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IS D) W
A directed graph E consists of a set E© of vertices and a set E1 of
directed edges, with direction determined by range and source
maps r,s: E1 — E®. A k-coloured graph is a directed graph with
amapc:E' = {c,...,c}.

E® ={v,u}

E' = {e,f,g, h}

v =1s(g) =s(h) =
u=s(f)=s(e) =

c(f) = c(g) = c1 (= blue
c(e) = c(h) = ¢ (= red)
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A sequence pipops ... of edges is a path if s(u;) = r(wis1)
for all i.

E" = {u: pis a path with n (possibly = co) edges}
E* = {u : p has finitely many edges}.
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IS D) W
A higher-rank graph, or k-graph, is a small category A with a
functor d : A — N¥ satisfying the unique factorisation
property: if A\ € Mor(A) has d(\) = m+ n, then there exists
unique p, v € Mor(A) with d(p) = m, d(v) = n and A = uv.
Call d the degree functor.

Examples

Suppose E is a directed graph. The path category P(E) of E
has Obj(P(E)) = E°, Mor(P(E)) = E*, range, source and
composition inherited from E. With d(\) := |A|, P(E) is a
1-graph. Moreover, every 1-graph occurs as the path category
of a directed graph

Let T, be the category with a single object and morphisms
NX. With d = idyk, Tk is a k-graph.
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We may visualise a k-graph A by its skeleton: the k-coloured
directed graph Ep with E{ = Obj(A), Er = Ui<k d~(e;), range
and source as in A, and colouring c7(¢;) = d~*(e)).

Examples

P(E) has skeleton isomorphic to E.

The skeleton of Ty has single vertex, and a different coloured
loop for each generator of NX:

€k

€1

%4

S.B.G. Webster The path spaces of a graph



wtnure ron
UNIVERSITY OF [523]
MATHEMATICS & &
TS APPLICATIONS WOLLONGONG (&

Examples

For each m € (NU {oo})¥ there is a k-graph Q , with
objects {p € N¥ : p < m}, morphisms

{(p,q) e Nk x NK: p < q < m}, r(p.q) =p, s(p.q) = q,
(p,q)(g,t) = (p,t), and d(p,q) = g — p. The skeleton of
Q. m is denoted Ey . The following 2-coloured graph is

E> 3,2)
(0,2) (1,2) (2,2) (3,2)
(0,1) (1,1) (2,1) (3,1)
J | l l
(0,0) (1,0) (2,0) (3,0)
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A coloured-graph morphism is a range, source and colour
preserving map between two coloured graphs.

W

@

e

oc——eo
oc——eo

A square is a coloured-graph morphism from the coloured graph on
the right into E. We think of this as a labelling of the picture on
the right with elements of our graph.
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A coloured-graph morphism is a range, source and colour
preserving map between two coloured graphs.

W, g

h

4 u

f< g el
u u
e

A square is a coloured-graph morphism from the coloured graph on
the right into E. We think of this as a labelling of the picture on
the right with elements of our graph.
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Given a k-coloured graph E, we say a collection of squares C is
complete if for each cjcj-coloured path x € E?, there exists a
unique square in C of which x is a subpath.

(O )
o
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Given a k-coloured graph E, we say a collection of squares C is
complete if for each cjcj-coloured path x € E?, there exists a
unique square in C of which x is a subpath.

W g f

4

h
f<g e
u

Q g f

e

For example: these two squares are a complete collection for E.
Such a collection is not typically unique.
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Let E be a k-coloured graph and C be a complete collection of
squares. Given a 3-coloured path fgh € E3, the squares in C give
fi,gi, hi,f', g, h' € E' as shown in the following diagram.

We say that C associative if f? = fo, g2 = g» and h®> = h,.
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Suppose that E is a k-coloured graph and C complete
collection of squares which is associative.

For each A, {A € A: d()\) = e+ €j,i # j} determines a
complete collection of squares Cp for Ep which is associative.
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Suppose that E is a k-coloured graph and C complete
collection of squares which is associative.

For each A, {A € A: d()\) = e+ €j,i # j} determines a
complete collection of squares Cp for Ep which is associative.

There is a k-graph Ng ¢ and an isomorphism 1) : E/\E’C = E such
that 1o ¢ € Ca, . for each ¢ € C (i.e. ) preserves squares).
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Suppose that E is a k-coloured graph and C complete
collection of squares which is associative.

For each A, {A € A: d()\) = e+ €j,i # j} determines a
complete collection of squares Cp for Ep which is associative.

There is a k-graph Ng ¢ and an isomorphism 1) : E/\E’C = E such
that 1o ¢ € Ca, . for each ¢ € C (i.e. ) preserves squares).

Suppose N\ is a k-graph. If E = Ep preserves squares, then
N= ANee.
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Suppose that E is a k-coloured graph and C complete
collection of squares which is associative.

For each A, {A € A: d()\) = e+ €j,i # j} determines a
complete collection of squares Cp for Ep which is associative.

There is a k-graph Ng ¢ and an isomorphism 1) : E/\E’C = E such
that 1o ¢ € Ca, . for each ¢ € C (i.e. ) preserves squares).

Suppose N\ is a k-graph. If E = Ep preserves squares, then
N= ANee.

Let ~ be the equivalence relation on P(E) generated by C. Then
P(E)/ ~ is a k-graph which is isomorphic to Ng ¢.
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A k-graph morphism is a degree preserving functor between
two k-graphs.

Each A € Mor(A) may be uniquely identified with a k-graph
morphism x : Q g(x) = A: for m < n < d(A) the
factorisation property gives us a unique

xx(m, n) € d=1(m — n) satisfying A = X'x\(m, n)\". Then
x2(0,d(N)) = A
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A k-graph morphism is a degree preserving functor between
two k-graphs.

Each A € Mor(A) may be uniquely identified with a k-graph
morphism x : Q g(x) = A: for m < n < d(A) the
factorisation property gives us a unique

xx(m, n) € d=1(m — n) satisfying A = X'x\(m, n)\". Then
x2(0,d(N)) = A

Hence we define A™ for m € (NU {oco})¥ to be the set of
k-graph morphisms Q ,, — A and identify A™ and d~1(m).

S.B.G. Webster The path spaces of a graph



IS D) W
A k-graph morphism is a degree preserving functor between
two k-graphs.

Each A € Mor(A) may be uniquely identified with a k-graph
morphism x : Q g(x) = A: for m < n < d(A) the
factorisation property gives us a unique

xx(m, n) € d=1(m — n) satisfying A = X'x\(m, n)\". Then
x2(0,d(N)) = A

Hence we define A™ for m € (NU {oco})¥ to be the set of
k-graph morphisms Q ,, — A and identify A™ and d~1(m).
Unique factorisation property implies that

A% = {id, : v € Obj(A)}, hence we identify A° with Obj(A).
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IS D) W
A k-graph morphism is a degree preserving functor between
two k-graphs.

Each A € Mor(A) may be uniquely identified with a k-graph
morphism x : Q g(x) = A: for m < n < d(A) the
factorisation property gives us a unique

xx(m, n) € d=1(m — n) satisfying A = X'x\(m, n)\". Then
x2(0,d(N)) = A

Hence we define A™ for m € (NU {oco})¥ to be the set of
k-graph morphisms Q ,, — A and identify A™ and d~1(m).
Unique factorisation property implies that

A% = {id, : v € Obj(A)}, hence we identify A° with Obj(A).
We identify Mor(A) and A. Refer to elements of A as paths,
and elements of A° vertices.
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IS D) W
A k-graph morphism is a degree preserving functor between
two k-graphs.

Each A € Mor(A) may be uniquely identified with a k-graph
morphism x : Q g(x) = A: for m < n < d(A) the
factorisation property gives us a unique

xx(m, n) € d=1(m — n) satisfying A = X'x\(m, n)\". Then
x2(0,d(N)) = A

Hence we define A™ for m € (NU {oco})¥ to be the set of
k-graph morphisms Q ,, — A and identify A™ and d~1(m).
Unique factorisation property implies that

A% = {id, : v € Obj(A)}, hence we identify A° with Obj(A).
We identify Mor(A) and A. Refer to elements of A as paths,
and elements of A° vertices.

Given a subset F C A and a vertex v € A%, define

VF == rY(v)NF and Fv:=s71(v)NF.
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Let A be the path of degree (3,2) with range v in the k-graph
N represented on the left.

Unique factorisation forces \ = fgfee = feghf = hhfgf = ...
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Let A be the path of degree (3,2) with range v in the k-graph
N represented on the left.

Unique factorisation forces \ = fgfee = feghf = hhfgf = ...

A is represented by the k-graph morphism €25 (35) — A
encoded by the labelling of €2, (3 5) on the right.

The path A\((2,1),(3,2)) = fe = hf, the square
on the top right.
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Given a k-graph A, We call W := Ume(Nu{oo})k A™ the path
space of A.

We endow W), with the cylinder set topology (or initial
topology) given by the indicator function x : Wy — {0,1}",
where xx(A) =1 if x(0,d()\)) = A and 0 otherwise [PW].
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Given a k-graph A, We call Wy, := Ume(Nu{oo})k A™ the path
space of A.

We endow W), with the cylinder set topology (or initial
topology) given by the indicator function x : Wy — {0,1}",
where xx(A) =1 if x(0,d()\)) = A and 0 otherwise [PW].

A base for this topology on Wj consists of the sets

2(u\ G) = Z(u)\ | Z(mw),

veG

where Z(u) :={\ € Wr: A\(0,d(u)) = p}, p €A, and
G C A. We may insist that G C [J;, A% [W]

With this topology W) is a locally compact, Hausdorff space
[W, PW].

S.B.G. Webster The path spaces of a graph



wSTITUTEFOR
UNIVERSITY OF [55%]
MATHEMATICS & Fas)
ITS APPLICATIONS WOLLONGONG Y

Given u,v € N\, we say that \ is a minimal common extension of
andvif A € Z(u) N 2Z(v) and d(\) = d(i) V d(v). We denote the
set of all such A by MCE(y, v).

Example (1)
Given a directed graph E, and two paths u,v € E*, then

{u} fpez(v)
MCE(p,v) = ¢ {v} ifve Z(u)
0 otherwise.
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Given u,v € N\, we say that \ is a minimal common extension of

andvif A € Z(u) N 2Z(v) and d(\) = d(i) V d(v). We denote the
set of all such A by MCE(y, v).

Example (2)

MCE(u,v) = {paq, pan}t = {vB1,vB2}
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Given u,v € N\, we say that \ is a minimal common extension of
andvif A € Z(u) N 2Z(v) and d(\) = d(i) V d(v). We denote the
set of all such A by MCE(y, v).

Example (3)

MCE(go, ho) = 0
MCE(X()Xl, ho) = {XOX1 h2}
MCE(xo0, x081) = {x08&1}-
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Given v € A9, a subset E C vA is exhaustive at v if for each
w € v, there exists v € E such that MCE(u,v) # (). We denote
the set of all finite exhaustive sets at v by vFE(A).

Example (1)

(fi)ien

We have v € E for every E € vFE(N), and wFE(N) = {{w}}.
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Given v € A9, a subset E C vA is exhaustive at v if for each
w € v, there exists v € E such that MCE(u,v) # (). We denote
the set of all finite exhaustive sets at v by vFE(A).

Example (2)
le Qc— O

e——— o .

A1
a2
v a1

|4 L] ]

L

{V}’ {V}’ {M}v {V’ :u}v {:ualv NOQ} € V"rg(/\)
{paa}, {vba} ¢ vFE(N)
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Given v € A9, a subset E C vA is exhaustive at v if for each
w € v, there exists v € E such that MCE(u,v) # (). We denote
the set of all finite exhaustive sets at v by vFE(A).

Example (3)
ho hy ‘ ho
v [ °
X0 X1
80 81 82

{ho, x0, 80}, {80, X0}, {80, X081, X0x1}, { ho, &0, X081, Xox182} € VFE(N)
{x0}, {x0, ho}, {go, X081, Xox182} ¢ vFE(N)
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A path x € W, is a boundary path if for each n € N with

n < d(x) and E € x(n)FE(N), there exists m € N¥ such that
x(n, m) € E. Denote the set of all boundary paths by OA.
Examples (1)

N> = {x: Qy (oo)x — N x is a k-graph morphism} C OA.

ON =A™ if 0 < |[VvA™| < oo for all v € A® and m € Nk,

If k=1, then OA = A®° U {x € A : |s(x)A}| =0 or co}. E.g. if A'is
the 1-graph

(fi)ien

then ON = {v,w} U {fi : i € N}
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A path x € W, is a boundary path if for each n € N with
n < d(x) and E € x(n)FE(N), there exists m € N¥ such that
x(n, m) € E. Denote the set of all boundary paths by OA.

Example (2)
B2 A2

.‘/._34///”1U2

f1 A1

(6%
v a1 PLI| p2

v [ °

L

ON = Aup U Aup, where Av := s71(v).
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A path x € W, is a boundary path if for each n € N with
n < d(x) and E € x(n)FE(N), there exists m € N¥ such that
x(n, m) € E. Denote the set of all boundary paths by OA.

Example (3)

ho

1’4

ht

o<— o
>
N

Xo
80

X1
81 82

voN = {xox1h2, 8o,X081, Xox182}
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A path x € W, is a boundary path if for each n € N with
n < d(x) and E € x(n)FE(N), there exists m € N¥ such that
x(n, m) € E. Denote the set of all boundary paths by OA.

Example (4)
fo fi f
ho hy ha h3
v [ ] o )
X0 X1 X2
80 81 82 83

vON={xo...xi—1gi : i € N} U{hofy..., xox1...}
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Let o be the shift action of N¥ partially defined by
on(A)(P,q) = A(n+ p,n+q) for d(A) > n.

on(x) € OA for each n € N¥ and x € A with d(x) > n.
Ax € ON for every A € A and x € s(\)OA.

vON # () for all v € A°

Notice that

W\ OA = U( U Z()\\E)),

XEA  Ees(\)FE(A)

so OA is closed in W), and hence a locally compact Hausdorff
space.
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Give W) a partial order < defined by p < A <= X € Z(p).
A filter in W)y is a subset U C W) such that

1. if Ae Uand u <\, then p € U, and

2. if p,v € U, then there exists A € U with p, v < A\
Denote the set of all filters by A. Say U is an ultrafilter if U is
a maximal filter. Denote the set of ultrafilters by A.

S.B.G. Webster The path spaces of a graph
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Give W) a partial order < defined by p < A <= X € Z(p).
A filter in W)y is a subset U C W) such that

1. if Ae Uand u <\, then p € U, and

2. if p,v € U, then there exists A € U with p, v < A\
Denote the set of all filters by A. Say U is an ultrafilter if U is
a maximal filter. Denote the set of ultrafilters by A.
Each x € W), determines a filter
Uy == {x(0,n) : n € Nk n < d(x)}
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Give W) a partial order < defined by p < A <= X € Z(p).
A filter in W)y is a subset U C W) such that

1. if Ae Uand u <\, then p € U, and

2. if p,v € U, then there exists A € U with p, v < A\

Denote the set of all filters by A. Say U is an ultrafilter if U is
a maximal filter. Denote the set of ultrafilters by A.

Each x € W) determines a filter

Uyx = {x(0,n) : n€ N¥n < d(x)}

Conversely, each filter U € A determines a k-graph morphism:
let m = Vv{d(x) : x € U}. Then for p, g € N¥ with

p < q < m, define xy : Qx.m — A by xu(p, q) = A(p, q),
where A\ € U and d(\) > g. This is well defined since U is a
filter.
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Give W) a partial order < defined by p < A <= X € Z(p).
A filter in W)y is a subset U C W) such that

1. if Ae Uand u <\, then p € U, and

2. if p,v € U, then there exists A € U with p, v < A\

Denote the set of all filters by A. Say U is an ultrafilter if U is
a maximal filter. Denote the set of ultrafilters by A.

Each x € W) determines a filter

Uyx = {x(0,n) : n€ N¥n < d(x)}

Conversely, each filter U € A determines a k-graph morphism:
let m = Vv{d(x) : x € U}. Then for p, g € N¥ with

p < q < m, define xy : Qx.m — A by xu(p, q) = A(p, q),
where A\ € U and d(\) > g. This is well defined since U is a
filter.

&has similar looking topology, replacing Z(p) with
Z(p)={UeN:pe U}

/A = Whp.
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Example (1)

(fi)ien

Ao = {{w}} U{Us : i €N}
f,-—>vin W/\.

o~

Noso is not closed!
Don’t need infinite receivers to see this.
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Example (2)

fo fi fa
ho hy ha h3
"4 (] ° °
X0 X1 X2
80 81 82 83

Ugov UhoﬁJf1-~~UXog17 UXoX1g27 € Moo
X0.--Xn—18n — X0X1--.
Usoxi .. §§ /\
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In path-space terminology, the anologue of A, is denoted

A= (Definition in RSY2004).

Define dA to be the filters U € A such that for each we U,
E C s(u)FE(N), there exists v € E such that pv € x

Then OA = {Uy : x € OA}.
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In path-space terminology, the anologue of Koo is denoted
A= (Definition in RSY2004).

Define dA to be the filters U € A such that for each we U,
E C s(u)FE(N), there exists v € E such that pv € x

Then OA = {Uy : x € OA}.
Ao = ON
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In path-space terminology, the anologue of Koo is denoted
A= (Definition in RSY2004).

Define dA to be the filters U € A such that for each we U,
E C s(u)FE(N), there exists v € E such that pv € x

Then OA = {Uy : x € OA}.
Moo = ON
KOO = 0N if A is row-finite and locally convex:

A is row-finite if vA™ is finite for each v € A% and m € N¥,
and

A is locally-convex if for each i # j, p € A% and v € r(u)AY,
the sets s(u)A% and s(v)A® are nonempty.
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A k-graph A is finitely aligned if MCE(u, ) is finite (possibly
empty) for all u,v € A.

Given a finitely aligned k-graph A, a Cuntz-Krieger A-family in
a C*-algebra B is a map s : A — B such that each s is a
partial isometry, and that

CK1. {s, : v € A%} are mutually orthogonal projections,

CK2. s;s, = s, if pv € A,

CK3. sis, = ZW:VBGMCE(M,U) SaSj, and

CK4. TT,ee(sv —sasy) =0forall v e A and E € vFE(A).

C*(A) is the universal C*-algebra for Cuntz-Krieger A-families.

S.B.G. Webster The path spaces of a graph



RERIGE O | ISR G
A k-graph A is finitely aligned if MCE(u, ) is finite (possibly
empty) for all u,v € A.

Given a finitely aligned k-graph A, a Cuntz-Krieger A-family in
a C*-algebra B is a map s : A — B such that each s is a
partial isometry, and that

CK1. {s, : v € A%} are mutually orthogonal projections,
CK2. s;s, = s, if pv € A,

CK3. sis, = ZW:VBGMCE(M,U) SaSj, and

CK4. TT,ee(sv —sasy) =0forall v e A and E € vFE(A).

C*(A) is the universal C*-algebra for Cuntz-Krieger A-families.

C*(N) is nonzero since the representation S : A — B(£2(9N))
given by

0 otherwise

Sty = {sxx i 5(0) = r(x)

yields a nonzero Cuntz-Krieger A-family.
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We call Dp := C*({sxs} : A € A}) C C*(A) the diagonal
C*-subalgebra of C*(A). One can show that
Dp =span{sys} : A € A}
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We call Dp := C*({sxs} : A € A}) C C*(A) the diagonal
C*-subalgebra of C*(A). One can show that
Dp =span{sys} : A € A}
Dy = Co(@/\)

Let ¢ be a character of Dp.
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We call Dp := C*({sxs} : A € A}) C C*(A) the diagonal
C*-subalgebra of C*(A). One can show that
Dp =span{sys} : A € A}

Dy = C0(8/\)

Let ¢ be a character of Dp.

For each n € Nk, {s\s} : A € A"} is a family of mutually
orthogonal projections.

Notice that u < A <= s)sy < sus;.
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We call Dp := C*({sxs} : A € A}) C C*(A) the diagonal
C*-subalgebra of C*(A). One can show that
Dp =span{sys} : A € A}

Dy = C0(8/\)

Let ¢ be a character of Dp.

For each n € Nk, {s\s} : A € A"} is a family of mutually
orthogonal projections.

Notice that u < A <= s)sy < sus;.

So {X:¢(sxsy) =1} € A, and so determines a unique path
x € Wh.
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We call Dp := C*({sxs} : A € A}) C C*(A) the diagonal
C*-subalgebra of C*(A). One can show that
Dp =span{sys} : A € A}

Dy = C0(8/\)

Let ¢ be a character of Dp.

For each n € Nk, {s\s} : A € A"} is a family of mutually
orthogonal projections.

Notice that u < A <= s)sy < sus;.
So {X:¢(sxsy) =1} € A, and so determines a unique path
x € Wh.

For each n < d(x) and E € x(n)FE(N), (CK4) says that
[Tree(sx(n) = 5xs3) = 0, and it follows that x € OA.

S.B.G. Webster The path spaces of a graph
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Farthing defined a process which, given an row-finite k-graph A,
constructs a row-finite k-graph I with no sources such that
C*(N) ~sme C*(T'). This process extends the non-infinite
boundary paths of A to infinite paths [F,W].
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Farthing defined a process which, given an row-finite k-graph A,
constructs a row-finite k-graph I with no sources such that

C*(N) ~sme C*(T'). This process extends the non-infinite
boundary paths of A to infinite paths [F,W]. For example, consider
the 2-graph
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fo f f
ho ht ha h3
Vo X . X1 . X .
80 81 82 83

Here, w, := xo ... x,—18n and any path of degree (1, 00) are all
elements of OA. The idea is to extend these paths to be infinite in
all directions (degrees, colours,...).
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X0 X1 X2
Vo %1 Vo V3
A A A A
I I I I
I I I I
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°
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Putting it all together
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. .
¥ ¥
¢ ——————— - o<« — -
. 7/
. p
. 7/
e
p
o™ 7/
” g bv\\
—-ve——— S0 - e - - e
) 2 .
< ¥ ¥
L Il L
o | 4
X | \\
| p
& s
~ \74
\\VO|YVA\\\\\\\\\,R$\\ \\
I 0 .
< ¥ o ¥
T o<« — -
7/
g B
.
] 7
— y
Y ,«\
¥
——>e— ST - e - e
— s ’
< " ¥
oc-L oo o<« — -
! 7
P
g o
.
] 7
& L
174
- >e—— Q< - - - - - o< — —
o
B

S.B.G. Webster



wSTITUTEFOR
UNIVERSITY OF [55%]

MATHEMATICS & Fas)
TS APPLICATIONS WOLLONGONG (Y

Formally, the ‘new’ path space is defined as a set of equivalence
classes that deal with when extended boundary paths overlap.
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Formally, the ‘new’ path space is defined as a set of equivalence
classes that deal with when extended boundary paths overlap. We
can ‘project’ paths from I onto paths from A. For example

s
’
s

X0 X1 X2
Vo Vi Vo V3
4 4 A A
| | | |
| | | |
| | | |
| | | | g3
| | | | °
| | | | AR
| | | | N
e —-=-—-—--- o€ —=-=-=--== R . : AN
A A A AR |
| 1 . 1 1 N Ie
| | . | | N |
| | | | AN |
N
.
AR
|
|
|
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Formally, the ‘new’ path space is defined as a set of equivalence
classes that deal with when extended boundary paths overlap. We
can ‘project’ paths from I onto paths from A. For example

X0 X1 X2
) Vi V2 V3

83
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The projection 7 : A°T> — OA is a homeomorphism.
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The projection 7 : A°T> — OA is a homeomorphism.
The isomorphism C*(A) = pC*(I')p induces a

—

homeomorphism p : pDrp — Da.
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The projection 7 : A°T> — OA is a homeomorphism.
The isomorphism C*(A) = pC*(I')p induces a

homeomorphism p : pDrp — Da.

Then the following diagram commutes:

AOT o u oA
U] ha
— p —~
pDrp Da

Where 7 is essentially a restriction of hr : [ — E)\r to paths
with range in A°.
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