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One of the major programs in the subject of Operator Algebras is to
classify C ∗-algebras using invariants provided by topological K -theory.
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For C ∗-algebras (and rings) there are often two types of classification that
are desired: Classification up to isomorphism and classification up to
Morita equivalence.

Today, I’m going to talk about classification up to Morita equivalence.

Morita equivalence in the category of C ∗-algebras is often called “strong
Morita equivalence” to distinguish it from Morita equivalence of rings.
Also, strong Morita equivalence for C ∗-algebras is the same as being stably
isomorphic.

A ∼SME B ⇐⇒ A⊗K ∼= B ⊗K
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There are many important results from the classification program, but two
major accomplishments are:

Theorem (Elliott’s Theorem)

If A and B are C ∗-algebras that are AF (i.e., direct limits of
finite-dimensional algebras), then A ∼SME B if and only if

(K top
0 (A),K top, +

0 (A)) ∼= (K top
0 (B),K top, +

0 (B)).

Theorem (Kirchberg-Phillips Classification Theorem)

If A and B are purely infinite, simple, separable, nuclear C ∗-algebras that
are in the bootstrap class to which the UCT applies, then A ∼SME B if
and only if

K top
0 (A) ∼= K top

0 (B) and K top
1 (A) ∼= K top

1 (B).

Note: Many purely infinite, simple C ∗-algebras fall into this class.
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Can a similar classification be done for algebras?

The proof of Elliott’s Theorem works for ultramatricial algebras over a
field K (i.e., algebraic direct limits of finite-dimensional K -algebras), and
can be used to show the ordered K0-group is a complete Morita
equivalence invariant for ultramatricial algebras. (Indeed, Elliott showed
this in his original paper.)

What about the Kirchberg-Phillips Classification Theorem? Can a similar
result be obtained for purely infinite algebras? Can we use algebraic
K -theory in place of topological K -theory? (We may need the higher
algebraic K -groups . . . these may be harder to compute . . .)

Definition: A ring R is purely infinite if every left ideal of R contains an
infinite idempotent.
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We cannot hope to mimic or adapt the proof of the Kirchberg-Phillips
theorem. We will need to use different techniques. What characteristics
should we look for in our class of algebras?

Purely infinite and simple.

A “nice” class of algebras that are similar to C ∗-algebras. Ideally, we
would like this class to be similar to a subclass of purely infinite
C ∗-algebras that can be classified by other, more direct, methods.

Unital. (At least as a starting point.)

The K -groups should be computable.

Answer: Cuntz-Krieger C ∗-algebras are simple, purely infinite, and were
originally classified by techniques different from those used in the
Kirchberg-Phillips theorem. Also, the K -groups are easy to compute.

We will consider algebras that are analogues of the Cuntz-Krieger algebras.

Cuntz-Krieger algebras were originally associated to finite square matrices,
but the modern approach is to formulate them in terms of graphs.
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A (directed) graph E = (E 0,E 1, r , s) consists of a set of vertices E 0, a set
of edges E 1, and maps r : E 1 → E 0 and s : E 1 → E 0 identifying the range
and source of each edge. (We’ll allow infinite graphs, but assume the
vertex set and edge set are countable.)

•
��

// •
��
mm

��~~~~~~~

• ZZ

VV hh

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 9 / 46



Definition (Graph C ∗-algebras)

If E is a graph, the graph C ∗-algebra C ∗(E ) is the universal C ∗-algebra
generated by a Cuntz-Krieger E -family, which consists of mutually
orthogonal projections {pv : v ∈ E 0} and partial isometries with mutually
orthogonal ranges {se : e ∈ E 1} satisfying

1 s∗e se = pr(e) for all e ∈ E 1

2 pv =
∑
{e∈E1:s(e)=v} ses∗e for all v ∈ E 0 with 0 < |s−1(v)| <∞

3 ses∗e ≤ ps(e) for all e ∈ E 1.

Fact: C ∗(E ) is unital if and only if E has a finite number of vertices.
In this case 1 =

∑
v∈E0 pv .

Fact: If E is finite with no sinks or sources, then C ∗(E ) is simple if and
only if E is strongly connected and not a single cycle.
(In this case C ∗(E ) is purely infinite and unital.)
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Gene Abrams and Gonzalo Aranda-Pino introduced Leavitt path algebras.

Definition (Leavitt path algebras)

Given a graph E = (E 0,E 1, r , s) and a field K , the Leavitt path algebra
LK (E ) is the universal K -algebra generated by a set {v : v ∈ E 0} of
pairwise orthogonal idempotents, together with a set {e, e∗ : e ∈ E 1} of
elements such that the e’s and e∗’s satisfy the relations of partial
isometries with mutually orthogonal ranges, and

1 e∗e = r(e) for all e ∈ E 1

2 v =
∑
{e∈E1:s(e)=v} ee∗ for all v ∈ E 0 with 0 < |s−1(v)| <∞

3 ee∗ ≤ s(e) for all e ∈ E 1.

LK (E ) has many properties strikingly similar to C ∗(E ).
Fact: LK (E ) is unital if and only if E has a finite number of vertices.
Fact: If E is finite with no sinks or sources, then LK (E ) is simple if and

only if E is strongly connected and not a single cycle.
(In this case LK (E ) is purely infinite and unital.)
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The classification of simple Cuntz-Krieger algebras

Let’s start by considering the invariant.

How can we calculate the topological K -groups?

Let AE be the square matrix indexed by the vertices, and with

AE (v ,w) = number of edges from v to w

If E has no sinks and no infinite emitters, then

K top
0 (C ∗(E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)
and

K top
1 (C ∗(E )) ∼= ker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)
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If E is a finite graph, put I − At
E into Smith Normal Form.

I − At
E ←→



d1

. . .

dk

0
. . .

0



Then

K top
0 (C ∗(E )) ∼= coker(I − At

E ) ∼= Zd1 ⊕ . . .⊕ Zdk
⊕ Zm

K top
1 (C ∗(E )) ∼= ker(I − At

E ) ∼= Zm.

Note: K top
1 (C ∗(E )) is the free part of K top

0 (C ∗(E )).
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We expect that if E is a finite graph with no sinks or sources (and not a
single cycle), then C ∗(E ) is determined up to strong Morita equivalence by
K top

0 (C ∗(E )) ∼= coker(I − At
E ).

This was proved by Cuntz and Krieger (and also relied on some work of
Eilliott and of Rørdam) almost two decades before the Kirchberg-Phillips
classification theorem. How was this accomplished?

A large component of the proof used Symbolic Dynamics.
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If E is a finite graph, the (two-sided) shift space XE is the set

XE := {. . . e−2e−1e0e1e2 . . . | ei ∈ E 1 and r(ei ) = s(ei+1) for all i ∈ Z}

with the shift map σE : XE → XE given by σE (x)i = xi+1.

We give the finite set of edges E 1 the discrete topology, so the infinite
product ∏

Z
E 1 = . . .E 1 × E 1 × E 1 × . . .

is compact by Tychonoff’s theorem. We then give XE ⊆
∏

Z E 1 the
subspace topology. The space XE is closed (and hence compact).

The pair (XE , σE ) is a dynamical system.
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Definition

The shift spaces (XE , σE ) and (XF , σF ) are conjugate if there exists a
homeomorphism φ : XE → XF with

σF ◦ φ = φ ◦ σE .

Definition

If XE is a shift space, the suspension flow is the quotient space

SXE := (XE × R)/{(x , t) ∼ (σE (x), t − 1)}.

There is a flow on SXE induced by the flow φt on XE × R given by
φt(x , s) = (x , s + t). The shift spaces (XE , σE ) and (XF , σF ) are said to
be flow equivalent if there is a homeomorphism h : SXE → SXF carrying
orbits of the flow on SXE to orbits of the flow on SXF and preserving the
orientation.

Conjugacy and Flow Equivalence are related to moves on the graphs.
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Move (O): Outsplitting

•

• // v

e
??~~~~~~~

h
��

@@@@@@@

f
((

g
66 •

•

??~~~~~~~
•

Outsplitting
=⇒

v1
e //

f

��
@@@@@@@@ •

• //

??~~~~~~~~

��
@@@@@@@@ v2

g
// •

•

??~~~~~~~~
//

GG��������������
v3

h // •

s−1(v) = {e, f } ∪ {g} ∪ {h}

Move (I): Insplitting

•

• a // v

??~~~~~~~

��
@@@@@@@
((
66 •

•
b

??~~~~~~~
•

Insplitting
=⇒

•

• a // v1

>>}}}}}}}

��
@@@@@@@@
((
66 •

• b // v3

GG��������������
//

66 GG

•

r−1(v) = {a} ∪ {b}
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Move (R): Reduction

•

��
@@@@@@@ •

• // v
))
55
// w f // •

??~~~~~~~
//

��
@@@@@@@ •

•

??~~~~~~~
•

Reduction
=⇒

•

��
@@@@@@@ •

• // v
((
66// •

??~~~~~~~
//

��
@@@@@@@ •

•

??~~~~~~~
•

s−1(w) is a single edge f

s(r−1(w)) is a single vertex v

Move (R) is also sometimes called the “Parry-Sullivan Move”.

For each move there is also an inverse move.

Inverse of Outsplitting is called Outamalgamation.
Inverse of Insplitting is called Inamalgamation.
Inverse of Reduction is called Delay.
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Suppose E and F are finite, strongly connected graphs and neither is a
single cycle.

Williams proved:

XE is conjugate to XF ⇐⇒ E can be transformed into F via

Moves (O), (I), and their inverses

Work of Parry and Sullivan together with work of Franks shows

XE is flow equivalent to XF

Parry-Sullivan

⇐⇒ E can be transformed into F via

Moves (O), (I), (R), and their inverses ⇐⇒ E can be transformed into F
Franks

⇐⇒ coker(I − AE ) ∼= coker(I − AF ) and

sgn(det(I − AE )) = sgn(det(I − AF )) ⇐⇒ E can be transformed into F
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Since I − AE and I − AF are finite matrices, their transposes have the
same cokernels and determinants. Thus Franks’ result can be restated as

E can be transformed into F via Moves (O), (I), (R), and their inverses

⇐⇒ coker(I − At
E ) ∼= coker(I − At

F ) and sgn(det(I − At
E )) = sgn(det(I − At

F ))

⇐⇒ K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )) and sgn(det(I − At
E )) = sgn(det(I − At

F ))

Cuntz and Krieger showed the moves preserve strong Morita
equivalence of the associated C ∗-algebra. (This can be seen easily
from the graphs, using the universal property.)

The sign of the determinant condition requires another move!
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The Cuntz Splice

Move (CS): Cuntz Splice

•%% ))
vhh

Cuntz Splice
=⇒ •%% ))

vhh
** v1ii

**��
v2jj gg

v is the base of two cycles

Let E be a graph, and perform the Cuntz splice to obtain F .

AF =


1 1 0 0 · · ·
1 1 1 0 · · ·
0 1
0 0 AE
...

...


Then K top

0 (C ∗(E )) ∼= K top
0 (C ∗(F )), but det(I − At

F ) = − det(I − At
E ).
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Work of Elliott together with work of Rørdam shows that the Cuntz splice
preserves Morita equivalence of the associated C ∗-algebra. However,
unlike the other moves this cannot be shown explicitly, and relies on some
“C ∗-algebra magic”.
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Theorem (Cuntz and Krieger)

Suppose E and F are finite, strongly connected graphs and neither is a
single cycle. Then C ∗(E ) is strongly Morita equivalent to C ∗(F ) if and
only if K top

0 (C ∗(E )) ∼= K top
0 (C ∗(F )).

Moreover, in this case one can transform E into F using moves (O), (I),
(R), (CS), and their inverses.

Proof:
K top

0 (C ∗(E )) ∼= K top
0 (C ∗(F )) =⇒ coker(I − At

E ) ∼= coker(I − At
F )

(If sgn det(I −At
E ) = sgn(det(I −At

F )), great.
If not, apply Cuntz splice.)

=⇒ coker(I − At
E ) ∼= coker(I − At

F ) and
sgn det(I − At

E ) = sgn(det(I − At
F ))

=⇒ E can be turned into F via (O), (I), (R)
and their inverses

=⇒ C ∗(E ) strongly Morita equiv. to C ∗(F )
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Abrams, Louly, Pardo, and Smith considered an analogous classification for
Leavitt path algebras.

The K -theory of LK (E ) can be computed. In fact, if E is a finite
graph with no sinks, then for any field K we have

K alg
0 (LK (E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)

and K top
0 (C ∗(E )) ∼= K alg

0 (LK (E )).

One can show the moves (O), (I), and (R) preserve Morita
equivalence of the associated Leavitt path algebra.

However, no one has been able to determine whether the Cuntz splice
preserves Morita equivalence of the Leavitt path algebra or not!

Thus the best that can be accomplished is the following . . .

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 24 / 46



Abrams, Louly, Pardo, and Smith considered an analogous classification for
Leavitt path algebras.

The K -theory of LK (E ) can be computed. In fact, if E is a finite
graph with no sinks, then for any field K we have

K alg
0 (LK (E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)

and K top
0 (C ∗(E )) ∼= K alg

0 (LK (E )).

One can show the moves (O), (I), and (R) preserve Morita
equivalence of the associated Leavitt path algebra.

However, no one has been able to determine whether the Cuntz splice
preserves Morita equivalence of the Leavitt path algebra or not!

Thus the best that can be accomplished is the following . . .

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 24 / 46



Abrams, Louly, Pardo, and Smith considered an analogous classification for
Leavitt path algebras.

The K -theory of LK (E ) can be computed. In fact, if E is a finite
graph with no sinks, then for any field K we have

K alg
0 (LK (E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)

and K top
0 (C ∗(E )) ∼= K alg

0 (LK (E )).

One can show the moves (O), (I), and (R) preserve Morita
equivalence of the associated Leavitt path algebra.

However, no one has been able to determine whether the Cuntz splice
preserves Morita equivalence of the Leavitt path algebra or not!

Thus the best that can be accomplished is the following . . .

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 24 / 46



Abrams, Louly, Pardo, and Smith considered an analogous classification for
Leavitt path algebras.

The K -theory of LK (E ) can be computed. In fact, if E is a finite
graph with no sinks, then for any field K we have

K alg
0 (LK (E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)

and K top
0 (C ∗(E )) ∼= K alg

0 (LK (E )).

One can show the moves (O), (I), and (R) preserve Morita
equivalence of the associated Leavitt path algebra.

However, no one has been able to determine whether the Cuntz splice
preserves Morita equivalence of the Leavitt path algebra or not!

Thus the best that can be accomplished is the following . . .

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 24 / 46



Abrams, Louly, Pardo, and Smith considered an analogous classification for
Leavitt path algebras.

The K -theory of LK (E ) can be computed. In fact, if E is a finite
graph with no sinks, then for any field K we have

K alg
0 (LK (E )) ∼= coker

(
I − At

E :
⊕
E0

Z→
⊕
E0

Z

)

and K top
0 (C ∗(E )) ∼= K alg

0 (LK (E )).

One can show the moves (O), (I), and (R) preserve Morita
equivalence of the associated Leavitt path algebra.

However, no one has been able to determine whether the Cuntz splice
preserves Morita equivalence of the Leavitt path algebra or not!

Thus the best that can be accomplished is the following . . .

Mark Tomforde (University of Houston) Classification of Leavitt path algebras April 22, 2013 24 / 46



Theorem (Abrams, Louly, Pardo, and Smith)

Suppose E and F are finite, strongly connected graphs and neither is a
single cycle. Also let K be any field. If

K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and sgn(det(I − At
E )) = sgn(det(I − At

F )),

then LK (E ) is Morita equivalent to LK (F ).

Moreover, in this case one can transform E into F using moves (O), (I),
(R), and their inverses.

Proof:
The hypotheses show

coker(I − At
E ) ∼= coker(I − At

F ) and sgn det(I − At
E ) = sgn(det(I − At

F )).

Franks’ theorem implies E can be turned into F via moves (O), (I), (R),
and their inverses. These moves preserve Morita equivalence, so LK (E ) is
Morita equivalent to LK (F ).
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Some remarks:

The field K does not seem to matter.

K alg
0 (LK (E )) and sgn(det(I − At

E )) completely determine the Morita

equivalence class of LK (E ), and hence determine K alg
n (LK (E )) for

n ∈ Z.

No one knows whether the “sign of the determinant condition” is
necessary, or whether it can be removed from the theorem!

No one knows if the Cuntz splice preserves Morita equivalence of the
Leavitt path algebra.

We cannot even answer this in the simplest case:

E2 •
��

ZZ E−2 •
��

MM
(( •hh

((��
•hh ee

Is LK (E2) Morita equivalent to LK (E−2 )? No one knows.
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What about other unital, purely infinite graph C ∗-algebras?

Remember C ∗(E ) is unital if and only if E has a finite number of vertices.
We could consider infinite graphs with a finite number of vertices that are
strongly connected. Their C ∗-algebras are purely infinite and simple.

This was recently done, with great success, by Adam Sørensen.

We can’t consider shift spaces here (the number of edges is infinite), but
that’s okay. Franks’ result for finite, strongly connected graphs:

E can be transformed into F via Moves (O), (I), (R) and their inverses

⇐⇒ coker(I − At
E ) ∼= coker(I − At

F ) and sgn(det(I − At
E )) = sgn(det(I − At

F ))

is a purely algebraic statement that does not rely on the notion of flow
equivalence to state or prove.
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If E has a finite number of vertices, but an infinite number of edges, the
computation of the K -theory is a bit different:

E 0
reg = vertices of E that emit a finite and nonzero number of edges

E 0
sing = vertices that emit infinitely many edges or no edges

With respect to E 0 = E 0
reg ∪ E 0

sing we have

AE =

(
BE CE

∗ ∗

)
where BE and CE have finite entries. Then

K top
0 (C ∗(E )) ∼= coker

(I − Bt
E

−C t
E

)
:
⊕
E0

reg

Z→
⊕
E0

Z


and

K top
1 (C ∗(E )) ∼= ker

(I − Bt
E

−C t
E

)
:
⊕
E0

reg

Z→
⊕
E0

Z


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If E is has a finite number of vertices, we can still put the matrix in Smith
Normal Form.

(
I − Bt

E

−C t
E

)
←→



d1

. . .
dk

0
. . .

0
0 ··· ··· 0
...

...
0 ··· ··· 0



Then

K top
0 (C ∗(E )) ∼= Zd1 ⊕ . . .⊕ Zdk

⊕ Zm and K top
1 (C ∗(E )) ∼= Zn.

We see that K top
0 (C ∗(E )) no longer determines K top

1 (C ∗(E )). So we will
need the K top

1 -group in our invariant.
Also, the number of singular vertices is a Morita equivalence invariant:

|E 0
sing| = rank K top

0 (C ∗(E ))− rank K top
1 (C ∗(E )).
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What about the moves?

We have to make a few specifications about what is allowed for infinite
graphs:

Move (O) can be performed at an infinite emitter, but when we partition
outgoing edges, only one piece of the partition is allowed to have an
infinite number of edges.

Move (I) can only be performed at a regular vertex.

Move (R) can only be performed at a regular vertex.

With these specifications, the moves still preserve Morita equivalence of
the associated C ∗-algebra.
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Theorem (Sørensen)

Suppose E and F are strongly connected graphs that each have a finite
number of vertices and an infinite number of edges. Then

E can be transformed into F via Moves (O), (I), (R) and their inverses

⇐⇒ K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )) and K top
1 (C ∗(E )) ∼= K top

1 (C ∗(F ))

Note:

The K top
1 -group is needed (as we would expect).

The “sign of the determinant condition” disappears! (The matrices
involved are not square, so we can’t even take determinants.)

We do not need the Cuntz splice move!!!

In fact, this result implies . . .
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Corollary

Suppose E is a strongly connected graph that has a finite number of
vertices and an infinite number of edges, and if F is the graph obtained by
performing the Cuntz splice to E, then F may be ontained by performing
Moves (O), (I), (R), and their inverses to E.

Thus, while we cannot turn E2 into E−2

E2 •%% yy
E−2 •

��

MM
(( •hh

((��
•hh ee

using Moves (O), (I), (R), and their inverses, we can turn E∞ into E−∞

E∞ •
��

E−∞ •!) (( •hh
((��
•hh ee

using Moves (O), (I), (R), and their inverses.
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Theorem (Sørensen)

Suppose E and F are strongly connected graphs that each have a finite
number of vertices and an infinite number of edges. Then the following
are equivalent:

(1) C ∗(E ) is Morita equiavlent to C ∗(F )

(2) K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )) and K top
1 (C ∗(E )) ∼= K top

1 (C ∗(F )).

(3) K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )) and |E 0
sing| = |F 0

sing|.

Moreover, in this case one can transform E into F using moves (O), (I),
(R), and their inverses.
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Efren Ruiz (University of Hawai’i at Hilo) and I have considered how we
can use Sørensen’s result

E can be transformed into F via Moves (O), (I), (R) and their inverses

⇐⇒ K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )) and K top
1 (C ∗(E )) ∼= K top

1 (C ∗(F ))

to classify Leavitt path algebras.

Problem: Algebraic K -theory not the same as the topological K -theory.
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With respect to E 0 = E 0
reg ∪ E 0

sing we have

AE =

(
BE CE

∗ ∗

)
where BE and CE have finite entries.

If K is any field, then

K alg
0 (LK (E )) ∼= coker

(I − Bt
E

−C t
E

)
:
⊕
E0

reg

Z→
⊕
E0

Z


and

K alg
1 (LK (E )) ∼= ker

(I − Bt
E

−C t
E

)
:
⊕
E0

reg

Z→
⊕
E0

Z



⊕ coker

(I − Bt
E

−C t
E

)
:
⊕
E0

reg

K× →
⊕
E0

K×


We see the field matters in K alg

1 (LK (E )).
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Efren Ruiz and I considered a certain property of fields.

Definition

An abelian group has no free quotients if no nonzero quotient of the group
is a free abelian group.

Theorem

The following are equivalent:

(1) G has no free quotients.

(2) G is not a direct sum of a free abelian group and another group.

(3) HomZ(G ,F ) = {0} for every free abelian group F .

Definition

A field K has no free quotients if the abelian group (K×, ·) has no free
quotients.
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Example

The following are examples of fields with no free quotients:

C
R
All finite fields.

All algebraically closed fields.

All fields that are perfect with characteristic p > 0.

All fields K such that (K×, ·) is a torsion group.

Example

Q is an example of a field with free quotients:

Q× ∼= Z2 ⊕ Z⊕ Z⊕ . . . .
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Theorem (Ruiz and T)

Let E and F be graphs, and let K be a field with no free quotients.

(1) If K alg
0 (LK (E )) ∼= K alg

0 (LK (F )), then K top
0 (C ∗(E )) ∼= K top

0 (C ∗(F )).

(2) If K alg
1 (LK (E )) ∼= K alg

1 (LK (F )), then K top
1 (C ∗(E )) ∼= K top

1 (C ∗(F )).

(3) If K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and K alg
1 (LK (E )) ∼= K alg

1 (LK (F )),
then |E 0

sing| = |F 0
sing|.

These implications do not hold if the hypothesis that K has no free
quotients is dropped.

We can put this together with Sørensen’s result to obtain a classification
for unital Leavitt path algebras of infinite graphs.
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Theorem (Ruiz and T)

Let E and F be strongly connected graphs with a finite number of vertices
and an infinite number of edges. If K is a field with no free quotients,
then the following are equivalent:

(1) LK (E ) is Morita equivalent to LK (F ).

(2) K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and K alg
1 (LK (E )) ∼= K alg

1 (LK (F )).

(3) K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and |E 0
sing| = |F 0

sing|.

Moreover, in this case E can be transformed into F via the moves (O), (I),
(R), and their inverses.
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This implies that for simple unital Leavitt path algebras of infinite graphs
over a field with no free quotients, all algebraic K -theory information is
contained in the K alg

0 -group and K alg
1 -group.

Corollary

If E and F are strongly connected graphs with a finite number of vertices
and an infinite number of edges, K is a field with no free quotients, and

K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and K alg
1 (LK (E )) ∼= K alg

1 (LK (F )),

then
K alg

n (LK (E )) ∼= K alg
n (LK (F )) for all n ∈ Z.
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What happens when the underlying field has free quotients?

Example (An interesting (counter)example)

Let E and F be the following graphs and let K = Q.

E •∞ 5=
(( •hh ∞ai F •99

��

��

++ •
��

ee

��

jj

•

∞

V^

HHVV

Then
K alg

0 (LQ(E )) ∼= K alg
0 (LQ(F )) ∼= Z⊕ Z

K alg
1 (LQ(E )) ∼= K alg

1 (LQ(F )) ∼= Z⊕ Z⊕ . . .
but . . .

K alg
2 (LQ(E )) 6∼= K alg

2 (LQ(F )).

so LK (E ) and LK (F ) are not Morita equivalent.
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Example

E •∞ 5=
(( •hh ∞ai F •99

��

��

++ •
��

ee

��

jj

•

∞

V^

HHVV

Observations: For general fields

K alg
n (LK (E )) ∼= K alg

n (LK (F )) for n = 0, 1 does not imply that LK (E )
and LK (F ) are Morita equivalent.

K alg
n (LK (E )) ∼= K alg

n (LK (F )) for n = 0, 1 does not imply that

K alg
n (LK (E )) ∼= K alg

n (LK (F ) for n ∈ Z.

The number of singular vertices in E cannot be determined from the
two groups K alg

0 (LK (E )) and K alg
1 (LK (E )).
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Theorem (Ruiz and T)

Let E and F be strongly connected graphs with a finite number of vertices
and an infinite number of edges. If K has no free quotients, TFAE:

(1) LK (E ) is Morita equivalent to LK (F ).

(2) K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and K alg
1 (LK (E )) ∼= K alg

1 (LK (F )).

(3) K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and |E 0
sing| = |F 0

sing|.

But our example shows in general (2) 6=⇒ (1). Remarkably, we can prove
the following . . .

Theorem (Ruiz and T)

Let E and F be strongly connected graphs with a finite number of vertices
and an infinite number of edges. Let K be any field. Then LK (E ) is

Morita equivalent to LK (F ) if and only if K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and
|E 0

sing| = |F 0
sing|.

So, in general, (1) ⇐⇒ (3) =⇒ (2).
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So the proper invariant for LK (E ) when E has an infinite number of edges
is

(K alg
0 (LK (E )), |E 0

sing|)

and when K has no free quotients this can be replaced by

(K alg
0 (LK (E )),K alg

1 (LK (E ))).

Combining the theorem of Abrams, Louly, Pardo, and Smith with the
theorem of Ruiz and Tomforde gives a nearly complete classification of
unital simple Leavit path algebras.
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Theorem (Classification of simple Unital Leavitt Path Algebras)

Let LK (E ) and LK (F ) be simple unital Leavitt path algebras.

(1) If E and F both have a finite number of edges, and if

K alg
0 (LK (E ) ∼= K alg

0 (LK (F )) and sgn(det(I−At
E )) = sgn(det(I−At

F )),

then LK (E ) is Morita equivalent to LK (F ).

(2) If E and F both have an infinite number of edges, then LK (E ) is
Morita equivalent to LK (F ) if and only if

K alg
0 (LK (E )) ∼= K alg

0 (LK (F )) and |E 0
sing| = |F 0

sing|.

(3) If one of E and F has a finite number of edges, and one has an infinite
number of edges, then LK (E ) and LK (F ) are not Morita equivalent.

The only missing part is to determine if the “sign of the determinant
condition” is necessary in (1). When K has no free quotients, we can

replace |E 0
sing| = |F 0

sing| in (2) with K alg
1 (LK (E )) ∼= K alg

1 (LK (E )).
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Thank you!
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