K-theory of twisted C^{*}-algebras associated to higher-rank graphs BIRS 2013

Aidan Sims

University of Wollongong

25 April 2013

Joint work with Alex Kumjian and David Pask.

Higher-rank graphs

Definition (Kumjian-Pask, 2000)
For $k \in \mathbb{N}$, a k-graph is a countable category Λ with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property: whenever $d(\lambda)=m+n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda=\mu \nu$.

Higher-rank graphs

Definition (Kumjian-Pask, 2000)

For $k \in \mathbb{N}$, a k-graph is a countable category Λ with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property: whenever $d(\lambda)=m+n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda=\mu \nu$.

- Λ^{n} denotes $d^{-1}(n)$.
- Factorisation property gives $\Lambda^{0}=\left\{\right.$ id $\left._{o}: o \in \operatorname{Obj}(\Lambda)\right\}$.
- The domain and codomain maps determine maps $s, r: \Lambda \rightarrow \Lambda^{0}$; and then $r(\lambda) \lambda=\lambda=\lambda s(\lambda)$ for all λ.
- Write, for example, $v \Lambda^{n}$ for $r^{-1}(v) \cap \Lambda^{n}$.
- row-finite means $v \Lambda^{n}$ is always finite; no sources means it's always nonempty.

Cohomology

- For an abelian group G, a G-valued 2-cocycle on Λ is a function

$$
c: \Lambda^{* 2}:=\{(\mu, \nu) \in \Lambda \times \Lambda: s(\mu)=r(\nu)\} \rightarrow G
$$

such that $c(r(\lambda), \lambda)=c(\lambda, s(\lambda))=0$ and

$$
c(\lambda, \mu)+c(\lambda \mu, \nu)=c(\mu, \nu)+c(\lambda, \mu \nu) .
$$

Group of cocycles is $Z^{2}(\Lambda, \mathbb{T})$.

- Standard example: $k=2$, and $c(\alpha, \beta)=d(\alpha)_{2} d(\beta)_{1} g$ for some $g \in G$.

C^{*}-algebras

- If Λ is row-finite with no sources, and $c \in Z^{2}(\Lambda, \mathbb{T})$, then $C^{*}(\Lambda, c)$ is universal for partial isometries $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$ such that
(CK1) $\left\{s_{v}: v \in \Lambda^{0}\right\}$ are mutually orthogonal projections
(CK2) $s_{\mu} s_{\nu}=c(\mu, \nu) s_{\mu \nu}$ when $s(\mu)=r(\nu)$;
(CK3) $s_{\mu}^{*} s_{\mu}=s_{s(\mu)}$ for every μ; and
(CK4) $s_{v}=\sum_{\mu \in v \wedge^{n}} s_{\mu} s_{\mu}^{*}$ for all $v \in \Lambda^{0}, n \in \mathbb{N}^{k}$.
- Technical adjustment to (CK4) needed when Λ has sources.

Example

- let $z \in \mathbb{T}$, and put $c(\mu, \nu)=z^{d(\mu)_{2} d(\nu)_{1}}$.
- Relation (CK2) implies that $s_{V}=1_{C^{*}(\Lambda)}$ and $C^{*}(\Lambda)$ is generated by elements s_{e} and s_{a} such that $s_{a} s_{e}=z s_{e} s_{a}$:
(CK3) $s_{e}^{*} s_{e}=s_{a}^{*} s_{a}=1$; and
(CK4) $1=\sum_{\alpha \in v \wedge_{1}^{\rho_{1}}} s_{\alpha} s_{\alpha}^{*}=s_{e} s_{e}^{*}$, and similarly for s_{f}.
- So $C^{*}\left(\Lambda, c_{z}\right)$ is universal for unitaries U, V such that $U V=z V U$: the noncommutative torus A_{z}.
- up to cohomology, these are the only cocycles, so the only twisted algebras for this graph.

Example

- Adjustment to (CK4): impose only when $v \Lambda^{n}$ is nonempty.
- For $\theta \in[0,1), c_{\theta}(\mu, \nu)=e^{2 \pi i d(\mu)_{2} d(\nu)_{1} \theta}$ gives a cocycle.

Example

- Adjustment to (CK4): impose only when $v \Lambda^{n}$ is nonempty.
- For $\theta \in[0,1), c_{\theta}(\mu, \nu)=e^{2 \pi i d(\mu)_{2} d(\nu)_{1} \theta}$ gives a cocycle.
- $U:=s_{e}+s_{f}+s_{g}$ and $V:=s_{a}+s_{b}+s_{c}$ generate $C^{*}\left(\Lambda, c_{z}\right)$ and satisfy:
- $U^{*} U=V^{*} V=1$;
- $U V=e^{2 \pi i \theta} V U$ and $U^{*} V=e^{-2 \pi i \theta} V U^{*}$; and
- $\left(1-U U^{*}\right)\left(1-V V^{*}\right)=0$.
- $C^{*}(\Lambda, c)$ is universal for these relations.
- A theorem of Baum-Hajac-Matthes-Szymański says $C^{*}(\Lambda, c) \cong C\left(S_{00 \theta}^{3}\right)$.

Main theorem

Theorem (Kumjian-Pask-S)
Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^{2}(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$
K_{*}\left(C^{*}(\Lambda), e^{i t c}\right) \cong K_{*}\left(C^{*}(\Lambda)\right)
$$

which preserves the classes of the s_{V}.

Structure of $C^{*}(\Lambda, c)$

- If $d(\lambda)=d(\mu)+q$, then $\lambda=\alpha \beta$ with $d(\alpha)=d(\mu)$, and then

$$
s_{\mu}^{*} s_{\lambda}=\overline{c(\alpha, \beta)} s_{\mu}^{*} s_{\alpha} s_{\beta}= \begin{cases}\overline{c(\alpha, \beta)} s_{\beta} & \text { if } \alpha=\mu \\ 0 & \text { otherwise }\end{cases}
$$

Structure of $C^{*}(\Lambda, c)$

- If $d(\lambda)=d(\mu)+q$, then $\lambda=\alpha \beta$ with $d(\alpha)=d(\mu)$, and then

$$
s_{\mu}^{*} s_{\lambda}=\overline{c(\alpha, \beta)} s_{\mu}^{*} s_{\alpha} s_{\beta}= \begin{cases}\overline{c(\alpha, \beta)} s_{\beta} & \text { if } \alpha=\mu \\ 0 & \text { otherwise }\end{cases}
$$

- So for $\mu, \nu \in \Lambda$ and $p \geq d(\mu), d(\nu)$,

$$
s_{\mu}^{*} s_{\nu}=\sum_{\lambda \in r(\mu) \Lambda^{p}} s_{\mu}^{*} s_{\lambda} s_{\lambda}^{*} s_{\nu}=\sum_{\mu \mu^{\prime}=\nu \nu^{\prime} \in \Lambda^{p}} \overline{c\left(\mu, \mu^{\prime}\right)} c\left(\nu, \nu^{\prime}\right) s_{\mu^{\prime}} s_{\nu^{\prime}}^{*} .
$$

- So $C^{*}(\Lambda, c)=\overline{\operatorname{span}}\left\{s_{\mu} s_{\nu}^{*}\right\}$.

K-theory

- We are interested in the K-theory of $C^{*}(\Lambda, c)$.
- In many cases of interest, $K_{*}\left(C^{*}(\Lambda)\right)$ is known or computable.
- Our approach follows Elliott's computation of K-theory of noncommutative tori.
- Outline: start with $h \in Z^{2}(\Lambda, \mathbb{R})$, and put $c=e^{i h}$.
- Construct continuous field A of C^{*}-algebras over $[0,1]$ with $A_{0}=C^{*}(\Lambda)$ and $A_{1}=C^{*}(\Lambda, c)$;
- Demonstrate A as a full corner of a crossed-product $(B \otimes C([0,1])) \rtimes \mathbb{Z}^{k}$.
- Apply Elliott's inductive argument using Pimsner-Voiculescu.

Central-extension algebras and continuous fields

- Let G be a locally compact abelian group, Λ a row-finite k-graph with no sources and c a G-valued 2-cocycle on Λ.
- A c-representation (ϕ, π) of (Λ, G) on B is
- a map $\phi: \Lambda \rightarrow M(B)$ and a homomorphism $\pi: C^{*}(G) \rightarrow M(B)$ such that
- $\pi(f) \phi(\lambda)=\phi(\lambda) \pi(f)$ for all λ, f.
- the $\phi(\lambda)$ satisfy (CK1), (CK3) and (CK4).
- $\phi(\mu) \phi(\nu)=\pi(c(\mu, \nu)) \phi(\mu \nu)$.
- the image of π is central in $M\left(C^{*}(\Lambda, G, c)\right)$.

Spanning elements

- Suppose that (ϕ, π) is a c-representation of (Λ, G).
- For $p \geq d(\mu), d(\nu)$, familiar calculations (which work because the $\pi(f)$ are central) give

$$
\phi(\mu)^{*} \phi(\nu)=\sum_{\mu \mu^{\prime}=\nu \nu^{\prime} \in \Lambda^{p}} \pi\left(c\left(\nu, \nu^{\prime}\right)-c\left(\mu, \mu^{\prime}\right)\right) \phi\left(\mu^{\prime}\right) \phi\left(\nu^{\prime}\right)^{*} .
$$

Spanning elements

- Suppose that (ϕ, π) is a c-representation of (Λ, G).
- For $p \geq d(\mu), d(\nu)$, familiar calculations (which work because the $\pi(f)$ are central) give

$$
\phi(\mu)^{*} \phi(\nu)=\sum_{\mu \mu^{\prime}=\nu \nu^{\prime} \in \Lambda^{p}} \pi\left(c\left(\nu, \nu^{\prime}\right)-c\left(\mu, \mu^{\prime}\right)\right) \phi\left(\mu^{\prime}\right) \phi\left(\nu^{\prime}\right)^{*} .
$$

- So $C^{*}(\pi, \phi)=\overline{\operatorname{span}}\left\{\phi(\mu) \pi(f) \phi(\nu)^{*}: \mu, \nu \in \Lambda, f \in C^{*}(G)\right\}$.
- The $\phi(\mu)$ are partial isometries, so
$\left\|\sum a_{\mu, \nu} \phi(\mu) \pi\left(f_{\mu, \nu}\right) \phi(\nu)^{*}\right\| \leq \sum\left\|f_{\mu, \nu}\right\|_{\infty}$.
- So there is a universal C^{*}-algebra $C^{*}(\Lambda, G, c)$ generated by products $i_{\Lambda}(\lambda) i_{G}(f)$ where $\left(i_{\Lambda}, i_{G}\right)$ is a universal c-representation.

Central-extension algebras and continuous fields

- $C^{*}(\Lambda, G, c)$ is a $C(\widehat{G})$-algebra.
- General theory says it is the algebra of sections of an upper semicontinuous bundle of C^{*}-algebras.
- The fibre $C^{*}(\Lambda, G, c)_{\chi}$ over $\chi \in \widehat{G}$ is the quotient by $\langle\pi(g)-\chi(g) 1: g \in G\rangle ;$
- The universal property of $C^{*}(\Lambda, G, c)$ gives

$$
\begin{aligned}
& \rho_{\chi}: C^{*}(\Lambda, G, c) \rightarrow C^{*}(\Lambda, \chi \circ c) \text { with } \\
& \quad \rho_{\chi}(\phi(\lambda))=s_{\lambda} \text { and } \rho_{\chi}(\pi(f))=f(\chi) .
\end{aligned}
$$

Central-extension algebras and continuous fields

- $C^{*}(\Lambda, G, c)$ is a $C(\widehat{G})$-algebra.
- General theory says it is the algebra of sections of an upper semicontinuous bundle of C^{*}-algebras.
- The fibre $C^{*}(\Lambda, G, c)_{\chi}$ over $\chi \in \widehat{G}$ is the quotient by $\langle\pi(g)-\chi(g) 1: g \in G\rangle ;$
- The universal property of $C^{*}(\Lambda, G, c)$ gives

$$
\begin{aligned}
& \rho_{\chi}: C^{*}(\Lambda, G, c) \rightarrow C^{*}(\Lambda, \chi \circ c) \text { with } \\
& \quad \rho_{\chi}(\phi(\lambda))=s_{\lambda} \text { and } \rho_{\chi}(\pi(f))=f(\chi) .
\end{aligned}
$$

- $\operatorname{ker}\left(\rho_{\chi}\right) \supseteq\langle\pi(g)-\chi(g) 1: g \in G\rangle$, so $\tilde{\rho}_{\chi}: C^{*}(\Lambda, G, c)_{\chi} \rightarrow C^{*}(\Lambda, \chi \circ c)$.
- Universal property of $C^{*}(\Lambda, \chi \circ c)$ gives inverse to $\tilde{\rho}_{\chi}$.
- So each $C^{*}(\Lambda, G, c)_{\chi} \cong C^{*}(\Lambda, \chi \circ c)$.

Continuity of the bundle

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^{*}(\Lambda) \cong C^{*}\left(\mathcal{G}_{\Lambda}\right)$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}\left(\mathcal{G}_{\Lambda}, \mathbb{T}\right)$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}\left(\mathcal{G}_{\Lambda}, \sigma_{\chi}\right)$.

Continuity of the bundle

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^{*}(\Lambda) \cong C^{*}\left(\mathcal{G}_{\Lambda}\right)$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}\left(\mathcal{G}_{\Lambda}, \mathbb{T}\right)$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}\left(\mathcal{G}_{\Lambda}, \sigma_{\chi}\right)$.
- $\langle a, b\rangle_{\chi}:=\left.\left(a^{*} *_{\sigma_{\chi}} b\right)\right|_{\mathcal{G}_{\Lambda}^{(0)}}$ gives rise to Hilbert module X_{χ}, with left action $L_{\chi}: C^{*}(\Lambda, \chi \circ c) \rightarrow \mathcal{L}\left(X_{\chi}\right)$.

Continuity of the bundle

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^{*}(\Lambda) \cong C^{*}\left(\mathcal{G}_{\Lambda}\right)$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}\left(\mathcal{G}_{\Lambda}, \mathbb{T}\right)$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}\left(\mathcal{G}_{\Lambda}, \sigma_{\chi}\right)$.
- $\langle a, b\rangle_{\chi}:=\left.\left(a^{*} *_{\sigma_{\chi}} b\right)\right|_{\mathcal{G}_{\Lambda}^{(0)}}$ gives rise to Hilbert module X_{χ}, with left action $L_{\chi}: C^{*}(\Lambda, \chi \circ c) \rightarrow \mathcal{L}\left(X_{\chi}\right)$.
- Each $\langle\cdot, \cdot\rangle_{\chi}=\langle\cdot, \cdot\rangle_{1}$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.

Continuity of the bundle

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^{*}(\Lambda) \cong C^{*}\left(\mathcal{G}_{\Lambda}\right)$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}\left(\mathcal{G}_{\Lambda}, \mathbb{T}\right)$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}\left(\mathcal{G}_{\Lambda}, \sigma_{\chi}\right)$.
- $\langle a, b\rangle_{\chi}:=\left.\left(a^{*} *_{\sigma_{\chi}} b\right)\right|_{\mathcal{G}_{\Lambda}^{(0)}}$ gives rise to Hilbert module X_{χ}, with left action $L_{\chi}: C^{*}(\Lambda, \chi \circ c) \rightarrow \mathcal{L}\left(X_{\chi}\right)$.
- Each $\langle\cdot, \cdot\rangle_{\chi}=\langle\cdot, \cdot\rangle_{1}$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.
- Each $\chi \mapsto L_{\chi}\left(s_{\mu} s_{\nu}^{*}\right)$ is strongly continuous; so $\chi \mapsto L_{\chi}\left(\rho_{\chi}(a)\right)$ is strongly continuous for a dense family of $a \in C^{*}(\Lambda, G, c)$.
- Now if $\chi_{n} \rightarrow \chi$, fix $\|x\|=1$ such that $\left\|L_{\chi}\left(\rho_{\chi}(a)\right) x\right\|>\left\|L_{\chi}\left(\rho_{\chi}(a)\right)\right\|-\varepsilon / 2$; then

Continuity of the bundle

Lower semicontinuity via an argument due to Rieffel ('89)

- (Kumjian-Pask, '00) gives groupoid \mathcal{G}_{Λ} with $C^{*}(\Lambda) \cong C^{*}\left(\mathcal{G}_{\Lambda}\right)$.
- (Kumjian-Pask-S, '11) for each $\chi \in \widehat{G}$ there is $\sigma_{\chi} \in Z^{2}\left(\mathcal{G}_{\Lambda}, \mathbb{T}\right)$ with $C^{*}(\Lambda, \chi \circ c) \cong C^{*}\left(\mathcal{G}_{\Lambda}, \sigma_{\chi}\right)$.
- $\langle a, b\rangle_{\chi}:=\left.\left(a^{*} *_{\sigma_{\chi}} b\right)\right|_{\mathcal{G}_{\Lambda}^{(0)}}$ gives rise to Hilbert module X_{χ}, with left action $L_{\chi}: C^{*}(\Lambda, \chi \circ c) \rightarrow \mathcal{L}\left(X_{\chi}\right)$.
- Each $\langle\cdot, \cdot\rangle_{\chi}=\langle\cdot, \cdot\rangle_{1}$, so the X_{χ} are all the same.
- Regard the L_{χ} as adjointable actions on the same module X.
- Each $\chi \mapsto L_{\chi}\left(s_{\mu} s_{\nu}^{*}\right)$ is strongly continuous; so $\chi \mapsto L_{\chi}\left(\rho_{\chi}(a)\right)$ is strongly continuous for a dense family of $a \in C^{*}(\Lambda, G, c)$.
- Now if $\chi_{n} \rightarrow \chi$, fix $\|x\|=1$ such that $\left\|L_{\chi}\left(\rho_{\chi}(a)\right) x\right\|>\left\|L_{\chi}\left(\rho_{\chi}(a)\right)\right\|-\varepsilon / 2$; then $\left\|L_{\chi_{n}}(a)\right\| \geq\left\|\left(L_{\chi_{n}}(a)-L_{\chi}(a)\right)\right\|+\left\|L_{\chi}(a) x\right\|>\left\|L_{\chi}(a)\right\|-\varepsilon$ for large n.

Example: fields of Heegaard-type 3-spheres

- Consider $c \in Z^{2}(\Lambda, \mathbb{Z})$ given by $c(\mu, \nu):=d(\mu)_{2} d(\nu)_{1}$.
- $C^{*}(\Lambda, \mathbb{Z}, c)$ is generated by U, V, W s.t.
- W is a central unitary;
- $U^{*} U=V^{*} V=1$;
- $U V=W V U$ and $U^{*} V=W^{*} V U^{*}$; and
- $\left(1-U U^{*}\right)\left(1-V V^{*}\right)=0$.
- Each $C^{*}(\Lambda, \mathbb{Z}, c)_{e^{2 \pi i \theta}} \cong C\left(S_{00 \theta}^{3}\right)$.
- Note: Λ has sources. But a technique due to Farthing ('08) sidesteps the issue.

Trivial AF bundles

- Universal property of $C^{*}(\Lambda, c)$ gives an action γ of \mathbb{T}^{k} such that $\gamma_{z}\left(s_{\mu}\right)=z^{d(\mu)} s_{\mu}$.
- $C^{*}(\Lambda, c) \times_{\gamma} \mathbb{T}^{k}$ is an AF algebra and there is a k-graph $\Lambda \times{ }_{d} \mathbb{Z}^{k}$ and cocycle \tilde{c} such that $C^{*}(\Lambda, c) \times_{\gamma} \mathbb{T}^{k} \cong C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \tilde{c}\right)$.
- So $K_{*}\left(C^{*}(\Lambda, c)\right) \cong K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \tilde{c}\right) \times \hat{\gamma} \mathbb{Z}^{k}\right)$.

Trivial AF bundles

- Universal property of $C^{*}(\Lambda, c)$ gives an action γ of \mathbb{T}^{k} such that $\gamma_{z}\left(s_{\mu}\right)=z^{d(\mu)} s_{\mu}$.
- $C^{*}(\Lambda, c) \times_{\gamma} \mathbb{T}^{k}$ is an AF algebra and there is a k-graph $\Lambda \times{ }_{d} \mathbb{Z}^{k}$ and cocycle \tilde{c} such that $C^{*}(\Lambda, c) \times_{\gamma} \mathbb{T}^{k} \cong C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \tilde{c}\right)$.
- So $K_{*}\left(C^{*}(\Lambda, c)\right) \cong K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \tilde{c}\right) \times_{\hat{\gamma}} \mathbb{Z}^{k}\right)$.
- A neat argument due to Ben Whitehead shows that each $C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, G, \tilde{c}\right) \cong C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}\right) \otimes C^{*}(G)$.
- For $G=\mathbb{R}$, can restrict to $[0, t] \subseteq \mathbb{R}$: $C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, \tilde{c}\right)_{[0, t]} \cong C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}\right) \otimes C([0, t])$.
- The $\rho_{u}: C^{*}\left(\Lambda \times{ }_{d} \mathbb{Z}^{k}, \mathbb{R}, \tilde{c}\right)_{[0, t]} \rightarrow C^{*}\left(\Lambda \times{ }_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{u}$ induce isomorphisms in K-theory (which preserve the class of the identity).

Elliott's argument ('80)

If $\psi:(B, \beta, \mathbb{Z}) \rightarrow(C, \gamma, \mathbb{Z})$ and $\psi_{*}: K_{*}(B) \rightarrow K_{*}(C)$ is an isomorphism, then $\tilde{\psi}_{*}: K_{*}\left(B \times_{\beta} \mathbb{Z}\right) \rightarrow K_{*}\left(C \times_{\gamma} \mathbb{Z}\right)$ is an isomorphism.

Elliott's argument ('80)

If $\psi:(B, \beta, \mathbb{Z}) \rightarrow(\underset{\sim}{C}, \gamma, \mathbb{Z})$ and $\psi_{*}: K_{*}(B) \rightarrow K_{*}(C)$ is an isomorphism, then $\tilde{\psi}_{*}: K_{*}\left(B \times_{\beta} \mathbb{Z}\right) \rightarrow K_{*}\left(C \times_{\gamma} \mathbb{Z}\right)$ is an isomorphism.

- Naturality of Pimsner-Voiculescu gives a diagram:

- Now the Five Lemma applies.

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)
Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^{2}(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$
K_{*}\left(C^{*}(\Lambda), e^{i t c}\right) \cong K_{*}\left(C^{*}(\Lambda)\right)
$$

which preserves the classes of the s_{v}.
Proof.
We proved that $\tilde{\rho}_{u}: C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{[0, t]} \rightarrow C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, e^{i u c}\right)$ induces isomorphism on K-theory.

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)
Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^{2}(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$
K_{*}\left(C^{*}(\Lambda), e^{i t c}\right) \cong K_{*}\left(C^{*}(\Lambda)\right)
$$

which preserves the classes of the s_{v}.
Proof.
We proved that $\tilde{\rho}_{u}: C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{[0, t]} \rightarrow C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, e^{i u c}\right)$ induces isomorphism on K-theory. Induction on k using Elliott's argument gives, for $u \in[0, t]$ $K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{[0, t]} \times \hat{\gamma} \otimes 1 \mathbb{Z}^{k}\right) \cong K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, e^{i u c}\right) \times \hat{\gamma}^{\mathbb{Z}^{k}}\right)$.

K-theory of twisted k-graph algebras

Theorem (Kumjian-Pask-S)
Suppose that Λ is a row-finite k-graph with no sources, and that $c \in Z^{2}(\Lambda, \mathbb{R})$. For each $t \in \mathbb{R}$, there is an isomorphism

$$
K_{*}\left(C^{*}(\Lambda), e^{i t c}\right) \cong K_{*}\left(C^{*}(\Lambda)\right)
$$

which preserves the classes of the s_{v}.
Proof.
We proved that $\tilde{\rho}_{u}: C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{[0, t]} \rightarrow C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, e^{i u c}\right)$ induces isomorphism on K-theory. Induction on k using Elliott's argument gives, for $u \in[0, t]$ $K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, \mathbb{R}, c\right)_{[0, t]} \times \hat{\gamma} \otimes 1 \mathbb{Z}^{k}\right) \cong K_{*}\left(C^{*}\left(\Lambda \times_{d} \mathbb{Z}^{k}, e^{i u c}\right) \times \hat{\gamma}^{\mathbb{Z}^{k}}\right)$. Takai duality and some book-keeping does the rest.

K-theory of quantum 3-spheres

- Hajac-Matthes-Szymański ('06):

$$
C^{*}(\Lambda) \cong C\left(H_{000}^{3}\right):=(\mathcal{T} \otimes \mathcal{T}) / \mathcal{K} \otimes \mathcal{K}
$$

- The inclusion $\mathcal{K} \hookrightarrow \mathcal{T}$ induces the zero map on K-theory.
- The Künneth theorem and the 6-term sequence for $0 \rightarrow \mathcal{K} \otimes \mathcal{K} \rightarrow \mathcal{T} \otimes \mathcal{T} \rightarrow C\left(H_{000}^{3}\right)$ give $K_{*}\left(C\left(H_{000}^{3}\right)\right) \cong(\mathbb{Z}, \mathbb{Z})$.
- Plugging into the main result, $K_{*}\left(C\left(H_{00 \theta}^{3}\right)\right) \cong(\mathbb{Z}, \mathbb{Z})$, recovering a theorem of Baum-Hajac-Matthes-Szymański.

Kirchberg algebras

- If Λ is aperiodic and cofinal, and every vertex can be reached from a cycle with an entrance, then $C^{*}(\Lambda)$ is simple purely infinite.
- The same conditions imply that $C^{*}(\Lambda, c)$ is a Kirchberg algebra, for any $c \in Z^{2}(\Lambda, \mathbb{T})$.

Kirchberg algebras

- If Λ is aperiodic and cofinal, and every vertex can be reached from a cycle with an entrance, then $C^{*}(\Lambda)$ is simple purely infinite.
- The same conditions imply that $C^{*}(\Lambda, c)$ is a Kirchberg algebra, for any $c \in Z^{2}(\Lambda, \mathbb{T})$.

Corollary (Kumjian-Pask-S): Suppose that Λ is cofinal and aperiodic and every vertex can be reached from a cycle with an entrance. If $c \in Z^{2}(\Lambda, \mathbb{R})$ then $C^{*}\left(\Lambda, e^{i t c}\right) \cong C^{*}(\Lambda)$ for all $t \in \mathbb{R}$.

J．Anderson and W．Paschke，The rotation algebra，Houston J． Math． 15 （1989），1－26．

目 P．F．Baum，P．M．Hajac，R．Matthes and W．Szymański，The K－theory of Heegaard－type quantum 3－spheres，K－Theory 35 （2005），159－186．

囯 G．A．Elliott，On the K－theory of the C^{*}－algebra generated by a projective representation of a torsion－free discrete abelian group， Monogr．Stud．Math．，17，Operator algebras and group representations，Vol．I（Neptun，1980），157－184．

目 P．M．Hajac，R．Matthes and W．Szymanski，A locally trivial quantum Hopf fibration，Algebr．Represent．Theory 9 （2006），121－146．

囯 A．Kumjian and D．Pask，Higher rank graph C＊－algebras，New York J．Math． 6 （2000），1－20．

囯 M．A．Rieffel，Continuous fields of C^{*}－algebras coming from group cocycles and actions，Math．Ann． 283 （1989），631－643．

