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GOAL: Classify a class of purely infinite simple algebras
as large as possible by using algebraic/combinatorial methods.

INSPIRACY:
1 Elliott’s Classification Program: classify separable nuclear
C∗-algebras via K-theoretic invariants.

2 Kirchberg-Phillips Theorem: separable nuclear purely
infinite simple C∗-algebras satisfying the UCT are
classifiable using K0 and K1 as invariants.
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PROBLEM: K-P Theorem needs a large amount of analytical
technology.
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A more combinatorial approach is possible on a restricted
subclass:

1 Cuntz-Krieger algebras OA (where A ∈Mn(Z+)): basic
model of purely infinite simple C∗-algebras.

2 Rørdam classification result: Cuntz-Krieger algebras are
classifiable by its K0 groups. Tools:

(i) Franks’ classification of essential irreducible subshifts of
finite type (Symbolic Dynamics).

(ii) O2
∼= O2− (Analytic).
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Expanded subclass:
1 Kumjian, Pask, Raeburn and Renault: graph C∗-algebra
C∗(E) for graph E.

2 Rørdam’s Theorem applies, via Bates-Pask (graph moves).
3 Sørensen: combinatorial classification result for simple

graph C∗-algebras of graphs with finitely many vertices
and countably many edges.
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In the purely algebraic context, we have Leavitt path algebras.
Results using graph moves:

1 Abrams, Louly, P., Smith: Partial classification for purely
infinite simple LPAs on finite graphs.

2 Ruiz, Tomforde: Classification for purely infinite simple
LPAs on graphs with finite vertices and infinite edges.

Thus, classification of unital purely infinite simple LPAs is done,
up to L2

∼= L2− problem. Also, the existence of a symbolic
dynamical system associated to the algebra play a role in the
abovementioned classification results.
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HANDICAP: According to Rørdam’s result, for any pair (G0, G1)
of countable abelian groups there exists a Kirchberg algebra A
such that Ki(A) ∼= Gi for i = 0, 1.

The above results only cover a piece of a combinatorial, purely
algebraic version of Kirchberg-Phillips Theorem.
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WE NEED A COMBINATORIAL MODEL RELATED TO A SYMBOLIC

DYNAMICAL SYSTEM!
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CANDIDATE: Katsura constructed a suitable combinatorial
model for Kirchberg algebras.
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Definition
Let N ∈ N ∪ {∞}, let A ∈MN (Z+) and B ∈MN (Z) be
row-finite matrices. Define a set ΩA by

ΩA := {(i, j) ∈ {1, 2, . . . , N} × {1, 2, . . . , N} | Ai,j ≥ 1}.

For each i ∈ {1, 2, . . . , N}, define a set ΩA(i) ⊂ {1, 2, . . . , N}
by

ΩA(i) := {j ∈ {1, 2, . . . , N} | (i, j) ∈ ΩA}.

Notice that, by definition, ΩA(i) is finite for all i. Finally, fix the
following condition:

(0) ΩA(i) 6= ∅ for all i, and Bi,j = 0 for (i, j) 6∈ ΩA.
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Definition
Define OA,B to be the universal C∗-algebra generated by
mutually orthogonal projections {qi}Ni=1, partial unitaries {ui}Ni=1

with uiu∗i = u∗iui = qi, and partial isometries {si,j,n}(i,j)∈ΩA,n∈Z
satisfying the relations:

(i) si,j,nuj = si,j,n+Ai,j and uisi,j,n = si,j,n+Bi,j for all
(i, j) ∈ ΩA and n ∈ Z.

(ii) s∗i,j,nsi,j,n = qj for all (i, j) ∈ ΩA and n ∈ Z.

(iii) qi =
∑

j∈ΩA(i)

Ai,j∑
n=1

si,j,ns
∗
i,j,n for all i.
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When B = (0), OA,(0) is isomorphic to the Cuntz-Krieger
algebra OA (the Exel-Laca algebra if N =∞). To be precise,
OA = C∗(EA).
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Now, the following facts holds:
1 OA,B is separable, nuclear and in the UCT class.
2 If the matrices A,B satisfy:

(i) A is irreducible.
(ii) Ai,i ≥ 2 and Bi,i = 1 for every 1 ≤ i ≤ N .

then OA,B is a Kirchberg algebra.
3 Every Kirchberg algebra can be represented, up to

isomorphism, by an algebra OA,B for matrices A,B
satisfying the conditions (2)(a&b).

4 For any matrix B, OA ↪→ OA,B.
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THUS, IT SEEMS THAT THIS IS THE RIGHT CLASS.
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The natural injective ∗-homomorphism OA ↪→ OA,B , suggest to
deal with graph moves, to get some sort of classification stuff.

PROBLEM: Changes on A cannot be independent of suitable
changes on B. Moreover, results associated to classical moves
on A are unclear.
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WE NEED AN ASSOCIATED SYMBOLIC DYNAMICAL SYSTEM!
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KATSURA’S PICTURE: OA,B is associated to a topological graph
E. Hence, edges and vertices are locally compact spaces, and
range and source are continuous maps. Thus:

1 No combinatorial nature object associated.
2 OA,B is seen as a Cuntz-Pimsner algebra associated to a

full C∗-correspondence XA,B over C0({1, . . . , N} × T).
This picture is useful to determine nuclearity or computing
K-Theory, but not comfortable for combinatorial work.
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IDEA: Mimic Exel-Laca picture of OA ∼= C0(XA) oα F, where
XA is the space of one-sided infinite paths on EA, while α is a
partial action of the free group (with generators the edges of
EA) on C0(XA). This gives a symbolic dynamical picture of OA.
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EXEL-LACA’S STRATEGY:
1 Fix F, and pick C∗par(F) ∼= C0(ΩA) oα F.
2 Prove that the representation π : F→ OA is semi-saturated

and tight.
3 Thus:

(i) OA ∼= C∗par(F)/J .
(ii) J = C0(UA) oα F for an open subspace of ΩA such that

XA = ΩA \ UA.



Why?
Who?
How?

What give us?
What’s next?

EXEL-LACA’S STRATEGY:
1 Fix F, and pick C∗par(F) ∼= C0(ΩA) oα F.
2 Prove that the representation π : F→ OA is semi-saturated

and tight.
3 Thus:

(i) OA ∼= C∗par(F)/J .
(ii) J = C0(UA) oα F for an open subspace of ΩA such that

XA = ΩA \ UA.



Why?
Who?
How?

What give us?
What’s next?

EXEL-LACA’S STRATEGY:
1 Fix F, and pick C∗par(F) ∼= C0(ΩA) oα F.
2 Prove that the representation π : F→ OA is semi-saturated

and tight.
3 Thus:

(i) OA ∼= C∗par(F)/J .
(ii) J = C0(UA) oα F for an open subspace of ΩA such that

XA = ΩA \ UA.



Why?
Who?
How?

What give us?
What’s next?

EXEL-LACA’S STRATEGY:
1 Fix F, and pick C∗par(F) ∼= C0(ΩA) oα F.
2 Prove that the representation π : F→ OA is semi-saturated

and tight.
3 Thus:

(i) OA ∼= C∗par(F)/J .
(ii) J = C0(UA) oα F for an open subspace of ΩA such that

XA = ΩA \ UA.



Why?
Who?
How?

What give us?
What’s next?

EXEL-LACA’S STRATEGY:
1 Fix F, and pick C∗par(F) ∼= C0(ΩA) oα F.
2 Prove that the representation π : F→ OA is semi-saturated

and tight.
3 Thus:

(i) OA ∼= C∗par(F)/J .
(ii) J = C0(UA) oα F for an open subspace of ΩA such that

XA = ΩA \ UA.



Why?
Who?
How?

What give us?
What’s next?

PROBLEM: For OA,B, the group acting must be

G = F ∗ F′/R,

where F′ is the free group with generators the partial unitaries,
and R the normal subgroup generated by the relations (i) in
OA,B definition. And:

1 The natural representation is not semi-saturated.
2 For suitable values of B the representation of C∗par(G) on
OA,B forces the collapse of families of nonzero partial
isometries!
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WE NEED A DIFFERENT STRATEGY.
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SOLUTION: We construct the symbolic dynamics system from
scratch, using Exel’s techniques.
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1 Use A,B to define a semigroupoid ΛA,B.
2 Prove it satisfies the right properties:

(i) ΛA,B is left cancellative.
(ii) Every pair of intersecting elements have a unique lcm.
(iii) ΛA,B has no springs and is categorical.

3 Construct an associated inverse semigroup with zero
S(ΛA,B), whose semilatice of idempotents is denoted E.

4 Construct the (tight) groupoid of germs GΛA,B
associated to

the action of S(ΛA,B) on the space Êtight of tight characters
defined over E.
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Under the above properties, the universal C∗-algebra OΛA,B
of

tight representations of ΛA,B is ∗-isomorphic to C∗(GΛA,B
).

Then, we prove that the OΛA,B
is ∗-isomorphic to OA,B. Thus:

1 OA,B ∼= C∗(GΛA,B
)

2 The image of S(ΛA,B) into OΛA,B
goes to SA,B (the inverse

semigroup of OA,B generated by the si,j,n’s and the ui’s).
3 G(0)

ΛA,B
:= Êtight is homeomorphic to XA!
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Under this identification we have

Theorem

The action α : S(ΛA,B)→ Êtight becomes the action
α : SA,B → XA given by multiplication of elements of XA on the
left by elements of SA,B.
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So, the picture is very simple and intuitive. An interesting
consequence is the following

Corollary
The groupoid GΛA,B

is étale with second countable unit space.
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Thus, we obtain the following picture of OA,B

Corollary
The C∗-algebra OA,B is isomorphic to the inverse semigroup
crossed product C0(XA) oα SA,B.

Notice that, when B = (0), the previous corollary recover the
picture of the Exel-Laca algebra OA. Also, we get the desired
picture of OA,B in terms of symbolic dynamics.
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picture of the Exel-Laca algebra OA. Also, we get the desired
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The addition of an extra condition on the matrix B produces
interesting consequences.

Definition
We say that the matrix B satisfies Condition (E) when Bi,j = 0
if and only if (i, j) 6∈ ΩA.
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Lemma
ΛA,B is right cancellative if and only if B satisfies Condition (E).

Remark
If ΛA,B is right cancellative then S(ΛA,B) is a E∗-unitary inverse
semigroup, whence GΛA,B

is Hausdorff.
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The dynamical approach lets us to deal with some questions in
a more intuitive form. For example, when looking for
characterize simplicity, we need to get ride of when GΛA,B

is
minimal and essentially principal.
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With respect to minimal, we have

Definition
A groupoid G is said to be minimal if the only invariant open
subsets of G(0) are the empty set and G(0) itself.

Definition
If S is an inverse semigroup, and τ is an action by (partial)
homeomorphisms on a topological space X, then:

1 We say that a subset W of X is invariant if for every s ∈ S
we have that τs(W ) ⊆W .

2 We say that X is irreducible if it has no proper open
invariant subsets.
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For the groupoid of germs G of the action of an inverse
semigroup S on a locally compact Hausdorff space X, it is easy
to see that irreducibility of X is equivalent to minimality of G.
Then we have

Theorem

Given the action α of SA,B on XA, the following are equivalent:
1 The matrix A is irreducible.
2 The space XA is irreducible.
3 The groupoid GΛA,B

is minimal.
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With respect to essentially principal, we have

Definition
Let G be a locally compact, Hausdorff, étale groupoid. Then:

1 For any x ∈ G(0), the isotropy group at x is

G(x) = {γ ∈ G | d(γ) = t(γ) = x}.

2 G is essentially principal if the interior of the isotropy group
bundle

G′ = {γ ∈ G : d(γ) = t(γ)}

is contained in G(0).
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We will connect essentially principal groupoids with the
topological freeness of the action.

Definition
Let S be an E∗-unitary inverse semigroup, and let τ be an
action of S on a topological space X.

1 Given s ∈ S and x ∈ Xs∗s, we say x is a fixed point for s if
τs(x) = x.

2 We say that the action is topologically free if, for every
s ∈ S \ E(S), the interior of the set of fixed points for s is
empty.
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Now, we have the following result, connecting both notions.

Theorem
Let S be an E∗-unitary inverse semigroup, let τ be an action of
S on a locally compact, Hausdorff space X, and let G be the
corresponding groupoid of germs. Then G is essentially
principal if and only if τ is topologically free.
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Thus, we can deal with the problem from the point of view of
topological freeness.

We get Exel-Laca’s result when we act with elements of SA (the
inverse semigroup of OA generated by the si,j,n’s).

Lemma

When restricted to elements s ∈ SA \ E(SA), TFAE:
1 The action is topologically free.
2 The graph EA satisfies Condition (L).
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The action of partial unitaries give us

Lemma
Given an element ω = si1,i2,n1si2,i3,n2 · · · sik,ik+1,nk

· · · of XA, the
following are equivalent:

1 ω is fixed under the action of uli1 (l ∈ Z).

2 For every j ≥ 1 the element Kj := l ·
j∏
t=1

Bit,it+1

Ait,it+1

belongs to

Z.
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Thus, combining all the information we get

Theorem

Let α be the action of SA,B on XA, and let GΛA,B
the associated

groupoid. The following are equivalent:
1 (i) The graph EA satisfies Condition (L).

(ii) The matrix B satisfies Condition (E).
(iii) For any fixed point ω = si1,i2,n1si2,i3,n2 · · · sik,ik+1,nk

· · · and
every n ≥ 1 there exist m ≥ n and jm+1 with:

(a) (im, jm+1) ∈ ΩA .

(b) Km+1 = Km ·
Bim,jm+1

Aim,jm+1

6∈ Z.

2 The groupoid GΛA,B
is essentially principal.
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And as a practical consequence:

Proposition

Let α be the action of SA,B on XA, and let GΛA,B
the associated

groupoid. If
1 The graph EA satisfies Condition (L).
2 The matrix B satisfies Condition (E).
3 For any fixed point ω = si1,i2,n1si2,i3,n2 · · · sik,ik+1,nk

· · · and
for every n, r ≥ 1 there exist a sequence
jn+1, jn+2, . . . , jn+r with:

(i) (jt, jt+1) ∈ ΩA for all t.

(ii) lim
r→∞

r∏
t=1

(
Bjn+t,jn+t+1

Ajn+t,jn+t+1

)
= 0.

then the groupoid GΛA,B
is essentially principal.
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Notice that this proposition includes Katsura’s conditions for
purely infinite simple. Now, we are ready to characterize
simplicity, using a result of Clark et al. characterizing simplicity
of groupoid C∗-algebras of Hausdorff groupoids.
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Theorem
Consider the initial matrices A,B. If the matrix B satisfies
Condition (E), then the following are equivalent:

1 (i) The matrix A is irreducible.
(ii) The graph EA satisfies Condition (L).
(iii) For any fixed point ω = si1,i2,n1

si2,i3,n2
· · · sik,ik+1,nk

· · · and
every n ≥ 1 there exist m ≥ n and jm+1 with:

(a) (im, jm+1) ∈ ΩA .

(b) Km+1 = Km ·
Bim,jm+1

Aim,jm+1

6∈ Z.

2 OA,B is simple.
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Corollary
Consider the initial matrices A,B. If they satisfy Katsura’s
conditions for purely infinite simple and B satisfies Condition
(E), then OA,B is simple.
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We need an extra property –Condition (E)– to characterize
simplicity of OA,B. But we describe simplicity of OA,B for a
broad collection of algebras, including the ones given by
Katsura.

Results are obtained in a more natural way, by linking this
property to dynamical properties of XA.
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With respect to pure infiniteness, we use the notion of local
contractiveness of groupoids, due to Anantharaman-Delaroche

Definition
We say that a second countable étale groupoid G is locally
contracting in for every nonempty open subset U of G(0) there
exists an open subset V in U and an slice S such that
V ⊂ S−1S and SV S−1 is properly contained in V .
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Under our picture, what we obtain is

Proposition
If every finite path in the graph EA can be enlarged to a cycle
and EA satisfies Condition (L), then GΛA,B

is locally contracting.
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So, we can prove

Theorem
Consider the initial matrices A,B. If

1 The matrix A is irreducible.
2 The graph EA satisfies Condition (L).
3 The matrix B satisfies Condition (E).
4 For any fixed point ω = si1,i2,n1si2,i3,n2 · · · sik,ik+1,nk

· · · and
every n ≥ 1 there exist m ≥ n and jm+1 with:

(i) (im, jm+1) ∈ ΩA .

(ii) Km+1 = Km ·
Bim,jm+1

Aim,jm+1

6∈ Z.

then OA,B is purely infinite simple.
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This result includes Katsura’s case, when Condition (E) is
satisfied. Also, since A irreducible plus Condition (L) implies
Condition (K), the theorem becomes an extension of Exel-Laca
results to the case of B being a nonzero matrix.
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Finally, we will show that, under Condition (E), it is possible to
show a partial version of Katsura’s result.

Theorem
Let G0, G1 be finitely generated abelian groups. Then, there
exist N ∈ N, A ∈MN (Z+), B ∈MN (Z) satisfying Condition (E),
such that:

1 OA,B is unital Kirchberg algebra.
2 Ki(OA,B) ∼= Gi for i = 0, 1.
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So, we can represent any unital Kirchberg algebra (up to
isomorphism) with finitelly generated K-Theory as a Katsura
algebra OA,B such that the matrix B satisfies Condition (E),
and thus as the groupoid C∗-algebra of a minimal essentially
principal locally contracting groupoid GΛA,B

.
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We have some conclusion remarks, which could open new
lines of research
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Having the dynamical model, it’s time to look at its
“classification” (i.e., moves preserving something) to advance in
the classification problem. In particular:

1 Pay attention to what kind of effect produces the classical
moves on A to this model.

2 Consider the possibility of dealing with the O2
∼= O2−

isomorphism in a combinatorial way, using this model.
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Extend the strategy to LPAs world:
1 Use Steinberg discret groupoid algebra construction for

representing OA,Balg(K) as KGΛA,B
.

2 Use Clark et al results to obtain information of these
algebras in terms of our previous results.

3 Transfer new moves here.
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