イロト イ理ト イヨト イヨト ヨー のくぐ

Permanence properties for graph algebras

Efren Ruiz Joint work with Sara Arklint and James Gabe

University of Hawai'i at Hilo

Graph Algebras: Bridges between graph *C**-algebras and Leavitt path algebras BIRS 22 April – 26 April 2013

A *Cuntz-Krieger algebra* is a graph C^* -algebra $C^*(E)$ arising from a finite graph *E* with no sinks and sources. $C^*(E) = \mathcal{O}_A^{\text{top}}$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Definition

A *Cuntz-Krieger algebra* is a graph C^* -algebra $C^*(E)$ arising from a finite graph *E* with no sinks and sources. $C^*(E) = \mathcal{O}_A^{\text{top}}$.

Definition

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Definition

A *Cuntz-Krieger algebra* is a graph *C*^{*}-algebra *C*^{*}(*E*) arising from a finite graph *E* with no sinks and sources. $C^*(E) = O_A^{\text{top}}$.

Definition

A C*-algebra X looks like a Cuntz-Krieger algebra if

• \mathfrak{A} is unital, purely infinite, nuclear, separable, and of real rank zero;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Definition

A *Cuntz-Krieger algebra* is a graph *C*^{*}-algebra *C*^{*}(*E*) arising from a finite graph *E* with no sinks and sources. $C^*(E) = O_A^{\text{top}}$.

Definition

- \mathfrak{A} is unital, purely infinite, nuclear, separable, and of real rank zero;
- A has finitely many ideals;

Definition

A *Cuntz-Krieger algebra* is a graph *C**-algebra *C**(*E*) arising from a finite graph *E* with no sinks and sources. $C^*(E) = \mathcal{O}_A^{\text{top}}$.

Definition

- \mathfrak{A} is unital, purely infinite, nuclear, separable, and of real rank zero;
- \mathfrak{A} has finitely many ideals;
- for all $\mathfrak{I}_1 \leq \mathfrak{I}_2 \leq \mathfrak{A}$, the group $K_0(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and the group $K_1(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and free, and $\operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1)) = \operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1));$

イロト イ理ト イヨト イヨト ヨー のくぐ

Definition

A *Cuntz-Krieger algebra* is a graph *C**-algebra *C**(*E*) arising from a finite graph *E* with no sinks and sources. $C^*(E) = \mathcal{O}_A^{\text{top}}$.

Definition

- \mathfrak{A} is unital, purely infinite, nuclear, separable, and of real rank zero;
- \mathfrak{A} has finitely many ideals;
- for all $\mathfrak{I}_1 \leq \mathfrak{I}_2 \leq \mathfrak{A}$, the group $K_0(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and the group $K_1(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and free, and $\operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1)) = \operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1))$; and
- the simple sub-quotients of \mathfrak{A} are in the bootstrap class.

A *Cuntz-Krieger algebra* is a graph *C**-algebra *C**(*E*) arising from a finite graph *E* with no sinks and sources. $C^*(E) = \mathcal{O}_A^{\text{top}}$.

Definition

A C*-algebra X looks like a Cuntz-Krieger algebra if

- \mathfrak{A} is unital, purely infinite, nuclear, separable, and of real rank zero;
- \mathfrak{A} has finitely many ideals;
- for all $\mathfrak{I}_1 \trianglelefteq \mathfrak{I}_2 \trianglelefteq \mathfrak{A}$, the group $K_0(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and the group $K_1(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated and free, and $\operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1)) = \operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1))$; and
- the simple sub-quotients of \mathfrak{A} are in the bootstrap class.

Definition

A C^* -algebra \mathfrak{A} is a *phantom Cuntz-Krieger algebra* if \mathfrak{A} looks like a Cuntz-Krieger algebra but \mathfrak{A} is not isomorphic to a Cuntz-Krieger algebra.

Cuntz-Krieger algebras

Unital graph algebras

Question of George Elliott (2012)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Question of George Elliott (2012)

Question

Can a phantom Cuntz-Krieger algebra be SME to a Cuntz-Krieger algebra?

 $\mathfrak{A}\otimes\mathbb{K}\cong\mathcal{O}_{\mathsf{A}}^{\text{top}}\otimes\mathbb{K}\quad\text{but}\quad\mathfrak{A}\ncong\mathcal{O}_{\mathsf{A}'}^{\text{top}}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Question of George Elliott (2012)

Question

Can a phantom Cuntz-Krieger algebra be SME to a Cuntz-Krieger algebra?

 $\mathfrak{A}\otimes\mathbb{K}\cong\mathcal{O}_{\mathsf{A}}^{\text{top}}\otimes\mathbb{K}\quad\text{but}\quad\mathfrak{A}\ncong\mathcal{O}_{\mathsf{A}'}^{\text{top}}$

$$\mathfrak{A} \otimes \mathbb{K} \cong \mathcal{O}_{\mathsf{A}}^{\operatorname{top}} \otimes \mathbb{K} \quad \Longleftrightarrow \quad \mathfrak{A} \cong \boldsymbol{\rho} \left(\mathcal{O}_{\mathsf{A}}^{\operatorname{top}} \otimes \mathbb{K} \right) \boldsymbol{\rho}$$

Question of George Elliott (2012)

Question

Can a phantom Cuntz-Krieger algebra be SME to a Cuntz-Krieger algebra?

 $\mathfrak{A}\otimes\mathbb{K}\cong\mathcal{O}_{\mathsf{A}}^{\text{top}}\otimes\mathbb{K}\quad\text{but}\quad\mathfrak{A}\ncong\mathcal{O}_{\mathsf{A}'}^{\text{top}}$

$$\mathfrak{A} \otimes \mathbb{K} \cong \mathcal{O}_{\mathsf{A}}^{\mathrm{top}} \otimes \mathbb{K} \quad \Longleftrightarrow \quad \mathfrak{A} \cong \boldsymbol{\rho} \left(\mathcal{O}_{\mathsf{A}}^{\mathrm{top}} \otimes \mathbb{K} \right) \boldsymbol{\rho}$$

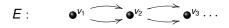
Reformulation

Can a phantom Cuntz-Krieger algebra be isomorphic to a unital full hereditary sub-algebra of a stablized Cuntz-Krieger algebra?

Cuntz-Krieger algebras

Unital graph algebras

Bad permanence properties

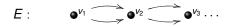


Cuntz-Krieger algebras

Unital graph algebras

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Bad permanence properties

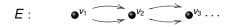


$p_{v_1}(C^*(E)\otimes \mathbb{K})p_{v_1}\sim_{SME} M_{2^\infty}$

Unital graph algebras

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Bad permanence properties



$p_{v_1}(C^*(E)\otimes \mathbb{K})p_{v_1}\sim_{SME} M_{2^\infty}$

 $p_{v_1}(C^*(E) \otimes \mathbb{K})p_{v_1}$ is not isomorphic to a graph C^* -algebra

Unital graph algebras

Good permanence properties

Unital graph algebras

Good permanence properties

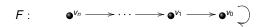
$$\rho(C^*(E)\otimes\mathbb{K})
ho\cong\mathsf{M}_{n+1}(C(\mathbb{T}))\cong C^*(F)$$

Unital graph algebras

Good permanence properties



$$p(C^*(E)\otimes \mathbb{K})p\cong M_{n+1}(C(\mathbb{T}))\cong C^*(F)$$

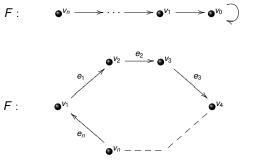


▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ⊙

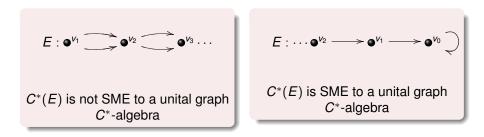
Unital graph algebras

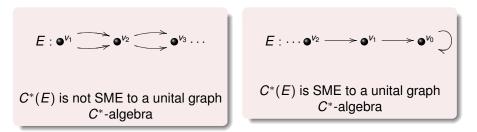
Good permanence properties

$$\rho(C^*(E)\otimes\mathbb{K})
ho\cong\mathsf{M}_{n+1}(C(\mathbb{T}))\cong C^*(F)$$



▲□▶▲□▶▲□▶▲□▶ □ のQで





Question

Let *E* be a graph with finitely many vertices.

- Is every unital hereditary sub-algebra of C^{*}(E) ⊗ K isomorphic to a graph C^{*}-algebra?
- (2) Is every hereditary sub-algebra of C^{*}(E) ⊗ K with an approximate identity consisting of projections isomorphic to a graph C^{*}-algebra?

Cuntz-Krieger algebras

Unital graph algebras

Approximate identity consisting of projections is necessary

Cuntz-Krieger algebras

Unital graph algebras

Approximate identity consisting of projections is necessary

$$E: \qquad \cdots \bullet^{v_2} \longrightarrow \bullet^{v_1} \longrightarrow \bullet^{v_0} \bigcirc$$

$$\mathsf{Set}\,\mathfrak{A} = \left\{ f \in C(S^1,\mathsf{M}_2) : f(1) \in \begin{bmatrix} \mathbb{C} & 0 \\ 0 & 0 \end{bmatrix} \right\} \subseteq C(\mathbb{T}) \otimes \mathbb{K} \cong C^*(E).$$

Cuntz-Krieger algebras

Unital graph algebras

Approximate identity consisting of projections is necessary

$$E: \qquad \cdots \bullet^{\nu_2} \longrightarrow \bullet^{\nu_1} \longrightarrow \bullet^{\nu_0} \bigcirc$$

$$\mathsf{Set}\,\mathfrak{A} = \left\{ f \in C(S^1,\mathsf{M}_2) : f(1) \in \begin{bmatrix} \mathbb{C} & 0 \\ 0 & 0 \end{bmatrix} \right\} \subseteq C(\mathbb{T}) \otimes \mathbb{K} \cong C^*(E).$$

• \mathfrak{A} is a full hereditary sub-algebra of $C(\mathbb{T}) \otimes \mathbb{K}$

Cuntz-Krieger algebras

Unital graph algebras

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

Approximate identity consisting of projections is necessary

$$E: \qquad \cdots \bullet^{\nu_2} \longrightarrow \bullet^{\nu_1} \longrightarrow \bullet^{\nu_0} \bigcirc$$

$$\mathsf{Set}\,\mathfrak{A} = \left\{ f \in C(S^1,\mathsf{M}_2) : f(1) \in \begin{bmatrix} \mathbb{C} & 0 \\ 0 & 0 \end{bmatrix} \right\} \subseteq C(\mathbb{T}) \otimes \mathbb{K} \cong C^*(E).$$

• \mathfrak{A} is a full hereditary sub-algebra of $C(\mathbb{T}) \otimes \mathbb{K}$

every projection in A has rank 1

Cuntz-Krieger algebras

Unital graph algebras

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

Approximate identity consisting of projections is necessary

$$E: \qquad \cdots \bullet^{\nu_2} \longrightarrow \bullet^{\nu_1} \longrightarrow \bullet^{\nu_0} \bigcirc$$

$$\mathsf{Set}\,\mathfrak{A} = \left\{ f \in C(S^1,\mathsf{M}_2) : f(1) \in \begin{bmatrix} \mathbb{C} & 0 \\ 0 & 0 \end{bmatrix} \right\} \subseteq C(\mathbb{T}) \otimes \mathbb{K} \cong C^*(E).$$

- \mathfrak{A} is a full hereditary sub-algebra of $C(\mathbb{T}) \otimes \mathbb{K}$
- every projection in A has rank 1

Therefore, \mathfrak{A} is not isomorphic to a graph C^* -algebra.

Cuntz-Krieger algebras

Unital graph algebras

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cuntz-Krieger algebras

Theorem (Arklint-R)

Let \mathfrak{B} be a unital hereditary sub-algebra of $\mathcal{O}^{top}_{\mathsf{A}} \otimes \mathbb{K}$. Then $\mathfrak{B} \cong \mathcal{O}^{top}_{\mathsf{A}'}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Cuntz-Krieger algebras

Theorem (Arklint-R)

Let \mathfrak{B} be a unital hereditary sub-algebra of $\mathcal{O}_{\mathsf{A}}^{\text{top}} \otimes \mathbb{K}$. Then $\mathfrak{B} \cong \mathcal{O}_{\mathsf{A}'}^{\text{top}}$.

Theorem

Let $\mathfrak B$ be a hereditary sub-algebra of $\mathcal O_A^{top}\otimes\mathbb K.$ Then the following are equivalent.

- (a) \mathfrak{B} is isomorphic to a graph C^* -algebra.
- (b) \mathfrak{B} has an approximate identity consisting of projections.

An *algebraic Cuntz-Krieger algebra* is $L_{\mathcal{K}}(E)$ arising from a finite graph *E* with no sinks and sources. $L_{\mathcal{K}}(E) = \mathcal{O}_{A}^{alg}$.

An *algebraic Cuntz-Krieger algebra* is $L_{\mathcal{K}}(E)$ arising from a finite graph *E* with no sinks and sources. $L_{\mathcal{K}}(E) = \mathcal{O}_{A}^{alg}$.

Definition

A sub-ring *S* of *R* is hereditary if S = pRp for some idempotent *p* in the multiplier ring $\mathcal{M}(R)$.

An *algebraic Cuntz-Krieger algebra* is $L_{\mathcal{K}}(E)$ arising from a finite graph *E* with no sinks and sources. $L_{\mathcal{K}}(E) = \mathcal{O}_{A}^{alg}$.

Definition

A sub-ring *S* of *R* is hereditary if S = pRp for some idempotent *p* in the multiplier ring $\mathcal{M}(R)$.

Theorem

Let S be a hereditary sub-ring of $M_\infty(\mathcal{O}^{alg}_{A}).$ Then the following are equivalent.

(1) S has an approximate identity consisting of idempotents.

(2)
$$S \cong L_{\mathcal{K}}(F)$$
.

An *algebraic Cuntz-Krieger algebra* is $L_{\mathcal{K}}(E)$ arising from a finite graph *E* with no sinks and sources. $L_{\mathcal{K}}(E) = \mathcal{O}_{A}^{alg}$.

Definition

A sub-ring *S* of *R* is hereditary if S = pRp for some idempotent *p* in the multiplier ring $\mathcal{M}(R)$.

Theorem

Let S be a hereditary sub-ring of $M_\infty(\mathcal{O}^{alg}_{A}).$ Then the following are equivalent.

(1) S has an approximate identity consisting of idempotents.

(2)
$$S \cong L_{\mathcal{K}}(F)$$
.

Moreover, if S is unital, then $S \cong \mathcal{O}_{A'}^{alg}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Consequences

Consequences

C*-algebras

(1) Every hereditary sub-algebra of $\mathcal{O}_A^{\text{top}}$ with an approximate identity consisting of projections is a isomorphic to a graph C^* -algebra.

Rings

(1) Every hereditary sub-algebra of \mathcal{O}^{alg}_{A} with an approximate identity consisting of idempotents is a isomorphic to a Leavitt path algebra.

Consequences

C*-algebras

- (1) Every hereditary sub-algebra of $\mathcal{O}_A^{\text{top}}$ with an approximate identity consisting of projections is a isomorphic to a graph \mathcal{C}^* -algebra.
- (2) If \mathfrak{A} has an approximate identity consisting of projections and $\mathfrak{A} \sim_{SME} \mathcal{O}_A^{top}$, then $\mathfrak{A} \cong C^*(E)$.

Rings

- (1) Every hereditary sub-algebra of \mathcal{O}^{alg}_{A} with an approximate identity consisting of idempotents is a isomorphic to a Leavitt path algebra.
- (2) If *R* has an approximate identity consisting of idempotents and $R \sim_{ME} \mathcal{O}_{A}^{alg}$, then $\mathfrak{A} \cong L_{K}(E)$.

Consequences

C*-algebras

- (1) Every hereditary sub-algebra of $\mathcal{O}_A^{\text{top}}$ with an approximate identity consisting of projections is a isomorphic to a graph C^* -algebra.
- (2) If 𝔅 has an approximate identity consisting of projections and 𝔅 ∼_{SME} 𝔅^{top}_A, then 𝔅 ≅ 𝔅^{*}(𝔅).
- (3) If \mathfrak{A} is unital and $\mathfrak{A} \sim_{SME} \mathcal{O}_{\mathsf{A}}^{\text{top}}$, then $\mathfrak{A} \cong \mathcal{O}_{\mathsf{A}'}^{\text{top}}$.

Rings

- (1) Every hereditary sub-algebra of $\mathcal{O}_A^{\text{alg}}$ with an approximate identity consisting of idempotents is a isomorphic to a Leavitt path algebra.
- (2) If *R* has an approximate identity consisting of idempotents and $R \sim_{ME} \mathcal{O}_{A}^{alg}$, then $\mathfrak{A} \cong L_{\mathcal{K}}(E)$.
- (3) If *R* is unital and $R \sim_{ME} \mathcal{O}_{A}^{alg}$, then $R \cong \mathcal{O}_{A'}^{alg}$.

(4)

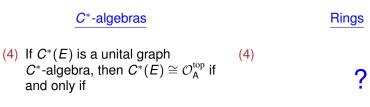
Consequences

(4) If C*(E) is a unital graph
 C*-algebra, then C*(E) ≅ O^{top}_A if and only if

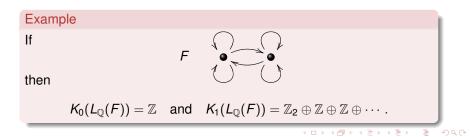
 $\operatorname{rank}(K_0(C^*(E))) = \operatorname{rank}(K_1(C^*(E))).$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Consequences



$$\operatorname{rank}(K_0(C^*(E))) = \operatorname{rank}(K_1(C^*(E))).$$



イロト イ理ト イヨト イヨト ヨー のくぐ

Proof

Definition

A graph E with finitely many vertices is in standard form if

- (1) every regular vertex of E is a base point of a loop and
- (2) for every infinite emitter $v \in E^0$ and $e \in s^{-1}(v)$, we have that $|s^{-1}(v) \cap r^{-1}(r(e))| = \infty$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Proof

Definition

A graph E with finitely many vertices is in standard form if

- (1) every regular vertex of E is a base point of a loop and
- (2) for every infinite emitter $v \in E^0$ and $e \in s^{-1}(v)$, we have that $|s^{-1}(v) \cap r^{-1}(r(e))| = \infty$.

Theorem (Sørensen)

If *E* is a graph with finitely many vertices, then there exists a graph *F* in standard form such that $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Unital Case

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Unital Case

Theorem (Ara-Moreno-Pardo)

Let *E* be a finite graph in standard form such that *E* has no sinks and sources. If *p* is a non-zero projection (idempotent) in $C^*(E) \otimes \mathbb{K}$ $(M_{\infty}(L_{\mathcal{K}}(E)))$, then

$$p \sim \sum_{v \in H} m_v p_v$$

with $m_v > 0$ where *H* is the hereditary subset of E^0 such that $I_H = \text{Ideal}(p)$.

Unital Case

Theorem (Ara-Moreno-Pardo)

Let *E* be a finite graph in standard form such that *E* has no sinks and sources. If *p* is a non-zero projection (idempotent) in $C^*(E) \otimes \mathbb{K}$ $(M_{\infty}(L_{\mathcal{K}}(E)))$, then

$$p \sim \sum_{v \in H} m_v p_v$$

with $m_v > 0$ where *H* is the hereditary subset of E^0 such that $I_H = \text{Ideal}(p)$.

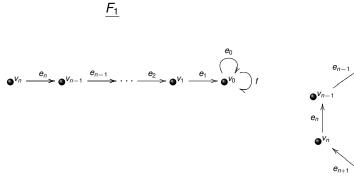
$$p(C^*(E)\otimes K)p\cong C^*(F)$$

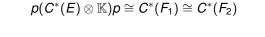
where *F* is the graph obtained from $(H, r^{-1}(H), r, s)$ by adding a head of length $m_v - 1$ to each vertex *v* in *H*.

 $p(C^*(E)\otimes \mathbb{K})p$

 F_1

 $p(C^*(E) \otimes \mathbb{K})p \cong C^*(F_1)$





E : •

Cuntz-Krieger algebras

 F_2

e₃

e₁

ъ

 \bullet^{V_0}

 V_2

v^e₂ ●^v1

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Non-unital case

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Non-unital case

Take $\{p_n\}_{n=1}^{\infty}$ be a sequence of non-zero mutually orthogonal projections such that $\{\sum_{k=1}^{n} p_k\}_{n=1}^{\infty}$ is an approximate identity consisting of projections for

$$\mathfrak{B} \cong \rho(\mathcal{C}^*(E) \otimes \mathbb{K}) \rho \subseteq \mathcal{C}^*(E) \otimes \mathbb{K},$$

for some projection *p* in the multiplier algebra $\mathcal{M}(C^*(E) \otimes \mathbb{K})$.

Non-unital case

Take $\{p_n\}_{n=1}^{\infty}$ be a sequence of non-zero mutually orthogonal projections such that $\{\sum_{k=1}^{n} p_k\}_{n=1}^{\infty}$ is an approximate identity consisting of projections for

$$\mathfrak{B} \cong \rho(\mathcal{C}^*(E) \otimes \mathbb{K}) \rho \subseteq \mathcal{C}^*(E) \otimes \mathbb{K},$$

for some projection *p* in the multiplier algebra $\mathcal{M}(C^*(E) \otimes \mathbb{K})$.

• Let *H* be the hereditary subset E^0 such that $I_H = \text{Ideal}\{p_n : n \in \mathbb{N}\}$

•
$$p_n \sim \sum_{v \in H} m(v, n) p_v$$
 where $m(v, n) \geq 0$ and

$$\bigcup_{n=1}^{\infty} \{v \in H : m(v,n) > 0\} = H.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Non-unital case

Take $\{p_n\}_{n=1}^{\infty}$ be a sequence of non-zero mutually orthogonal projections such that $\{\sum_{k=1}^{n} p_k\}_{n=1}^{\infty}$ is an approximate identity consisting of projections for

$$\mathfrak{B} \cong \rho(C^*(E) \otimes \mathbb{K}) \rho \subseteq C^*(E) \otimes \mathbb{K},$$

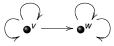
for some projection p in the multiplier algebra $\mathcal{M}(C^*(E) \otimes \mathbb{K})$.

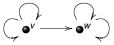
• Let *H* be the hereditary subset E^0 such that $I_H = \text{Ideal}\{p_n : n \in \mathbb{N}\}$

•
$$p_n \sim \sum_{v \in H} m(v, n) p_v$$
 where $m(v, n) \ge 0$ and

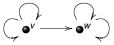
$$\bigcup_{n=1}^{\infty} \{ v \in H : m(v, n) > 0 \} = H.$$

Then $\mathfrak{B} \cong C^*(F)$ where *F* is obtained from $(H, r^{-1}(H), r, s)$ by adding a head of length $-1 + \sum_{n=1}^{\infty} m(v, n)$ to each vertex $v \in H$.



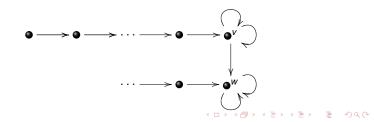


 $p_1 \sim n_1 p_v + m_1 p_w, \quad p_2 \sim n_2 p_v + m_2 p_w, \quad p_3 \sim m_3 p_w, \quad p_4 \sim m_4 p_w,$



 $p_1 \sim n_1 p_v + m_1 p_w, \quad p_2 \sim n_2 p_v + m_2 p_w, \quad p_3 \sim m_3 p_w, \quad p_4 \sim m_4 p_w,$

 $\mathfrak{B}\cong C^*(F)$



Cuntz-Krieger algebras

Unital graph algebras

The unitization of a graph algebra

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

The unitization of a graph algebra

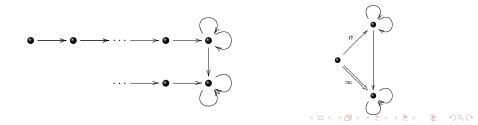
Theorem

If $C^*(E)$ is a non-unital C^* -algebra and $C^*(E) \sim_{SME} \mathcal{O}^{\text{top}}_A$, then $C^*(E)^{\dagger} \cong C^*(F)$.

The unitization of a graph algebra

Theorem

If $C^*(E)$ is a non-unital C^* -algebra and $C^*(E) \sim_{SME} \mathcal{O}^{\text{top}}_A$, then $C^*(E)^{\dagger} \cong C^*(F)$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Unital graph algebras

Theorem

Let *E* be a graph with finitely many vertices.

- Every unital hereditary sub-algebra of C^{*}(E) ⊗ K is isomorphic to a graph C^{*}-algebra.
- (2) Every unital hereditary sub-algebra of M_∞(L_K(E)) is isomorphic to a Leavitt path algebra.

うつつ 川 エー・エー・ エー・ ショー

Unital graph algebras

Theorem

Let *E* be a graph with finitely many vertices.

- Every unital hereditary sub-algebra of C^{*}(E) ⊗ K is isomorphic to a graph C^{*}-algebra.
- (2) Every unital hereditary sub-algebra of M_∞(L_K(E)) is isomorphic to a Leavitt path algebra.

Theorem

Let *E* be a graph and *p* be a projection (idempotent) in $C^*(E) \otimes \mathbb{K} (M_{\infty}(L_{\mathcal{K}}(E)))$. Then

$$p \sim \sum_{v \in S} m_v \left(p_v - \sum_{e \in T_v} s_e s_e^*
ight)$$

 $\mathcal{T}_{\nu} \subseteq_{\mathsf{fin}} s^{-1}(\nu) ext{ and } \mathcal{T}_{\nu} = \emptyset ext{ when } |s_{\mathsf{E}}^{-1}(\nu)| < \infty.$

Unital graph algebras

Theorem

Let *E* be a graph with finitely many vertices.

- Every unital hereditary sub-algebra of C^{*}(E) ⊗ K is isomorphic to a graph C^{*}-algebra.
- (2) Every unital hereditary sub-algebra of M_∞(L_K(E)) is isomorphic to a Leavitt path algebra.

Theorem

Let *E* be a graph and *p* be a projection (idempotent) in $C^*(E) \otimes \mathbb{K}(M_{\infty}(L_{\mathcal{K}}(E)))$. Then

$$p \sim \sum_{v \in S} m_v \left(p_v - \sum_{e \in T_v} s_e s_e^*
ight)$$

 $\mathcal{T}_{v} \subseteq_{\mathsf{fin}} s^{-1}(v) ext{ and } \mathcal{T}_{v} = \emptyset ext{ when } |s_{\mathcal{E}}^{-1}(v)| < \infty.$

Change graph

$$\mathcal{C}^*(E)\otimes\mathbb{K}\cong\mathcal{C}^*(F)\otimes\mathbb{K}$$

 $\mathcal{L}_{\mathcal{K}}(E)\otimes\mathbb{K}\cong\mathcal{L}_{\mathcal{K}}(F)\otimes\mathbb{K}$
 $p\mapsto q\sim\sum_{v\in S}m_vq_v$

・ロット (雪) (日) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Theorem (work in progress)

Let *E* be a graph with finitely many vertices, $\mathfrak{A} \subseteq_{her} C^*(E) \otimes \mathbb{K}$, and $A \subseteq_{her} M_{\infty}(L_{\mathcal{K}}(E))$.

- (1) \mathfrak{A} has an approximate identity consisting of projections if and only if \mathfrak{A} is isomorphic to a graph C^* -algebra.
- (2) A has an approximate identity consisting of idempotents if and only if A isomorphic to a Leavitt path algebras.

Theorem (work in progress)

Let *E* be a graph with finitely many vertices, $\mathfrak{A} \subseteq_{her} C^*(E) \otimes \mathbb{K}$, and $A \subseteq_{her} M_{\infty}(L_{\mathcal{K}}(E))$.

- (1) \mathfrak{A} has an approximate identity consisting of projections if and only if \mathfrak{A} is isomorphic to a graph C^* -algebra.
- (2) A has an approximate identity consisting of idempotents if and only if A isomorphic to a Leavitt path algebras.

Theorem (work in progress)

Let *E* be an infinite graph.

- (1) $C^*(E)^{\dagger}$ is isomorphic to a graph C^* -algebra if and only if $C^*(E)$ is SME to a unital graph C^* -algebra.
- (2) $L_{\kappa}(E)^{\dagger}$ is isomorphic to a Leavitt path algebra if and only if $L_{\kappa}(E)$ is ME to a unital Leavitt path algebra.

Questions

 Can we determine exactly when C*(E) is SME to a Cuntz-Krieger algebra?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Questions

- (1) Can we determine exactly when $C^*(E)$ is SME to a Cuntz-Krieger algebra?
- (2) Can we determine exactly when C*(E) is SME to a unital graph C*-algebra?

Questions

- Can we determine exactly when C*(E) is SME to a Cuntz-Krieger algebra?
- (2) Can we determine exactly when C*(E) is SME to a unital graph C*-algebra?

Necessary conditions (K-theory of gauge invariant quotients)

・ロト・西ト・山下・山下・山下・

Questions

- Can we determine exactly when C*(E) is SME to a Cuntz-Krieger algebra?
- (2) Can we determine exactly when C*(E) is SME to a unital graph C*-algebra?

Necessary conditions (K-theory of gauge invariant quotients)

(1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated

Questions

- Can we determine exactly when C*(E) is SME to a Cuntz-Krieger algebra?
- (2) Can we determine exactly when C*(E) is SME to a unital graph C*-algebra?

Necessary conditions (K-theory of gauge invariant quotients)

- (1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated
- (2) $\operatorname{rank}(\mathcal{K}_1(\mathfrak{I}_2/\mathfrak{I}_1)) \leq \operatorname{rank}(\mathcal{K}_0(\mathfrak{I}_2/\mathfrak{I}_1))$ (equality for Cuntz-Krieger algebras)

Questions

- Can we determine exactly when C*(E) is SME to a Cuntz-Krieger algebra?
- (2) Can we determine exactly when C*(E) is SME to a unital graph C*-algebra?

Necessary conditions (K-theory of gauge invariant quotients)

- (1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finitely generated
- (2) rank(K₁(ℑ₂/ℑ₁)) ≤ rank(K₀(ℑ₂/ℑ₁)) (equality for Cuntz-Krieger algebras)
- (3) If $\mathfrak{I}_2/\mathfrak{I}_1$ is "gauge simple" and $K_0(\mathfrak{I}_2/\mathfrak{I}_1)_+ \neq K_0(\mathfrak{I}_2/\mathfrak{I}_1)$, then $K_0(\mathfrak{I}_2/\mathfrak{I}_1) \cong \mathbb{Z}$ and $K_0(\mathfrak{I}_2/\mathfrak{I}_1)_+ \cong \mathbb{Z}_{\geq 0}$.

Theorem (Arklint-Bentmann-Katsura)

Let $C^*(E)$ purely infinite graph C^* -algebra with finitely many ideals. If

- (1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finite generated and
- (2) $\operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1)) \leq \operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1))$

then there exists a unital graph C^* -algebra $C^*(F)$ such that

 $\operatorname{FK}_{\mathcal{R}}(C^*(E)) \cong \operatorname{FK}_{\mathcal{R}}(C^*(E)).$

Theorem (Arklint-Bentmann-Katsura)

Let $C^*(E)$ purely infinite graph C^* -algebra with finitely many ideals. If

- (1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finite generated and
- (2) rank($K_1(\mathfrak{I}_2/\mathfrak{I}_1)$) \leq rank($K_0(\mathfrak{I}_2/\mathfrak{I}_1)$)

then there exists a unital graph C^* -algebra $C^*(F)$ such that

 $\operatorname{FK}_{\mathcal{R}}(C^*(E)) \cong \operatorname{FK}_{\mathcal{R}}(C^*(E)).$

Moreover, if $rank(K_1(\mathfrak{I}_2/\mathfrak{I}_1)) = rank(K_0(\mathfrak{I}_2/\mathfrak{I}_1))$, then $C^*(F)$ can be chosen to be a Cuntz-Krieger algebra.

Theorem (Arklint-Bentmann-Katsura)

Let $C^*(E)$ purely infinite graph C^* -algebra with finitely many ideals. If

- (1) $K_*(\mathfrak{I}_2/\mathfrak{I}_1)$ is finite generated and
- (2) $\operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1)) \leq \operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1))$

then there exists a unital graph C^* -algebra $C^*(F)$ such that

 $\operatorname{FK}_{\mathcal{R}}(C^*(E)) \cong \operatorname{FK}_{\mathcal{R}}(C^*(E)).$

Moreover, if $\operatorname{rank}(K_1(\mathfrak{I}_2/\mathfrak{I}_1)) = \operatorname{rank}(K_0(\mathfrak{I}_2/\mathfrak{I}_1))$, then $C^*(F)$ can be chosen to be a Cuntz-Krieger algebra.

If X is an accordion space, then

 $C^*(E)\otimes \mathbb{K}\cong C^*(F)\otimes \mathbb{K}.$

 If C^{*}(E) ∼_{SME} O^{top}_A, then every unital hereditary sub-algebra of C^{*}(E) is a Cuntz-Krieger algebra.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

- If C^{*}(E) ∼_{SME} O^{top}_A, then every unital hereditary sub-algebra of C^{*}(E) is a Cuntz-Krieger algebra.
- If C^{*}(E) ~_{SME} C^{*}(F) with |F⁰| < ∞, then every unital hereditary sub-algebra of C^{*}(E) is a graph C^{*}-algebra.

<日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

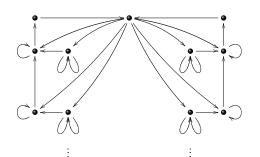
- If C^{*}(E) ∼_{SME} O^{top}_A, then every unital hereditary sub-algebra of C^{*}(E) is a Cuntz-Krieger algebra.
- If C^{*}(E) ~_{SME} C^{*}(F) with |F⁰| < ∞, then every unital hereditary sub-algebra of C^{*}(E) is a graph C^{*}-algebra.

Reformulation

Suppose $C^*(E)$ is a non-unital graph C^* -algebra with finitely many ideals and "*K*-theory" as a Cuntz-Krieger algebra (unital graph C^* -algebra). Is every unital hereditary sub-algebra of $C^*(E)$ isomorphic to a Cuntz-Krieger algebra (unital graph C^* -algebra).

$$K_0(C^*(E)) = \mathbb{Z} \quad K_1(C^*(E)) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●



$$K_0(C^*(E)) = 0$$
 $K_1(C^*(E)) = \mathbb{Z}$

 ${\it K}_0({\it C}^*(E))=\mathbb{Z}\quad {\it K}_1({\it C}^*(E))=0$