K-theory of twisted C*-algebras associated to higher-rank graphs BIRS 2013

Aidan Sims

University of Wollongong

25 April 2013

Joint work with Alex Kumjian and David Pask.

MODEL / ANALYSE / FORMULATE / ILLUMINATE <u>CONNECT:IMIA</u>

Higher-rank graphs

Definition (Kumjian-Pask, 2000)

For $k \in \mathbb{N}$, a *k-graph* is a countable category Λ with a functor $d : \Lambda \to \mathbb{N}^k$ satisfying the factorisation property: whenever $d(\lambda) = m + n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

Higher-rank graphs

Definition (Kumjian-Pask, 2000)

For $k \in \mathbb{N}$, a *k-graph* is a countable category Λ with a functor $d : \Lambda \to \mathbb{N}^k$ satisfying the factorisation property: whenever $d(\lambda) = m + n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

- Λ^n denotes $d^{-1}(n)$.
- Factorisation property gives Λ⁰ = {id_o : o ∈ Obj(Λ)}.
- The domain and codomain maps determine maps s, r : Λ → Λ⁰; and then r(λ)λ = λ = λs(λ) for all λ.
- Write, for example, $v\Lambda^n$ for $r^{-1}(v) \cap \Lambda^n$.
- row-finite means vΛⁿ is always finite; no sources means it's always nonempty.

Cohomology

► For an abelian group G, a G-valued 2-cocycle on A is a function

$$c: \Lambda^{*2} := \{(\mu, \nu) \in \Lambda \times \Lambda : s(\mu) = r(\nu)\} \to G$$

such that $c(r(\lambda),\lambda) = c(\lambda,s(\lambda)) = 0$ and

$$c(\lambda,\mu)+c(\lambda\mu,\nu)=c(\mu,\nu)+c(\lambda,\mu\nu).$$

Group of cocycles is $Z^2(\Lambda, \mathbb{T})$.

Standard example: k = 2, and c(α, β) = d(α)₂d(β)₁g for some g ∈ G.

C^* -algebras

If Λ is row-finite with no sources, and c ∈ Z²(Λ, T), then C*(Λ, c) is universal for partial isometries {s_λ : λ ∈ Λ} such that

(CK1)
$$\{s_{\nu} : \nu \in \Lambda^0\}$$
 are mutually orthogonal projections
(CK2) $s_{\mu}s_{\nu} = c(\mu,\nu)s_{\mu\nu}$ when $s(\mu) = r(\nu)$;
(CK3) $s_{\mu}^*s_{\mu} = s_{s(\mu)}$ for every μ ; and
(CK4) $s_{\nu} = \sum_{\mu \in \nu \Lambda^n} s_{\mu}s_{\mu}^*$ for all $\nu \in \Lambda^0$, $n \in \mathbb{N}^k$.

Technical adjustment to (CK4) needed when Λ has sources.

Example

$$e$$

 v $ea = ae$
 a

• let $z \in \mathbb{T}$, and put $c(\mu, \nu) = z^{d(\mu)_2 d(\nu)_1}$.

▶ Relation (CK2) implies that s_v = 1_{C*(Λ)} and C*(Λ) is generated by elements s_e and s_a such that s_as_e = zs_es_a:

(CK3)
$$s_e^* s_e = s_a^* s_a = 1$$
; and
(CK4) $1 = \sum_{\alpha \in vA^{e_1}} s_\alpha s_\alpha^* = s_e s_e^*$, and similarly for s_f .

- So C*(Λ, c_z) is universal for unitaries U, V such that UV = zVU: the noncommutative torus A_z.
- up to cohomology, these are the only cocycles, so the only twisted algebras for this graph.

Example

• Adjustment to (CK4): impose only when $v\Lambda^n$ is nonempty.

• For $\theta \in [0, 1)$, $c_{\theta}(\mu, \nu) = e^{2\pi i d(\mu)_2 d(\nu)_1 \theta}$ gives a cocycle.

э

イロト イポト イヨト イヨト

Example

- Adjustment to (CK4): impose only when $v\Lambda^n$ is nonempty.
- For $\theta \in [0,1)$, $c_{\theta}(\mu,\nu) = e^{2\pi i d(\mu)_2 d(\nu)_1 \theta}$ gives a cocycle.
- ► U := s_e + s_f + s_g and V := s_a + s_b + s_c generate C^{*}(Λ, c_z) and satisfy:

•
$$U^*U = V^*V = 1;$$

•
$$UV = e^{2\pi i\theta} VU$$
 and $U^*V = e^{-2\pi i\theta} VU^*$; and

•
$$(1 - UU^*)(1 - VV^*) = 0.$$

- $C^*(\Lambda, c)$ is universal for these relations.
- A theorem of Baum-Hajac-Matthes-Szymański says C*(Λ, c) ≅ C(S³_{00θ}).

イロト 不得 とくほ とくほ とうほう

Theorem (Kumjian-Pask-S)

Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^2(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$K_*(C^*(\Lambda), e^{itc}) \cong K_*(C^*(\Lambda))$$

which preserves the classes of the s_v .

Structure of $C^*(\Lambda, c)$

▶ If $d(\lambda) = d(\mu) + q$, then $\lambda = \alpha\beta$ with $d(\alpha) = d(\mu)$, and then

$$s_{\mu}^{*}s_{\lambda} = \overline{c(\alpha,\beta)}s_{\mu}^{*}s_{\alpha}s_{\beta} = \begin{cases} \overline{c(\alpha,\beta)}s_{\beta} & \text{if } \alpha = \mu\\ 0 & \text{otherwise.} \end{cases}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Structure of $C^*(\Lambda, c)$

▶ If $d(\lambda) = d(\mu) + q$, then $\lambda = \alpha\beta$ with $d(\alpha) = d(\mu)$, and then

$$s_{\mu}^{*}s_{\lambda} = \overline{c(\alpha,\beta)}s_{\mu}^{*}s_{\alpha}s_{\beta} = \begin{cases} \overline{c(\alpha,\beta)}s_{\beta} & \text{if } \alpha = \mu\\ 0 & \text{otherwise.} \end{cases}$$

► So for
$$\mu, \nu \in \Lambda$$
 and $p \ge d(\mu), d(\nu),$
 $s_{\mu}^* s_{\nu} = \sum_{\lambda \in r(\mu)\Lambda^p} s_{\mu}^* s_{\lambda} s_{\lambda}^* s_{\nu} = \sum_{\mu\mu' = \nu\nu' \in \Lambda^p} \overline{c(\mu, \mu')} c(\nu, \nu') s_{\mu'} s_{\nu'}^*.$

• So
$$C^*(\Lambda, c) = \overline{\operatorname{span}}\{s_\mu s_\nu^*\}.$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

K-theory

- We are interested in the *K*-theory of $C^*(\Lambda, c)$.
- ▶ In many cases of interest, $K_*(C^*(\Lambda))$ is known or computable.
- Our approach follows Elliott's computation of K-theory of noncommutative tori.
- Outline: start with $h \in Z^2(\Lambda, \mathbb{R})$, and put $c = e^{ih}$.
 - Construct continuous field A of C^* -algebras over [0,1] with $A_0 = C^*(\Lambda)$ and $A_1 = C^*(\Lambda, c)$;
 - ▶ Demonstrate A as a full corner of a crossed-product $(B \otimes C([0, 1])) \rtimes \mathbb{Z}^k$.
 - ► Apply Elliott's inductive argument using Pimsner-Voiculescu.

Central-extension algebras and continuous fields

- Let G be a locally compact abelian group, Λ a row-finite k-graph with no sources and c a G-valued 2-cocycle on Λ.
- A *c*-representation (ϕ, π) of (Λ, G) on *B* is
 - a map $\phi : \Lambda \to M(B)$ and a homomorphism $\pi : C^*(G) \to M(B)$ such that
 - $\pi(f)\phi(\lambda) = \phi(\lambda)\pi(f)$ for all λ, f .
 - the $\phi(\lambda)$ satisfy (CK1), (CK3) and (CK4).

•
$$\phi(\mu)\phi(\nu) = \pi(c(\mu,\nu))\phi(\mu\nu).$$

• the image of π is central in $M(C^*(\Lambda, G, c))$.

Spanning elements

- Suppose that (ϕ, π) is a *c*-representation of (Λ, G) .
- For p ≥ d(µ), d(ν), familiar calculations (which work because the π(f) are central) give

$$\phi(\mu)^*\phi(\nu) = \sum_{\mu\mu'=\nu\nu'\in\Lambda^p} \pi(c(\nu,\nu') - c(\mu,\mu'))\phi(\mu')\phi(\nu')^*.$$

Spanning elements

- Suppose that (ϕ, π) is a *c*-representation of (Λ, G) .
- For p ≥ d(µ), d(ν), familiar calculations (which work because the π(f) are central) give

$$\phi(\mu)^*\phi(\nu) = \sum_{\mu\mu'=\nu\nu'\in\Lambda^p} \pi(c(\nu,\nu') - c(\mu,\mu'))\phi(\mu')\phi(\nu')^*.$$

- ► So $C^*(\pi, \phi) = \overline{\operatorname{span}} \{ \phi(\mu) \pi(f) \phi(\nu)^* : \mu, \nu \in \Lambda, f \in C^*(G) \}.$
- The $\phi(\mu)$ are partial isometries, so $\|\sum a_{\mu,\nu}\phi(\mu)\pi(f_{\mu,\nu})\phi(\nu)^*\| \leq \sum \|f_{\mu,\nu}\|_{\infty}.$
- So there is a universal C*-algebra C*(Λ, G, c) generated by products i_Λ(λ)i_G(f) where (i_Λ, i_G) is a universal c-representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Central-extension algebras and continuous fields

- $C^*(\Lambda, G, c)$ is a $C(\widehat{G})$ -algebra.
- General theory says it is the algebra of sections of an upper semicontinuous bundle of C*-algebras.
- ► The fibre $C^*(\Lambda, G, c)_{\chi}$ over $\chi \in \widehat{G}$ is the quotient by $\langle \pi(g) \chi(g)1 : g \in G \rangle$;
- ► The universal property of $C^*(\Lambda, G, c)$ gives $\rho_{\chi} : C^*(\Lambda, G, c) \to C^*(\Lambda, \chi \circ c)$ with $\rho_{\chi}(\phi(\lambda)) = s_{\lambda}$ and $\rho_{\chi}(\pi(f)) = f(\chi)$.

Central-extension algebras and continuous fields

- $C^*(\Lambda, G, c)$ is a $C(\widehat{G})$ -algebra.
- General theory says it is the algebra of sections of an upper semicontinuous bundle of C*-algebras.
- ► The fibre $C^*(\Lambda, G, c)_{\chi}$ over $\chi \in \widehat{G}$ is the quotient by $\langle \pi(g) \chi(g)1 : g \in G \rangle$;
- ► The universal property of $C^*(\Lambda, G, c)$ gives $\rho_{\chi} : C^*(\Lambda, G, c) \to C^*(\Lambda, \chi \circ c)$ with $\rho_{\chi}(\phi(\lambda)) = s_{\lambda}$ and $\rho_{\chi}(\pi(f)) = f(\chi)$.
- ▶ ker $(\rho_{\chi}) \supseteq \langle \pi(g) \chi(g) 1 : g \in G \rangle$, so $\tilde{\rho}_{\chi} : C^*(\Lambda, G, c)_{\chi} \to C^*(\Lambda, \chi \circ c).$
- ► Universal property of C*(Λ, χ ∘ c) gives inverse to ρ̃_χ.

• So each
$$C^*(\Lambda, G, c)_{\chi} \cong C^*(\Lambda, \chi \circ c)$$
.

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is
 - $\sigma_{\chi} \in Z^{2}(\mathcal{G}_{\Lambda}, \mathbb{T}) \text{ with } C^{*}(\Lambda, \chi \circ c) \cong C^{*}(\mathcal{G}_{\Lambda}, \sigma_{\chi}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$.
- ► (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}(\mathcal{G}_{\Lambda}, \mathbb{T})$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}(\mathcal{G}_{\Lambda}, \sigma_{\chi})$.
- $\langle a, b \rangle_{\chi} := (a^* *_{\sigma_{\chi}} b)|_{\mathcal{G}^{(0)}_{\Lambda}}$ gives rise to Hilbert module X_{χ} , with left action $L_{\chi} : C^*(\Lambda, \chi \circ c) \to \mathcal{L}(X_{\chi}).$

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$.
- ► (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}(\mathcal{G}_{\Lambda}, \mathbb{T})$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}(\mathcal{G}_{\Lambda}, \sigma_{\chi})$.
- $\langle a, b \rangle_{\chi} := (a^* *_{\sigma_{\chi}} b)|_{\mathcal{G}^{(0)}_{\Lambda}}$ gives rise to Hilbert module X_{χ} , with left action $L_{\chi} : C^*(\Lambda, \chi \circ c) \to \mathcal{L}(X_{\chi}).$
- Each $\langle \cdot, \cdot \rangle_{\chi} = \langle \cdot, \cdot \rangle_{1}$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$.
- ► (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}(\mathcal{G}_{\Lambda}, \mathbb{T})$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}(\mathcal{G}_{\Lambda}, \sigma_{\chi})$.
- $\langle a, b \rangle_{\chi} := (a^* *_{\sigma_{\chi}} b)|_{\mathcal{G}^{(0)}_{\Lambda}}$ gives rise to Hilbert module X_{χ} , with left action $L_{\chi} : C^*(\Lambda, \chi \circ c) \to \mathcal{L}(X_{\chi}).$
- Each $\langle \cdot, \cdot \rangle_{\chi} = \langle \cdot, \cdot \rangle_1$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.
- Each χ → L_χ(s_μs^{*}_ν) is strongly continuous; so χ → L_χ(ρ_χ(a)) is strongly continuous for a dense family of a ∈ C^{*}(Λ, G, c).

Now if
$$\chi_n \to \chi$$
, fix $||x|| = 1$ such that $||L_{\chi}(\rho_{\chi}(a))x|| > ||L_{\chi}(\rho_{\chi}(a))|| - \varepsilon/2$; then

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$.
- ► (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}(\mathcal{G}_{\Lambda}, \mathbb{T})$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}(\mathcal{G}_{\Lambda}, \sigma_{\chi})$.
- $\langle a, b \rangle_{\chi} := (a^* *_{\sigma_{\chi}} b)|_{\mathcal{G}^{(0)}_{\Lambda}}$ gives rise to Hilbert module X_{χ} , with left action $L_{\chi} : C^*(\Lambda, \chi \circ c) \to \mathcal{L}(X_{\chi}).$
- Each $\langle \cdot, \cdot \rangle_{\chi} = \langle \cdot, \cdot \rangle_{1}$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.
- Each χ → L_χ(s_μs^{*}_ν) is strongly continuous; so χ → L_χ(ρ_χ(a)) is strongly continuous for a dense family of a ∈ C^{*}(Λ, G, c).

Now if
$$\chi_n \to \chi$$
, fix $||x|| = 1$ such that
 $||L_{\chi}(\rho_{\chi}(a))x|| > ||L_{\chi}(\rho_{\chi}(a))|| - \varepsilon/2$; then
 $||L_{\chi_n}(a)|| \ge ||(L_{\chi_n}(a) - L_{\chi}(a))|| + ||L_{\chi}(a)x|| > ||L_{\chi}(a)|| - \varepsilon$
for large *n*.

Example: fields of Heegaard-type 3-spheres

• Consider $c \in Z^2(\Lambda, \mathbb{Z})$ given by $c(\mu, \nu) := d(\mu)_2 d(\nu)_1$.

• $C^*(\Lambda, \mathbb{Z}, c)$ is generated by U, V, W s.t.

W is a central unitary;

•
$$U^*U = V^*V = 1;$$

• UV = WVU and $U^*V = W^*VU^*$; and

•
$$(1 - UU^*)(1 - VV^*) = 0.$$

- Each $C^*(\Lambda, \mathbb{Z}, c)_{e^{2\pi i\theta}} \cong C(S^3_{00\theta}).$
- Note: Λ has sources. But a technique due to Farthing ('08) sidesteps the issue.

Trivial AF bundles

- Universal property of C^{*}(Λ, c) gives an action γ of T^k such that γ_z(s_µ) = z^{d(µ)}s_µ.
- C*(Λ, c) ×_γ T^k is an AF algebra and there is a k-graph Λ×_d Z^k and cocycle č such that C*(Λ, c) ×_γ T^k ≅ C*(Λ×_d Z^k, č).
- ► So $K_*(C^*(\Lambda, c)) \cong K_*(C^*(\Lambda \times_d \mathbb{Z}^k, \tilde{c}) \times_{\hat{\gamma}} \mathbb{Z}^k).$

Trivial AF bundles

- Universal property of C^{*}(Λ, c) gives an action γ of T^k such that γ_z(s_µ) = z^{d(µ)}s_µ.
- $C^*(\Lambda, c) \times_{\gamma} \mathbb{T}^k$ is an AF algebra and there is a *k*-graph $\Lambda \times_d \mathbb{Z}^k$ and cocycle \tilde{c} such that $C^*(\Lambda, c) \times_{\gamma} \mathbb{T}^k \cong C^*(\Lambda \times_d \mathbb{Z}^k, \tilde{c}).$
- ► So $K_*(C^*(\Lambda, c)) \cong K_*(C^*(\Lambda \times_d \mathbb{Z}^k, \tilde{c}) \times_{\hat{\gamma}} \mathbb{Z}^k).$
- A neat argument due to Ben Whitehead shows that each C*(∧ ×_d Z^k, G, č) ≅ C*(∧ ×_d Z^k) ⊗ C*(G).
- ► For $G = \mathbb{R}$, can restrict to $[0, t] \subseteq \mathbb{R}$: $C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, \tilde{c})_{[0,t]} \cong C^*(\Lambda \times_d \mathbb{Z}^k) \otimes C([0,t]).$
- The ρ_u : C^{*}(Λ ×_d Z^k, ℝ, ĉ)_[0,t] → C^{*}(Λ ×_d Z^k, ℝ, c)_u induce isomorphisms in K-theory (which preserve the class of the identity).

Elliott's argument ('80)

If $\psi : (B, \beta, \mathbb{Z}) \to (C, \gamma, \mathbb{Z})$ and $\psi_* : K_*(B) \to K_*(C)$ is an isomorphism, then $\tilde{\psi}_* : K_*(B \times_\beta \mathbb{Z}) \to K_*(C \times_\gamma \mathbb{Z})$ is an isomorphism.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Elliott's argument ('80)

If $\psi : (B, \beta, \mathbb{Z}) \to (C, \gamma, \mathbb{Z})$ and $\psi_* : K_*(B) \to K_*(C)$ is an isomorphism, then $\tilde{\psi}_* : K_*(B \times_\beta \mathbb{Z}) \to K_*(C \times_\gamma \mathbb{Z})$ is an isomorphism.

Naturality of Pimsner-Voiculescu gives a diagram:

Now the Five Lemma applies.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)

Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^2(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$K_*(C^*(\Lambda), e^{itc}) \cong K_*(C^*(\Lambda))$$

which preserves the classes of the s_v .

Proof.

We proved that $\tilde{\rho}_u : C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, c)_{[0,t]} \to C^*(\Lambda \times_d \mathbb{Z}^k, e^{iuc})$ induces isomorphism on *K*-theory.

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)

Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^2(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$K_*(C^*(\Lambda), e^{itc}) \cong K_*(C^*(\Lambda))$$

which preserves the classes of the s_v .

Proof.

We proved that $\tilde{\rho}_u : C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, c)_{[0,t]} \to C^*(\Lambda \times_d \mathbb{Z}^k, e^{iuc})$ induces isomorphism on *K*-theory. Induction on *k* using Elliott's argument gives, for $u \in [0, t]$ $\mathcal{K}_*(C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, c)_{[0,t]} \times_{\hat{\gamma} \otimes 1} \mathbb{Z}^k) \cong \mathcal{K}_*(C^*(\Lambda \times_d \mathbb{Z}^k, e^{iuc}) \times_{\hat{\gamma}} \mathbb{Z}^k).$

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)

Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^2(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$K_*(C^*(\Lambda), e^{itc}) \cong K_*(C^*(\Lambda))$$

which preserves the classes of the s_v .

Proof.

We proved that $\tilde{\rho}_u : C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, c)_{[0,t]} \to C^*(\Lambda \times_d \mathbb{Z}^k, e^{iuc})$ induces isomorphism on *K*-theory. Induction on *k* using Elliott's argument gives, for $u \in [0, t]$ $K_*(C^*(\Lambda \times_d \mathbb{Z}^k, \mathbb{R}, c)_{[0,t]} \times_{\hat{\gamma} \otimes 1} \mathbb{Z}^k) \cong K_*(C^*(\Lambda \times_d \mathbb{Z}^k, e^{iuc}) \times_{\hat{\gamma}} \mathbb{Z}^k).$ Takai duality and some book-keeping does the rest.

K-theory of quantum 3-spheres

$$f \bigcirc u \stackrel{e}{\smile} v \stackrel{g}{\longleftarrow} w \stackrel{ea = ae}{b} ec = cf$$
$$gb = ag$$

- ► Hajac-Matthes-Szymański ('06): $C^*(\Lambda) \cong C(H^3_{000}) := (\mathcal{T} \otimes \mathcal{T})/\mathcal{K} \otimes \mathcal{K}.$
- The inclusion $\mathcal{K} \hookrightarrow \mathcal{T}$ induces the zero map on \mathcal{K} -theory.
- ▶ The Künneth theorem and the 6-term sequence for $0 \to \mathcal{K} \otimes \mathcal{K} \to \mathcal{T} \otimes \mathcal{T} \to C(H^3_{000})$ give $K_*(C(H^3_{000})) \cong (\mathbb{Z}, \mathbb{Z})$.
- Plugging into the main result, K_{*}(C(H³_{00θ})) ≅ (Z,Z), recovering a theorem of Baum-Hajac-Matthes-Szymański.

Kirchberg algebras

- If Λ is aperiodic and cofinal, and every vertex can be reached from a cycle with an entrance, then C*(Λ) is simple purely infinite.
- The same conditions imply that C^{*}(Λ, c) is a Kirchberg algebra, for any c ∈ Z²(Λ, T).

Kirchberg algebras

- If Λ is aperiodic and cofinal, and every vertex can be reached from a cycle with an entrance, then C*(Λ) is simple purely infinite.
- The same conditions imply that C^{*}(Λ, c) is a Kirchberg algebra, for any c ∈ Z²(Λ, T).

Corollary (Kumjian-Pask-S): Suppose that Λ is cofinal and aperiodic and every vertex can be reached from a cycle with an entrance. If $c \in Z^2(\Lambda, \mathbb{R})$ then $C^*(\Lambda, e^{itc}) \cong C^*(\Lambda)$ for all $t \in \mathbb{R}$.

- J. Anderson and W. Paschke, *The rotation algebra*, Houston J. Math. **15** (1989), 1–26.
- P.F. Baum, P.M. Hajac, R. Matthes and W. Szymański, The K-theory of Heegaard-type quantum 3-spheres, K-Theory 35 (2005), 159–186.
- G.A. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group, Monogr. Stud. Math., 17, Operator algebras and group representations, Vol. I (Neptun, 1980), 157–184.
- P.M. Hajac, R. Matthes and W. Szymanski, *A locally trivial quantum Hopf fibration*, Algebr. Represent. Theory **9** (2006), 121–146.
- A. Kumjian and D. Pask, *Higher rank graph C*-algebras*, New York J. Math. **6** (2000), 1–20.
- M.A. Rieffel, *Continuous fields of C*-algebras coming from group cocycles and actions*, Math. Ann. **283** (1989), 631–643.

