sv − sλs∗λ) = 0 for all v ∈ Λ0 and E ∈ vFE(Λ).

I C ∗(Λ) is the universal C ∗-algebra for Cuntz-Krieger Λ-families.

I C ∗(Λ) is nonzero since the representation S : Λ→ B(`2(∂Λ))
given by

Sλξx =

{
ξλx if s(λ) = r(x)

0 otherwise

yields a nonzero Cuntz-Krieger Λ-family.
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Diagonal Subalgebra

We call DΛ := C ∗({sλs∗λ : λ ∈ Λ}) ⊂ C ∗(Λ) the diagonal
C ∗-subalgebra of C ∗(Λ). One can show that
DΛ = span{sλs∗λ : λ ∈ Λ}.

Theorem (W)

DΛ
∼= C0(∂Λ)

I Let φ be a character of DΛ.

I For each n ∈ Nk , {sλs∗λ : λ ∈ Λn} is a family of mutually
orthogonal projections.

I Notice that µ ≤ λ ⇐⇒ sλs∗λ ≤ sµs∗µ.

I So {λ : φ(sλs∗λ) = 1} ∈ Λ̂, and so determines a unique path
x ∈WΛ.

I For each n ≤ d(x) and E ∈ x(n)FE(Λ), (CK4) says that∏
λ∈E (sx(n) − sλs∗λ) = 0, and it follows that x ∈ ∂Λ.
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Removing Sources

Farthing defined a process which, given an row-finite k-graph Λ,
constructs a row-finite k-graph Γ with no sources such that
C ∗(Λ) ∼SME C ∗(Γ). This process extends the non-infinite
boundary paths of Λ to infinite paths [F,W].

For example, consider
the 2-graph

• • • • · · ·

v

g0

•

g1

x0
•

g2

x1
•

g3

x2
· · ·

•

h0

•

h1

f0
•

h2

f1
•

h3

f2 · · ·
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Removing Sources

• • • • · · ·

v0

g0

•

g1

x0
•

g2

x1
•

g3

x2
· · ·

•

h0

•

h1

f0
•

h2

f1
•

h3

f2 · · ·

Here, wn := x0 . . . xn−1gn and any path of degree (1,∞) are all
elements of ∂Λ. The idea is to extend these paths to be infinite in
all directions (degrees, colours,...).
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Boundary path starting with h0

•

v0

•

•

•

v1

•

•

•

v2

•

•

•

v3

•

•

x0

h0

...

x1

h1

...

x2

h2

...

h3
. . .

. . .

. . .
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Boundary path w3

•

v0

•

•

•

v1

•

•

•

v2

•

•

•

v3

•

••

•

x0

g0

...

x1

g1

...

x2

g2

...

. . .

. . .
g3

...
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Putting it all together

•

v0

•

•

•

•

v1

•

•

•

•

v2

•

•

•

•

v3

•

•

•

x0

g0

h0

x1

g1

h1

x2

g2

h2 h3
. . .

. . .
g3
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Removing Sources

Formally, the ‘new’ path space is defined as a set of equivalence
classes that deal with when extended boundary paths overlap.

We
can ‘project’ paths from Γ onto paths from Λ. For example

v0

•

•

v1

•

•

v2

•

•

v3

•

••

•

x0

g0

...

x1

g1

...

x2

g2

...

. . .
g3

...
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Putting the bits together

I The projection π : Λ0Γ∞ → ∂Λ is a homeomorphism.

I The isomorphism C ∗(Λ) ∼= pC ∗(Γ)p induces a

homeomorphism ρ : p̂DΓp → D̂Λ.

I Then the following diagram commutes:

∂Λ

D̂Λ

hΛ

Λ0Γ∞
π

p̂DΓp

η

ρ

Where η is essentially a restriction of hΓ : Γ∞ → D̂Γ to paths
with range in Λ0.
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