A symbolic dynamics approach to Kirchberg algebras.

Enrique Pardo

Universidad de Cádiz

BIRS Workshop "Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras"

April 22, 2013

Outline

- Why?
- 2 Who?
- 3 How?
- 4 What give us?
- What's next?

Joint work with Ruy Exel (Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis, Brazil),

R. EXEL, E. PARDO, Representing Kirchberg algebras as inverse semigroup crossed products, arXiv:1303.6268v1 (2013),

submited to Indiana University Mathematical Journal.

Outline

- Why?
- Who?
- 3 How?
- 4 What give us?
- What's next?

INSPIRACY:

Elliott's Classification Program: classify separable nuclea

Kirchberg-Phillips Theorem: separable nuclear purel infinite simple C"-algebras satisfying the UCT are classifiable using K-and K-as invariants

INSPIRACY:

- Elliott's Classification Program: classify separable nuclear C^* -algebras via K-theoretic invariants.
- ② Kirchberg-Phillips Theorem: separable nuclear purely infinite simple C^* -algebras satisfying the UCT are classifiable using K_0 and K_1 as invariants.

INSPIRACY:

- Elliott's Classification Program: classify separable nuclear C^* -algebras via K-theoretic invariants.
- ② Kirchberg-Phillips Theorem: separable nuclear purely infinite simple C^* -algebras satisfying the UCT are classifiable using K_0 and K_1 as invariants.

INSPIRACY:

- Elliott's Classification Program: classify separable nuclear C^* -algebras via K-theoretic invariants.
- ② Kirchberg-Phillips Theorem: separable nuclear purely infinite simple C^* -algebras satisfying the UCT are classifiable using K_0 and K_1 as invariants.

Why? Who? How? What give us? What's next?

PROBLEM: K-P Theorem needs a large amount of analytical technology.

- ① Cuntz-Krieger algebras \mathcal{O}_A (where $A \in M_n(\mathbb{Z}^+)$): basic model of purely infinite simple C^* -algebras.
- Rørdam classification result: Cuntz-Krieger algebras are classifiable by its K_0 groups. Tools:

- ① Cuntz-Krieger algebras \mathcal{O}_A (where $A \in M_n(\mathbb{Z}^+)$): basic model of purely infinite simple C^* -algebras.
- 2 Rørdam classification result: Cuntz-Krieger algebras are classifiable by its K_0 groups. Tools:
 - (i) Franks' classification of essential irreducible subshifts of finite type (Symbolic Dynamics).
 - (ii) $\mathcal{O}_2 \cong \mathcal{O}_2$ (Analytic).

- Cuntz-Krieger algebras \mathcal{O}_A (where $A \in M_n(\mathbb{Z}^+)$): basic model of purely infinite simple C^* -algebras.
- 2 Rørdam classification result: Cuntz-Krieger algebras are classifiable by its K_0 groups. Tools:
 - (i) Franks' classification of essential irreducible subshifts of finite type (Symbolic Dynamics).
 - (ii) $\mathcal{O}_2 \cong \mathcal{O}_{2-}$ (Analytic)

- ① Cuntz-Krieger algebras \mathcal{O}_A (where $A \in M_n(\mathbb{Z}^+)$): basic model of purely infinite simple C^* -algebras.
- 2 Rørdam classification result: Cuntz-Krieger algebras are classifiable by its K_0 groups. Tools:
 - Franks' classification of essential irreducible subshifts of finite type (Symbolic Dynamics).
 - (ii) $\mathcal{O}_2 \cong \mathcal{O}_{2-}$ (Analytic)

- Cuntz-Krieger algebras \mathcal{O}_A (where $A \in M_n(\mathbb{Z}^+)$): basic model of purely infinite simple C^* -algebras.
- 2 Rørdam classification result: Cuntz-Krieger algebras are classifiable by its K_0 groups. Tools:
 - (i) Franks' classification of essential irreducible subshifts of finite type (Symbolic Dynamics).
 - (ii) $\mathcal{O}_2 \cong \mathcal{O}_{2_-}$ (Analytic).

- ① Kumjian, Pask, Raeburn and Renault: graph C^* -algebra $C^*(E)$ for graph E.
- Rørdam's Theorem applies, via Bates-Pask (graph moves)
- Sørensen: combinatorial classification result for simple graph C*-algebras of graphs with finitely many vertices and countably many edges.

- Kumjian, Pask, Raeburn and Renault: graph C^* -algebra $C^*(E)$ for graph E.
- Rørdam's Theorem applies, via Bates-Pask (graph moves).
- \odot Sørensen: combinatorial classification result for simple graph C^* -algebras of graphs with finitely many vertices and countably many edges.

- Kumjian, Pask, Raeburn and Renault: graph C^* -algebra $C^*(E)$ for graph E.
- Rørdam's Theorem applies, via Bates-Pask (graph moves).
- Sørensen: combinatorial classification result for simple graph C*-algebras of graphs with finitely many vertices and countably many edges.

- Kumjian, Pask, Raeburn and Renault: graph C^* -algebra $C^*(E)$ for graph E.
- Rørdam's Theorem applies, via Bates-Pask (graph moves).
- \odot Sørensen: combinatorial classification result for simple graph C^* -algebras of graphs with finitely many vertices and countably many edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

- Abrams, Louly, P., Smith: Partial classification for purely infinite simple LPAs on finite graphs.
- Ruiz, Tomforde: Classification for purely infinite simple LPAs on graphs with finite vertices and infinite edges.

<u>HANDICAP</u>: According to Rørdam's result, for any pair (G_0, G_1) of countable abelian groups there exists a Kirchberg algebra A such that $K_i(A) \cong G_i$ for i = 0, 1.

The above results only cover a piece of a combinatorial, purely algebraic version of Kirchberg-Phillips Theorem.

<u>HANDICAP</u>: According to Rørdam's result, for any pair (G_0, G_1) of countable abelian groups there exists a Kirchberg algebra A such that $K_i(A) \cong G_i$ for i = 0, 1.

The above results only cover a piece of a combinatorial, purely algebraic version of Kirchberg-Phillips Theorem.

Why? Who? How? What give us? What's next?

WE NEED A COMBINATORIAL MODEL RELATED TO A SYMBOLIC DYNAMICAL SYSTEM!

Outline

- Why?
- 2 Who?
- 3 How?
- What give us?
- What's next?

Why? Who? How? What give us? What's next?

<u>CANDIDATE</u>: Katsura constructed a suitable combinatorial model for Kirchberg algebras.

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

$$\Omega_A := \{(i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1\}.$$

For each $i\in\{1,2,\ldots,N\}$, define a set $\Omega_A(i)\subset\{1,2,\ldots,N\}$ by

$$\Omega_A(i) := \{ j \in \{1, 2, \dots, N\} \mid (i, j) \in \Omega_A \}.$$

(0)
$$\Omega_A(i) \neq \emptyset$$
 for all i , and $B_{i,j} = 0$ for $(i,j) \notin \Omega_A$

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

$$\Omega_A := \{(i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1\}.$$

For each $i \in \{1,2,\ldots,N\}$, define a set $\Omega_A(i) \subset \{1,2,\ldots,N\}$ by

$$\Omega_A(i) := \{ j \in \{1, 2, \dots, N\} \mid (i, j) \in \Omega_A \}$$

(0)
$$\Omega_A(i) \neq \emptyset$$
 for all i , and $B_{i,j} = 0$ for $(i,j) \notin \Omega_A$.

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

$$\Omega_A := \{(i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1\}.$$

For each $i \in \{1,2,\ldots,N\}$, define a set $\Omega_A(i) \subset \{1,2,\ldots,N\}$ by

$$\Omega_A(i) := \{ j \in \{1, 2, \dots, N\} \mid (i, j) \in \Omega_A \}.$$

(0)
$$\Omega_A(i) \neq \emptyset$$
 for all i , and $B_{i,j} = 0$ for $(i,j) \not \in \Omega_A$

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

$$\Omega_A := \{(i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1\}.$$

For each $i \in \{1,2,\ldots,N\}$, define a set $\Omega_A(i) \subset \{1,2,\ldots,N\}$ by

$$\Omega_A(i) := \{ j \in \{1, 2, \dots, N\} \mid (i, j) \in \Omega_A \}.$$

(0)
$$\Omega_A(i) \neq \emptyset$$
 for all i , and $B_{i,j} = 0$ for $(i,j) \notin \Omega_A$.

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_iu_i^*=u_i^*u_i=q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

```
(i) s_{i,j,n}u_j=s_{i,j,n+A_{i,j}} and u_is_{i,j,n}=s_{i,j,n+B_{i,j}} for all (i,j)\in\Omega_A and n\in\mathbb{Z}.
```

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_iu_i^*=u_i^*u_i=q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

- (i) $s_{i,j,n}u_j=s_{i,j,n+A_{i,j}}$ and $u_is_{i,j,n}=s_{i,j,n+B_{i,j}}$ for all $(i,j)\in\Omega_A$ and $n\in\mathbb{Z}.$
- (ii) $s_{i,j,n}^* s_{i,j,n} = q_j$ for all $(i,j) \in \Omega_A$ and $n \in \mathbb{Z}$.
- (iii) $q_i = \sum\limits_{j \in \Omega_A(i)} \sum\limits_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$ for all i.

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_iu_i^*=u_i^*u_i=q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

- (i) $s_{i,j,n}u_j=s_{i,j,n+A_{i,j}}$ and $u_is_{i,j,n}=s_{i,j,n+B_{i,j}}$ for all $(i,j)\in\Omega_A$ and $n\in\mathbb{Z}.$
- (ii) $s_{i,j,n}^*s_{i,j,n}=q_j$ for all $(i,j)\in\Omega_A$ and $n\in\mathbb{Z}.$

(iii)
$$q_i = \sum\limits_{j \in \Omega_A(i)} \sum\limits_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$$
 for all i .

Definition

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_iu_i^*=u_i^*u_i=q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

- $\begin{array}{l} \text{(i)} \ \ s_{i,j,n}u_j=s_{i,j,n+A_{i,j}} \ \text{and} \ u_is_{i,j,n}=s_{i,j,n+B_{i,j}} \ \text{for all} \\ \ \ \ (i,j)\in\Omega_A \ \text{and} \ n\in\mathbb{Z}. \end{array}$
- (ii) $s_{i,j,n}^*s_{i,j,n}=q_j$ for all $(i,j)\in\Omega_A$ and $n\in\mathbb{Z}.$
- (iii) $q_i = \sum\limits_{j \in \Omega_A(i)} \sum\limits_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$ for all i.

When B=(0), $\mathcal{O}_{A,(0)}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_A (the Exel-Laca algebra if $N=\infty$). To be precise, $\mathcal{O}_A=C^*(E_A)$.

When B=(0), $\mathcal{O}_{A,(0)}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_A (the Exel-Laca algebra if $N=\infty$). To be precise, $\mathcal{O}_A=C^*(E_A)$.

- \bigcirc $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class
- If the matrices A, B satisfy:

 (i) A is irreducible.

 (ii) $A_{i,i} \geq 2$ and $B_{i,i} = 1$ for every
 - then $\mathcal{O}_{A,B}$ is a Kirchberg algebra.
- Every Kirchberg algebra can be represented, up to isomorphism, by an algebra $\mathcal{O}_{A,B}$ for matrices A,B satisfying the conditions (2)(a&b).
- \bigcirc For any matrix $B, \mathcal{O}_{\lambda} \hookrightarrow \mathcal{O}_{\lambda, B} \rightarrow \mathcal{O}_{\lambda}$

- \bullet $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- ② If the matrices A, B satisfy:
 - (i) A is irreducible.
 - (ii) $A_{i,i} \geq 2$ and $B_{i,i} = 1$ for every $1 \leq i \leq N$.

- ① Every Kirchberg algebra can be represented, up to isomorphism, by an algebra $\mathcal{O}_{A,B}$ for matrices A,B satisfying the conditions (2)(a&b).

- \bullet $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 If the matrices A, B satisfy:
 - (i) A is irreducible.
 - (ii) $A_{i,i} \geq 2$ and $B_{i,i} = 1$ for every $1 \leq i \leq N$.

- **1** Every Kirchberg algebra can be represented, up to isomorphism, by an algebra $\mathcal{O}_{A,B}$ for matrices A,B satisfying the conditions (2)(a&b).
- \bullet For any matrix $B, \mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$.

- \bigcirc $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 If the matrices A, B satisfy:
 - (i) A is irreducible.
 - (ii) $A_{i,i} \geq 2$ and $B_{i,i} = 1$ for every $1 \leq i \leq N$.

- **3** Every Kirchberg algebra can be represented, up to isomorphism, by an algebra $\mathcal{O}_{A,B}$ for matrices A,B satisfying the conditions (2)(a&b).
- ④ For any matrix B, $\mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$.

- \bigcirc $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 If the matrices A, B satisfy:
 - (i) A is irreducible.
 - (ii) $A_{i,i} \geq 2$ and $B_{i,i} = 1$ for every $1 \leq i \leq N$.

- **3** Every Kirchberg algebra can be represented, up to isomorphism, by an algebra $\mathcal{O}_{A,B}$ for matrices A,B satisfying the conditions (2)(a&b).
- \bullet For any matrix $B, \mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$.

Thus, it seems that this is the right class.

The natural injective *-homomorphism $\mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$, suggest to deal with graph moves, to get some sort of classification stuff.

<u>PROBLEM</u>: Changes on A cannot be independent of suitable changes on B. Moreover, results associated to classical moves on A are unclear.

The natural injective *-homomorphism $\mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$, suggest to deal with graph moves, to get some sort of classification stuff.

<u>PROBLEM</u>: Changes on A <u>cannot</u> be independent of suitable changes on B. Moreover, results associated to classical moves on A are unclear.

The natural injective *-homomorphism $\mathcal{O}_A \hookrightarrow \mathcal{O}_{A,B}$, suggest to deal with graph moves, to get some sort of classification stuff.

WE NEED AN ASSOCIATED SYMBOLIC DYNAMICAL SYSTEM!

Outline

- Why?
- Who?
- 3 How?
- 4 What give us?
- What's next?

KATSURA'S PICTURE: $\mathcal{O}_{A,B}$ is associated to a topological graph

E. Hence, edges and vertices are locally compact spaces, and range and source are continuous maps. Thus:

- No combinatorial nature object associated.
- ② $\mathcal{O}_{A,B}$ is seen as a Cuntz-Pimsner algebra associated to a full C^* -correspondence $X_{A,B}$ over $C_0(\{1,\ldots,N\}\times\mathbb{T})$.

- No combinatorial nature object associated.
- ② $\mathcal{O}_{A,B}$ is seen as a Cuntz-Pimsner algebra associated to a full C^* -correspondence $X_{A,B}$ over $C_0(\{1,\ldots,N\}\times\mathbb{T})$. This picture is useful to determine nuclearity or computing K-Theory but not comfortable for combinatorial work

- No combinatorial nature object associated.
- ② $\mathcal{O}_{A,B}$ is seen as a Cuntz-Pimsner algebra associated to a full C^* -correspondence $X_{A,B}$ over $C_0(\{1,\ldots,N\}\times\mathbb{T})$. This picture is useful to determine nuclearity or computing K-Theory, but not comfortable for combinatorial work

- No combinatorial nature object associated.
- ② $\mathcal{O}_{A,B}$ is seen as a Cuntz-Pimsner algebra associated to a full C^* -correspondence $X_{A,B}$ over $C_0(\{1,\ldots,N\}\times\mathbb{T})$. This picture is useful to determine nuclearity or computing K-Theory, but not comfortable for combinatorial work.

<u>IDEA</u>: Mimic Exel-Laca picture of $\mathcal{O}_A\cong C_0(X_A)\rtimes_{\alpha}\mathbb{F}$, where X_A is the space of one-sided infinite paths on E_A , while α is a partial action of the free group (with generators the edges of E_A) on $C_0(X_A)$. This gives a symbolic dynamical picture of \mathcal{O}_A .

<u>IDEA</u>: Mimic Exel-Laca picture of $\mathcal{O}_A\cong C_0(X_A)\rtimes_{\alpha}\mathbb{F}$, where X_A is the space of one-sided infinite paths on E_A , while α is a partial action of the free group (with generators the edges of E_A) on $C_0(X_A)$. This gives a symbolic dynamical picture of \mathcal{O}_A .

- ① Fix \mathbb{F} , and pick $C^*_{par}(\mathbb{F}) \cong C_0(\Omega_A) \rtimes_{\alpha} \mathbb{F}$.
- lacktriangledown Prove that the representation $\pi:\mathbb{F} o \mathcal{O}_A$ is semi-saturated and tight.
- Thus:

- Fix \mathbb{F} , and pick $C^*_{par}(\mathbb{F}) \cong C_0(\Omega_A) \rtimes_{\alpha} \mathbb{F}$.
- ② Prove that the representation $\pi:\mathbb{F}\to\mathcal{O}_A$ is semi-saturated and tight.
- Thus:
 - (i) $\mathcal{O}_A \cong C^*_{\mathsf{par}}(\mathbb{F})/J$.
 - (ii) J = C₀(U_A) x_A ℝ for an open subspace of U_A such that
 - $X_A = \Omega_A \setminus U_A.$

- Fix \mathbb{F} , and pick $C^*_{par}(\mathbb{F}) \cong C_0(\Omega_A) \rtimes_{\alpha} \mathbb{F}$.
- ② Prove that the representation $\pi:\mathbb{F}\to\mathcal{O}_A$ is semi-saturated and tight.
- Thus:
 - (i) $\mathcal{O}_A\cong C^*_{\mathrm{par}}(\mathbb{F})/J$. (ii) $J=C_0(U_A)\rtimes_{\alpha}\mathbb{F}$ for an open subspace of Ω_A such that $X_A=\Omega_A\setminus U_A$.

- Fix \mathbb{F} , and pick $C^*_{par}(\mathbb{F}) \cong C_0(\Omega_A) \rtimes_{\alpha} \mathbb{F}$.
- ② Prove that the representation $\pi: \mathbb{F} \to \mathcal{O}_A$ is semi-saturated and tight.
- Thus:
 - (i) $\mathcal{O}_A \cong C^*_{\mathsf{par}}(\mathbb{F})/J$.
 - (ii) $J = C_0(U_A) \rtimes_{\alpha} \mathbb{F}$ for an open subspace of Ω_A such that $X_A = \Omega_A \setminus U_A$.

- Fix \mathbb{F} , and pick $C^*_{par}(\mathbb{F}) \cong C_0(\Omega_A) \rtimes_{\alpha} \mathbb{F}$.
- ② Prove that the representation $\pi: \mathbb{F} \to \mathcal{O}_A$ is semi-saturated and tight.
- Thus:
 - (i) $\mathcal{O}_A \cong C^*_{\mathsf{par}}(\mathbb{F})/J$.
 - (ii) $J=C_0(U_A)\rtimes_{\alpha}\mathbb{F}$ for an open subspace of Ω_A such that $X_A=\Omega_A\setminus U_A.$

$$G = \mathbb{F} * \mathbb{F}' / \mathcal{R},$$

where \mathbb{F}' is the free group with generators the partial unitaries, and \mathcal{R} the normal subgroup generated by the relations (i) in $\mathcal{O}_{A,B}$ definition. And:

40.40.41.41.1.1.000

$$G = \mathbb{F} * \mathbb{F}'/\mathcal{R},$$

where \mathbb{F}' is the free group with generators the partial unitaries, and \mathcal{R} the normal subgroup generated by the relations (i) in $\mathcal{O}_{A,B}$ definition. And:

- The natural representation is not semi-saturated.
- ② For suitable values of B the representation of $C^*_{\mathsf{par}}(G)$ on $\mathcal{O}_{A,B}$ forces the collapse of families of nonzero partial isometries!

$$G = \mathbb{F} * \mathbb{F}' / \mathcal{R},$$

where \mathbb{F}' is the free group with generators the partial unitaries, and \mathcal{R} the normal subgroup generated by the relations (i) in $\mathcal{O}_{A,B}$ definition. And:

- The natural representation is not semi-saturated.
- ② For suitable values of B the representation of $C^*_{\mathsf{par}}(G)$ on $\mathcal{O}_{A,B}$ forces the collapse of families of nonzero partial isometries!

$$G = \mathbb{F} * \mathbb{F}' / \mathcal{R},$$

where \mathbb{F}' is the free group with generators the partial unitaries, and \mathcal{R} the normal subgroup generated by the relations (i) in $\mathcal{O}_{A,B}$ definition. And:

- The natural representation is not semi-saturated.
- ② For suitable values of B the representation of $C^*_{\mathsf{par}}(G)$ on $\mathcal{O}_{A,B}$ forces the collapse of families of nonzero partial isometries!

WE NEED A DIFFERENT STRATEGY.

<u>SOLUTION</u>: We construct the symbolic dynamics system from scratch, using Exel's techniques.

- Use A, B to define a semigroupoid $\Lambda_{A,B}$.
- Prove it satisfies the right properties:
 - (i) $\Lambda_{A,B}$ is left cancellative.
 - (ii) Every pair of intersecting elements have a unique lcm.
 - (iii) $\Lambda_{A,B}$ has no springs and is categorical.
- © Construct an associated inverse semigroup with zero $S(\Lambda_{A,B})$, whose semilatice of idempotents is denoted E
- Onstruct the (tight) groupoid of germs $\mathcal{G}_{\Lambda_{A,B}}$ associated to the action of $\mathcal{S}(\Lambda_{A,B})$ on the space $\widehat{E}_{\text{tight}}$ of tight characters defined over E.

- Use A, B to define a semigroupoid $\Lambda_{A,B}$.
- Prove it satisfies the right properties:
 - (i) $\Lambda_{A,B}$ is left cancellative.
 - (ii) Every pair of intersecting elements have a unique lcm.
 - (iii) $\Lambda_{A,B}$ has no springs and is categorical.
- © Construct an associated inverse semigroup with zero $S(\Lambda_{A,B})$, whose semilatice of idempotents is denoted E
- Onstruct the (tight) groupoid of germs $\mathcal{G}_{\Lambda_{A,B}}$ associated to the action of $\mathcal{S}(\Lambda_{A,B})$ on the space $\widehat{E}_{\text{tight}}$ of tight characters defined over E.

- Use A, B to define a semigroupoid $\Lambda_{A,B}$.
- Prove it satisfies the right properties:
 - (i) $\Lambda_{A,B}$ is left cancellative.
 - (ii) Every pair of intersecting elements have a unique lcm.
 - (iii) $\Lambda_{A,B}$ has no springs and is categorical.
- **3** Construct an associated inverse semigroup with zero $S(\Lambda_{A,B})$, whose semilatice of idempotents is denoted E.
- Onstruct the (tight) groupoid of germs $\mathcal{G}_{\Lambda_{A,B}}$ associated to the action of $\mathcal{S}(\Lambda_{A,B})$ on the space $\widehat{E}_{\text{tight}}$ of tight characters defined over E.

- Use A, B to define a semigroupoid $\Lambda_{A,B}$.
- Prove it satisfies the right properties:
 - (i) $\Lambda_{A,B}$ is left cancellative.
 - (ii) Every pair of intersecting elements have a unique lcm.
 - (iii) $\Lambda_{A,B}$ has no springs and is categorical.
- **3** Construct an associated inverse semigroup with zero $S(\Lambda_{A,B})$, whose semilatice of idempotents is denoted E.
- Construct the (tight) groupoid of germs $\mathcal{G}_{\Lambda_{A,B}}$ associated to the action of $\mathcal{S}(\Lambda_{A,B})$ on the space $\widehat{E}_{\text{tight}}$ of tight characters defined over E.

Why? Who? How? What give us? What's next?

Under the above properties, the universal C^* -algebra $\mathcal{O}_{\Lambda_{A,B}}$ of tight representations of $\Lambda_{A,B}$ is *-isomorphic to $C^*(\mathcal{G}_{\Lambda_{A,B}})$.

Then, we prove that the $\mathcal{O}_{\Lambda_{A,B}}$ is *-isomorphic to $\mathcal{O}_{A,B}$. Thus:

Why? Who? How? What give us? What's next?

- ② The image of $S(\Lambda_{A,B})$ into $\mathcal{O}_{\Lambda_{A,B}}$ goes to $S^{A,B}$ (the inverse semigroup of $\mathcal{O}_{A,B}$ generated by the $s_{i,j,n}$'s and the u_i 's).
- $\mathfrak{G}^{(0)}_{\Lambda_{A,B}} := \widehat{E}_{\mathsf{tight}}$ is homeomorphic to $X_A!$

- ② The image of $S(\Lambda_{A,B})$ into $\mathcal{O}_{\Lambda_{A,B}}$ goes to $S^{A,B}$ (the inverse semigroup of $\mathcal{O}_{A,B}$ generated by the $s_{i,j,n}$'s and the u_i 's).
- $\mathfrak{G}_{\Lambda_{A,B}}^{(0)} := \widehat{E}_{\mathsf{tight}}$ is homeomorphic to $X_A!$

- ② The image of $\mathcal{S}(\Lambda_{A,B})$ into $\mathcal{O}_{\Lambda_{A,B}}$ goes to $\mathcal{S}^{A,B}$ (the inverse semigroup of $\mathcal{O}_{A,B}$ generated by the $s_{i,j,n}$'s and the u_i 's).
- $\mathfrak{G}^{(0)}_{\Lambda_{A,B}} := \widehat{E}_{\mathsf{tight}}$ is homeomorphic to $X_A!$

- ② The image of $S(\Lambda_{A,B})$ into $\mathcal{O}_{\Lambda_{A,B}}$ goes to $S^{A,B}$ (the inverse semigroup of $\mathcal{O}_{A,B}$ generated by the $s_{i,j,n}$'s and the u_i 's).
- $\mathfrak{G}_{\Lambda_{A,B}}^{(0)} := \widehat{E}_{\mathsf{tight}}$ is homeomorphic to $X_A!$

Under this identification we have

Theorem

The action $\alpha: \mathcal{S}(\Lambda_{A,B}) \to \widehat{E}_{\textit{tight}}$ becomes the action $\alpha: \mathcal{S}^{A,B} \to X_A$ given by multiplication of elements of X_A on the left by elements of $\mathcal{S}^{A,B}$.

Under this identification we have

Theorem

The action $\alpha: \mathcal{S}(\Lambda_{A,B}) \to \widehat{E}_{\textit{tight}}$ becomes the action $\alpha: \mathcal{S}^{A,B} \to X_A$ given by multiplication of elements of X_A on the left by elements of $\mathcal{S}^{A,B}$.

So, the picture is very simple and intuitive. An interesting consequence is the following

Corollary

The groupoid $\mathcal{G}_{\Lambda_{AB}}$ is étale with second countable unit space.

So, the picture is very simple and intuitive. An interesting consequence is the following

Corollary

The groupoid $\mathcal{G}_{\Lambda_{A,B}}$ is étale with second countable unit space.

Thus, we obtain the following picture of $\mathcal{O}_{A,B}$

Corollary

The C^* -algebra $\mathcal{O}_{A,B}$ is isomorphic to the inverse semigroup crossed product $C_0(X_A) \rtimes_{\alpha} \mathcal{S}^{A,B}$.

Notice that, when B=(0), the previous corollary recover the picture of the Exel-Laca algebra \mathcal{O}_A . Also, we get the desired picture of $\mathcal{O}_{A,B}$ in terms of symbolic dynamics.

Thus, we obtain the following picture of $\mathcal{O}_{A,B}$

Corollary

The C^* -algebra $\mathcal{O}_{A,B}$ is isomorphic to the inverse semigroup crossed product $C_0(X_A) \rtimes_{\alpha} \mathcal{S}^{A,B}$.

Notice that, when B=(0), the previous corollary recover the picture of the Exel-Laca algebra \mathcal{O}_A . Also, we get the desired picture of $\mathcal{O}_{A,B}$ in terms of symbolic dynamics.

Thus, we obtain the following picture of $\mathcal{O}_{A,B}$

Corollary

The C^* -algebra $\mathcal{O}_{A,B}$ is isomorphic to the inverse semigroup crossed product $C_0(X_A) \rtimes_{\alpha} \mathcal{S}^{A,B}$.

Notice that, when B=(0), the previous corollary recover the picture of the Exel-Laca algebra \mathcal{O}_A . Also, we get the desired picture of $\mathcal{O}_{A,B}$ in terms of symbolic dynamics.

The addition of an extra condition on the matrix ${\cal B}$ produces interesting consequences.

Definition

We say that the matrix B satisfies Condition (E) when $B_{i,j}=0$ if and only if $(i,j)\not\in\Omega_A$.

Lemma

 $\Lambda_{A,B}$ is right cancellative if and only if B satisfies Condition (E).

Remark

If $\Lambda_{A,B}$ is right cancellative then $\mathcal{S}(\Lambda_{A,B})$ is a E^* -unitary inverse semigroup, whence $\mathcal{G}_{\Lambda_{A,B}}$ is Hausdorff.

Lemma

 $\Lambda_{A,B}$ is right cancellative if and only if B satisfies Condition (E).

Remark

If $\Lambda_{A,B}$ is right cancellative then $\mathcal{S}(\Lambda_{A,B})$ is a E^* -unitary inverse semigroup, whence $\mathcal{G}_{\Lambda_{A,B}}$ is Hausdorff.

Outline

- 1 Why?
- Who?
- 3 How?
- 4 What give us?
- What's next?

Why? Who? How? What give us? What's next?

The dynamical approach lets us to deal with some questions in a more intuitive form. For example, when looking for characterize simplicity, we need to get ride of when $\mathcal{G}_{\Lambda_{A,B}}$ is minimal and essentially principal.

Why? Who? How? What give us? What's next?

The dynamical approach lets us to deal with some questions in a more intuitive form. For example, when looking for characterize simplicity, we need to get ride of when $\mathcal{G}_{\Lambda_{A,B}}$ is minimal and essentially principal.

Definition

A groupoid $\mathcal G$ is said to be minimal if the only invariant open subsets of $\mathcal G^{(0)}$ are the empty set and $\mathcal G^{(0)}$ itself.

Definition

If S is an inverse semigroup, and τ is an action by (partial) homeomorphisms on a topological space X, then:

We say that a subset W of X is invariant if for every $s \in S$ we have that $\tau_s(W) \subseteq W$.

Definition

A groupoid $\mathcal G$ is said to be minimal if the only invariant open subsets of $\mathcal G^{(0)}$ are the empty set and $\mathcal G^{(0)}$ itself.

Definition

If S is an inverse semigroup, and τ is an action by (partial) homeomorphisms on a topological space X, then:

- We say that a subset W of X is invariant if for every $s \in S$ we have that $\tau_s(W) \subseteq W$.
- We say that X is irreducible if it has no proper open invariant subsets.

Definition

A groupoid $\mathcal G$ is said to be minimal if the only invariant open subsets of $\mathcal G^{(0)}$ are the empty set and $\mathcal G^{(0)}$ itself.

Definition

If S is an inverse semigroup, and τ is an action by (partial) homeomorphisms on a topological space X, then:

- We say that a subset W of X is invariant if for every $s \in S$ we have that $\tau_s(W) \subseteq W$.
- We say that X is irreducible if it has no proper open invariant subsets.

Definition

A groupoid $\mathcal G$ is said to be minimal if the only invariant open subsets of $\mathcal G^{(0)}$ are the empty set and $\mathcal G^{(0)}$ itself.

Definition

If S is an inverse semigroup, and τ is an action by (partial) homeomorphisms on a topological space X, then:

- We say that a subset W of X is invariant if for every $s \in S$ we have that $\tau_s(W) \subseteq W$.
- We say that X is irreducible if it has no proper open invariant subsets.

For the groupoid of germs $\mathcal G$ of the action of an inverse semigroup S on a locally compact Hausdorff space X, it is easy to see that irreducibility of X is equivalent to minimality of $\mathcal G$. Then we have

Theorem

Given the action α of $\mathcal{S}^{A,B}$ on X_A , the following are equivalent:

- 1 The matrix A is irreducible.
- 2 The space X_A is irreducible.
- ③ The groupoid $\mathcal{G}_{\Lambda_{A,B}}$ is minimal.

For the groupoid of germs $\mathcal G$ of the action of an inverse semigroup S on a locally compact Hausdorff space X, it is easy to see that irreducibility of X is equivalent to minimality of $\mathcal G$. Then we have

Theorem

Given the action α of $\mathcal{S}^{A,B}$ on X_A , the following are equivalent:

- The matrix A is irreducible.
- 2 The space X_A is irreducible.
- **3** The groupoid $\mathcal{G}_{\Lambda_{A,B}}$ is minimal.

Definition

Let \mathcal{G} be a locally compact, Hausdorff, étale groupoid. Then:

For any $x\in\mathcal{G}^{(0)},$ the isotropy group at x is

$$\mathcal{G}(x) = \{ \gamma \in \mathcal{G} \mid d(\gamma) = t(\gamma) = x \}$$

\(\mathcal{G} \) is essentially principal if the interior of the isotropy group bundle

$$\mathcal{G}' = \{ \gamma \in \mathcal{G} : d(\gamma) = t(\gamma) \}$$

is contained in $\mathcal{G}^{(0)}$.

Definition

Let $\mathcal G$ be a locally compact, Hausdorff, étale groupoid. Then:

① For any $x \in \mathcal{G}^{(0)}$, the isotropy group at x is

$$\mathcal{G}(x) = \{ \gamma \in \mathcal{G} \mid d(\gamma) = t(\gamma) = x \}.$$

 ${\cal G}$ is essentially principal if the interior of the isotropy group bundle

$$\mathcal{G}' = \{ \gamma \in \mathcal{G} : d(\gamma) = t(\gamma) \}$$

is contained in $\mathcal{G}^{(0)}$.

Definition

Let \mathcal{G} be a locally compact, Hausdorff, étale groupoid. Then:

• For any $x \in \mathcal{G}^{(0)}$, the isotropy group at x is

$$\mathcal{G}(x) = \{ \gamma \in \mathcal{G} \mid d(\gamma) = t(\gamma) = x \}.$$

 ${\mathcal G}$ is essentially principal if the interior of the isotropy group bundle

$$\mathcal{G}' = \{ \gamma \in \mathcal{G} : d(\gamma) = t(\gamma) \}$$

is contained in $\mathcal{G}^{(0)}$.

Definition

Let \mathcal{G} be a locally compact, Hausdorff, étale groupoid. Then:

• For any $x \in \mathcal{G}^{(0)}$, the isotropy group at x is

$$\mathcal{G}(x) = \{ \gamma \in \mathcal{G} \mid d(\gamma) = t(\gamma) = x \}.$$

 ${\mathcal G}$ is essentially principal if the interior of the isotropy group bundle

$$\mathcal{G}' = \{ \gamma \in \mathcal{G} : d(\gamma) = t(\gamma) \}$$

is contained in $\mathcal{G}^{(0)}$.

Definition

Let S be an E^* -unitary inverse semigroup, and let τ be an action of S on a topological space X.

⊚ Given $s \in S$ and $x \in X_{s^*s}$, we say x is a fixed point for s in $\tau_s(x) = x$.

we say that the action is topologically free it, for every $s \in S \setminus E(S)$, the interior of the set of fixed points for s is empty.

Definition

Let S be an E^* -unitary inverse semigroup, and let τ be an action of S on a topological space X.

- ① Given $s \in S$ and $x \in X_{s^*s}$, we say x is a fixed point for s if $\tau_s(x) = x$.
- We say that the action is topologically free if, for every $s \in S \setminus E(S)$, the interior of the set of fixed points for s is empty.

Definition

Let S be an E^* -unitary inverse semigroup, and let τ be an action of S on a topological space X.

- ① Given $s \in S$ and $x \in X_{s^*s}$, we say x is a fixed point for s if $\tau_s(x) = x$.
- 2 We say that the action is topologically free if, for every $s \in S \setminus E(S)$, the interior of the set of fixed points for s is empty.

Definition

Let S be an E^* -unitary inverse semigroup, and let τ be an action of S on a topological space X.

- ① Given $s \in S$ and $x \in X_{s^*s}$, we say x is a fixed point for s if $\tau_s(x) = x$.
- 2 We say that the action is topologically free if, for every $s \in S \setminus E(S)$, the interior of the set of fixed points for s is empty.

Now, we have the following result, connecting both notions.

Theorem

Let S be an E^* -unitary inverse semigroup, let τ be an action of S on a locally compact, Hausdorff space X, and let $\mathcal G$ be the corresponding groupoid of germs. Then $\mathcal G$ is essentially principal if and only if τ is topologically free.

Thus, we can deal with the problem from the point of view of topological freeness.

We get Exel-Laca's result when we act with elements of S^A (the inverse semigroup of \mathcal{O}_A generated by the $s_{i,j,n}$'s).

Lemma

When restricted to elements $s \in S^A \setminus E(S^A)$, TFAE:

- The action is topologically free.
- ② The graph E_A satisfies Condition (L).

Thus, we can deal with the problem from the point of view of topological freeness.

We get Exel-Laca's result when we act with elements of S^A (the inverse semigroup of \mathcal{O}_A generated by the $s_{i,j,n}$'s).

Lemma

When restricted to elements $s \in S^A \setminus E(S^A)$, TFAE:

- The action is topologically free.
- 2 The graph E_A satisfies Condition (L).

Thus, we can deal with the problem from the point of view of topological freeness.

We get Exel-Laca's result when we act with elements of S^A (the inverse semigroup of \mathcal{O}_A generated by the $s_{i,j,n}$'s).

Lemma

When restricted to elements $s \in S^A \setminus E(S^A)$, TFAE:

- The action is topologically free.
- 2 The graph E_A satisfies Condition (L).

The action of partial unitaries give us

Lemma

Given an element $\omega = s_{i_1,i_2,n_1}s_{i_2,i_3,n_2}\cdots s_{i_k,i_{k+1},n_k}\cdots$ of X_A , the following are equivalent:

- lacktriangledown is fixed under the action of $u_{i_1}^l$ ($l \in \mathbb{Z}$).
- ② For every $j \geq 1$ the element $K_j := l \cdot \prod_{t=1}^j \frac{B_{i_t,i_{t+1}}}{A_{i_t,i_{t+1}}}$ belongs to \mathbb{Z} .

Thus, combining all the information we get

Theorem

Let α be the action of $\mathcal{S}^{A,B}$ on X_A , and let $\mathcal{G}_{\Lambda_{A,B}}$ the associated groupoid. The following are equivalent:

- (i) The graph E_A satisfies Condition (L).
 - (ii) The matrix B satisfies Condition (E).
 - (iii) For any fixed point $\omega=s_{i_1,i_2,n_1}s_{i_2,i_3,n_2}\cdots s_{i_k,i_{k+1},n_k}\cdots$ and every $n\geq 1$ there exist $m\geq n$ and j_{m+1} with:
 - (a) $(i_m,j_{m+1})\in\Omega_{\underline{A}}$.
 - (b) $K_{m+1} = K_m \cdot \frac{B_{i_m, j_{m+1}}}{A_{i_m, j_{m+1}}} \notin \mathbb{Z}.$
- ② The groupoid $\mathcal{G}_{\Lambda_{A,B}}$ is essentially principal.

And as a practical consequence:

Proposition

Let α be the action of $\mathcal{S}^{A,B}$ on X_A , and let $\mathcal{G}_{\Lambda_{A,B}}$ the associated groupoid. If

- The graph E_A satisfies Condition (L).
- 2 The matrix B satisfies Condition (E).
- **3** For any fixed point $\omega = s_{i_1,i_2,n_1}s_{i_2,i_3,n_2}\cdots s_{i_k,i_{k+1},n_k}\cdots$ and for every $n,r\geq 1$ there exist a sequence $j_{n+1},j_{n+2},\ldots,j_{n+r}$ with:
 - (i) $(j_t, j_{t+1}) \in \Omega_A$ for all t.

(ii)
$$\lim_{r \to \infty} \prod_{t=1}^{r} \left(\frac{B_{j_{n+t}, j_{n+t+1}}}{A_{j_{n+t}, j_{n+t+1}}} \right) = 0.$$

then the groupoid $\mathcal{G}_{\Lambda_{A,B}}$ is essentially principal.

Notice that this proposition includes Katsura's conditions for purely infinite simple. Now, we are ready to characterize simplicity, using a result of Clark et al. characterizing simplicity of groupoid C^* -algebras of Hausdorff groupoids.

Notice that this proposition includes Katsura's conditions for purely infinite simple. Now, we are ready to characterize simplicity, using a result of Clark et al. characterizing simplicity of groupoid C^* -algebras of Hausdorff groupoids.

Theorem

Consider the initial matrices A, B. If the matrix B satisfies Condition (E), then the following are equivalent:

- (i) The matrix A is irreducible.
 - (ii) The graph E_A satisfies Condition (L).
 - (iii) For any fixed point $\omega = s_{i_1,i_2,n_1}s_{i_2,i_3,n_2}\cdots s_{i_k,i_{k+1},n_k}\cdots$ and every $n\geq 1$ there exist $m\geq n$ and j_{m+1} with:
 - (a) $(i_m, j_{m+1}) \in \Omega_{\underline{A}}$.
 - (b) $K_{m+1} = K_m \cdot \frac{B_{i_m, j_{m+1}}}{A_{i_m, j_{m+1}}} \notin \mathbb{Z}.$
- $\mathcal{O}_{A,B}$ is simple.

Corollary

Consider the initial matrices A, B. If they satisfy Katsura's conditions for purely infinite simple and B satisfies Condition (E), then $\mathcal{O}_{A,B}$ is simple.

We need an extra property –Condition (E)– to characterize simplicity of $\mathcal{O}_{A,B}$. But we describe simplicity of $\mathcal{O}_{A,B}$ for a broad collection of algebras, including the ones given by Katsura.

Results are obtained in a more natural way, by linking this property to dynamical properties of X_A .

We need an extra property –Condition (E)– to characterize simplicity of $\mathcal{O}_{A,B}$. But we describe simplicity of $\mathcal{O}_{A,B}$ for a broad collection of algebras, including the ones given by Katsura.

Results are obtained in a more natural way, by linking this property to dynamical properties of X_A .

We need an extra property –Condition (E)– to characterize simplicity of $\mathcal{O}_{A,B}$. But we describe simplicity of $\mathcal{O}_{A,B}$ for a broad collection of algebras, including the ones given by Katsura.

Results are obtained in a more natural way, by linking this property to dynamical properties of X_A .

With respect to pure infiniteness, we use the notion of local contractiveness of groupoids, due to Anantharaman-Delaroche

Definition

We say that a second countable étale groupoid $\mathcal G$ is locally contracting in for every nonempty open subset U of $\mathcal G^{(0)}$ there exists an open subset V in U and an slice S such that $\overline V \subset S^{-1}S$ and $S\overline V S^{-1}$ is properly contained in V.

Under our picture, what we obtain is

Proposition

If every finite path in the graph E_A can be enlarged to a cycle and E_A satisfies Condition (L), then $\mathcal{G}_{\Lambda_{A,B}}$ is locally contracting.

So, we can prove

Theorem

Consider the initial matrices A, B. If

- The matrix A is irreducible.
- ② The graph E_A satisfies Condition (L).
- The matrix B satisfies Condition (E).
- For any fixed point $\omega = s_{i_1,i_2,n_1}s_{i_2,i_3,n_2}\cdots s_{i_k,i_{k+1},n_k}\cdots$ and every $n\geq 1$ there exist $m\geq n$ and j_{m+1} with:
 - (i) $(i_m, j_{m+1}) \in \Omega_{\underline{A}}$.
 - (ii) $K_{m+1} = K_m \cdot \frac{B_{i_m, j_{m+1}}}{A_{i_m, j_{m+1}}} \notin \mathbb{Z}.$

then $\mathcal{O}_{A,B}$ is purely infinite simple.

This result includes Katsura's case, when Condition (E) is satisfied. Also, since A irreducible plus Condition (L) implies Condition (K), the theorem becomes an extension of Exel-Laca results to the case of B being a nonzero matrix.

This result includes Katsura's case, when Condition (E) is satisfied. Also, since A irreducible plus Condition (L) implies Condition (K), the theorem becomes an extension of Exel-Laca results to the case of B being a nonzero matrix.

Finally, we will show that, under Condition (E), it is possible to show a partial version of Katsura's result.

Theorem

Let G_0, G_1 be finitely generated abelian groups. Then, there exist $N \in \mathbb{N}$, $A \in M_N(\mathbb{Z}^+)$, $B \in M_N(\mathbb{Z})$ satisfying Condition (E), such that:

- \bigcirc $\mathcal{O}_{A,B}$ is unital Kirchberg algebra.
- $K_i(\mathcal{O}_{A,B}) \cong G_i \text{ for } i = 0, 1.$

Finally, we will show that, under Condition (E), it is possible to show a partial version of Katsura's result.

Theorem

Let G_0, G_1 be finitely generated abelian groups. Then, there exist $N \in \mathbb{N}$, $A \in M_N(\mathbb{Z}^+)$, $B \in M_N(\mathbb{Z})$ satisfying Condition (E), such that:

- $oldsymbol{0}$ $\mathcal{O}_{A,B}$ is unital Kirchberg algebra.
- (2) $K_i(\mathcal{O}_{A,B}) \cong G_i$ for i = 0, 1.

So, we can represent any unital Kirchberg algebra (up to isomorphism) with finitelly generated K-Theory as a Katsura algebra $\mathcal{O}_{A,B}$ such that the matrix B satisfies Condition (E), and thus as the groupoid C^* -algebra of a minimal essentially principal locally contracting groupoid $\mathcal{G}_{\Lambda_{A,B}}$.

Outline

- Why?
- Who?
- 3 How?
- 4 What give us?
- What's next?

We have some conclusion remarks, which could open new lines of research

- Pay attention to what kind of effect produces the classical moves on A to this model.
- ② Consider the possibility of dealing with the $\mathcal{O}_2 \cong \mathcal{O}_{2-}$ isomorphism in a combinatorial way, using this model.

- Pay attention to what kind of effect produces the classical moves on A to this model.
- ② Consider the possibility of dealing with the $\mathcal{O}_2 \cong \mathcal{O}_{2-}$ isomorphism in a combinatorial way, using this model.

- Pay attention to what kind of effect produces the classical moves on A to this model.
- ② Consider the possibility of dealing with the $\mathcal{O}_2 \cong \mathcal{O}_{2-}$ isomorphism in a combinatorial way, using this model.

- ① Use Steinberg discret groupoid algebra construction for representing $\mathcal{O}_{A,B}^{\text{alg}}(K)$ as $K\mathcal{G}_{\Lambda_{A,B}}$.
- Use Clark et al results to obtain information of these algebras in terms of our previous results.
- Transfer new moves here.

- Use Steinberg discret groupoid algebra construction for representing $\mathcal{O}_{A,B}^{\text{alg}}(K)$ as $K\mathcal{G}_{\Lambda_{A,B}}$.
- Use Clark et al results to obtain information of these algebras in terms of our previous results.
- Transfer new moves here.

- ① Use Steinberg discret groupoid algebra construction for representing $\mathcal{O}_{A,B}{}^{\mathsf{alg}}(K)$ as $K\mathcal{G}_{\Lambda_{A,B}}$.
- Use Clark et al results to obtain information of these algebras in terms of our previous results.
- Transfer new moves here.

- Use Steinberg discret groupoid algebra construction for representing $\mathcal{O}_{A,B}^{\text{alg}}(K)$ as $K\mathcal{G}_{\Lambda_{A,B}}$.
- Use Clark et al results to obtain information of these algebras in terms of our previous results.
- Transfer new moves here.

A symbolic dynamics approach to Kirchberg algebras.

Enrique Pardo

Universidad de Cádiz

BIRS Workshop "Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras"

April 22, 2013

