Simple
Cuntz-
Pimsner
Rings
E. Ortega

Simple Cuntz-Pimsner Rings

Eduard Ortega

(joint work with T.M. Carlsen and E. Pardo)

Banff, 25 April 2013

Overview

Simple
Cuntz－
Pimsner
Rings
E．Ortega

（1）Cuntz－Pimsner rings

Cuntz－
Pimsner
Rings
The ideal
intersection
Property
The Cuntz－ Krieger uniqueness Property

Simplicity
Examples
（2）The ideal intersection Property
（3）The Cuntz－Krieger uniqueness Property
（4）Simplicity
（5）Examples

Overview

Simple
Cuntz-
Pimsner
Rings
E. Ortega
(1) Cuntz-Pimsner rings

Cuntz-

Pimsner
Rings
The ideal
intersection
Property
The CuntzKrieger uniqueness Property
Simplicity
Examples
(2) The ideal intersection Property
(4) Simplicity
(3) The Cuntz-Krieger uniqueness Property
(5) Examples

Overview

Simple
Cuntz-
Pimsner
Rings
E. Ortega
(1) Cuntz-Pimsner rings

Cuntz-

Pimsner
Rings
The ideal
intersection
Property
The Cuntz
Krieger
uniqueness
Property
Simplicity
Examples
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

Overview

Simple
Cuntz-
Pimsner
Rings
E. Ortega
(1) Cuntz-Pimsner rings
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

Overview

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz
Pimsner
Rings
The ideal
intersection
Property
The Cuntz-
Krieger
uniqueness
Property
Simplicity
Examples
(1) Cuntz-Pimsner rings
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

Section Cuntz－Pimsner rings

Simple
Cuntz－
Pimsner
Rings
E．Ortega

Cuntz－

Pimsner Rings

The ideal intersection Property

The Cuntz－ Krieger uniqueness Property Simplicity Examples
（1）Cuntz－Pimsner rings
（2）The ideal intersection Property
（3）The Cuntz－Krieger uniqueness Property
（4）Simplicity
（5）Examples
\qquad三三

R-systems

Simple
Cuntz-
Pimsner
Rings
E. Ortega

- R is an associative ring.
- P, Q are R-bimodules.
- $\psi: P \otimes Q \longrightarrow R$ is an R-bimodule homomorphism.
- The triple (P, Q, ψ) is called an R-system.
- I, J are two-sided ideals of R.
- An ideal I of R is a Ψ-invariant if

$$
\Psi(P I \otimes Q)=\Psi(P \otimes I Q) \subseteq I
$$

Covariant representations

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let (P, Q, ψ) be an R-system, then a covariant representation is a quadruple $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ satisfying:
(1) B is a ring,
(2) $S^{\prime}: P \rightarrow B$ and $T^{\prime}: Q \rightarrow B$ are additive maps,
(3) $\sigma^{\prime}: R \rightarrow B$ is a ring homomorphism,
(4) Given $p \in P, q \in Q$ and $r \in R$,

$$
\begin{gathered}
S^{\prime}(p r)=S^{\prime}(p) \sigma^{\prime}(r), \quad S^{\prime}(r p)=\sigma^{\prime}(r) S^{\prime}(p) \\
T^{\prime}(q r)=T^{\prime}(q) \sigma^{\prime}(r) \quad \text { and } \quad T^{\prime}(r q)=\sigma^{\prime}(r) T^{\prime}(q)
\end{gathered}
$$

(5) $\sigma^{\prime}(\psi(p \otimes q))=S^{\prime}(p) T^{\prime}(q)$ for $p \in P$ and $q \in Q$.

Condition (FS)

Simple
CuntzPimsner Rings
E. Ortega

For $p \in P$ and $q \in Q$ let us define $\theta_{q, p} \in \operatorname{End}{ }_{R}\left(Q_{R}\right)$ given by

$$
\theta_{q, p}(x)=q \psi(p \otimes x)
$$

for $x \in Q$, and $\theta_{p, q} \in \operatorname{End}_{R}\left({ }_{R} P\right)$ given by

$$
\theta_{p, q}(y)=\psi(y \otimes q) p
$$

for $y \in P$.
$\mathcal{F}_{P}(Q)=\operatorname{span}\left\{\theta_{q, p}: p \in P, q \in Q\right\}$ and $\mathcal{F}_{Q}(P)=\operatorname{span}\left\{\theta_{p, q}: p \in P, q \in Q\right\}$

Definition 1

($P \subset, \pi$,) satisties condition (FS) if for any finite set $\left\{q_{1}, \ldots, q_{n}\right\} \subseteq Q$ and
any finite set $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq P$ exist $\Theta \in \mathcal{F}_{P}(Q)$ and $\psi \in \mathcal{F}_{Q}(P)$ such that
$\Theta\left(q_{i}\right)=q_{i}$ and $\Psi\left(p_{j}\right)=p_{j}$ for every $i=1, \ldots, n$ and $j=1, \ldots, m$

Condition (FS)

Simple
Cuntz-
Pimsner
Rings
E. Ortega

For $p \in P$ and $q \in Q$ let us define $\theta_{q, p} \in \operatorname{End}{ }_{R}\left(Q_{R}\right)$ given by

$$
\theta_{q, p}(x)=q \psi(p \otimes x)
$$

for $x \in Q$, and $\theta_{p, q} \in \operatorname{End}_{R}\left({ }_{R} P\right)$ given by

$$
\theta_{p, q}(y)=\psi(y \otimes q) p
$$

for $y \in P$.

$$
\mathcal{F}_{P}(Q)=\operatorname{span}\left\{\theta_{q, p}: p \in P, q \in Q\right\} \text { and } \mathcal{F}_{Q}(P)=\operatorname{span}\left\{\theta_{p, q}: p \in P, q \in Q\right\}
$$

Definition 1

(P, Q, ψ) satisfies condition (FS) if for any finite set $\left\{q_{1}, \ldots, q_{n}\right\} \subseteq Q$ and any finite set $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq P$ exist $\Theta \in \mathcal{F}_{P}(Q)$ and $\psi \in \mathcal{F}_{Q}(P)$ such that $\Theta\left(q_{i}\right)=q_{i}$ and $\Psi\left(p_{j}\right)=p_{j}$ for every $i=1, \ldots, n$ and $j=1, \ldots, m$

Cuntz-Pimsner Covariant representations

Simple CuntzPimsner Rings
$\Delta: R \longrightarrow \operatorname{End}_{R}\left(Q_{R}\right)$ given by $\Delta(r)(q)=r q$ for $r \in R, q \in Q$.

Definition 2

A two-sided ideal I of R is ψ-compatible if $I \subseteq \Delta^{-1}\left(\mathcal{F}_{P}(Q)\right)$, and faithful if $I \cap \operatorname{ker} \Delta=\{0\}$.
J will denote a fixed faithful and ψ-compatible ideal in R.

Definition 3

A covariant representation $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is said to be Cuntz-Pimsner invariant relative to J if
$\pi_{T^{\prime}, S^{\prime}}(\Delta(x))=\sigma^{\prime}(x)$ for all $x \in J$
where $\pi_{T^{\prime},} S^{\prime}: F_{p}(Q) \rightarrow B$ satisfies $\pi_{T} S^{\prime}\left(\theta_{q, p}\right)=T^{\prime}(q) S^{\prime}(p)$ for all $p \in P$
and $q \in Q$

Cuntz-Pimsner Covariant representations

Simple
Cuntz-
Pimsner
Rings
E. Ortega
$\Delta: R \longrightarrow \operatorname{End}_{R}\left(Q_{R}\right)$ given by $\Delta(r)(q)=r q$ for $r \in R, q \in Q$.

Definition 2

A two-sided ideal I of R is ψ-compatible if $I \subseteq \Delta^{-1}\left(\mathcal{F}_{P}(Q)\right)$, and faithful if $I \cap \operatorname{ker} \Delta=\{0\}$.
J will denote a fixed faithful and ψ-compatible ideal in R.

Definition 3

A covariant representation $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is said to be Cuntz-Pimsner invariant relative to J if

$$
\pi_{T^{\prime}, S^{\prime}}(\Delta(x))=\sigma^{\prime}(x) \text { for all } x \in J
$$

where $\pi_{T^{\prime}, s^{\prime}}: \mathcal{F}_{P}(Q) \rightarrow B$ satisfies $\pi_{T^{\prime}, s^{\prime}}\left(\theta_{q, p}\right)=T^{\prime}(q) S^{\prime}(p)$ for all $p \in P$ and $q \in Q$.

Relative Cuntz-Pimsner rings

Simple CuntzPimsner Rings
E. Ortega

Theorem 4

There is a covariant representation $\left(S, T, \sigma, \mathcal{O}_{(P, Q, \psi)}(J)\right)$ which is Cuntz-Pimsner invariant relative to J and universal in the sense that every covariant representation which is Cuntz-Pimsner invariant relative to J factors through it.

Relative Cuntz-Pimsner rings

Simple CuntzPimsner Rings

Theorem 4

There is a covariant representation $\left(S, T, \sigma, \mathcal{O}_{(P, Q, \psi)}(J)\right)$ which is Cuntz-Pimsner invariant relative to J and universal in the sense that every covariant representation which is Cuntz-Pimsner invariant relative to J factors through it.

Z-graduation

Simple CuntzPimsner Rings
E. Ortega

Cuntz-

Pimsner Rings

Given $n \in \mathbb{N}$ exist unique additive maps

$$
T^{n}: Q^{\otimes n} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J) \quad \text { and } \quad S^{n}: P^{\otimes n} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J)
$$

such that for $q_{1}, q_{2}, \ldots, q_{n} \in Q$ and $p_{1}, p_{2}, \ldots, p_{n} \in P$

$$
\begin{aligned}
& T^{n}\left(q_{1} \otimes q_{2} \otimes \cdots \otimes q_{n}\right)=T\left(q_{1}\right) T\left(q_{2}\right) \ldots T\left(q_{n}\right) \\
& S^{n}\left(p_{1} \otimes p_{2} \otimes \cdots \otimes p_{n}\right)=S\left(p_{1}\right) S\left(p_{2}\right) \ldots S\left(p_{n}\right)
\end{aligned}
$$

Then $\mathcal{O}_{(P, Q, \psi)}(J)$ is a \mathbb{Z}-graded ring with grading

$$
\left.\cup\left\{S^{n}(p) \mid p \in P^{\otimes n}\right\}\right)
$$

$\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}=\operatorname{span}\left(\left\{T^{k}(q) S^{k}(p) \mid k \in \mathbb{N}, q \in Q^{\otimes k}, p \in P^{\otimes k}\right\}\right.$

$$
\cup\{\sigma(r) \mid r \in R\})
$$

Z-graduation

Simple
CuntzPimsner Rings
E. Ortega

Given $n \in \mathbb{N}$ exist unique additive maps

$$
T^{n}: Q^{\otimes n} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J) \quad \text { and } \quad S^{n}: P^{\otimes n} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J)
$$

such that for $q_{1}, q_{2}, \ldots, q_{n} \in Q$ and $p_{1}, p_{2}, \ldots, p_{n} \in P$

$$
\begin{aligned}
& T^{n}\left(q_{1} \otimes q_{2} \otimes \cdots \otimes q_{n}\right)=T\left(q_{1}\right) T\left(q_{2}\right) \ldots T\left(q_{n}\right) \\
& S^{n}\left(p_{1} \otimes p_{2} \otimes \cdots \otimes p_{n}\right)=S\left(p_{1}\right) S\left(p_{2}\right) \ldots S\left(p_{n}\right)
\end{aligned}
$$

Then $\mathcal{O}_{(P, Q, \psi)}(J)$ is a \mathbb{Z}-graded ring with grading

$$
\begin{aligned}
& \mathcal{O}_{(P, Q, \psi)}(J)^{(n)}=\operatorname{span}\left(\left\{T^{k+n}(q) S^{k}(p) \mid k \in \mathbb{N}, q \in Q^{\otimes k+n}, p \in P^{\otimes k}\right\}\right. \\
&\left.\cup\left\{T^{n}(q) \mid q \in Q^{\otimes n}\right\}\right) \\
& \mathcal{O}_{(P, Q, \psi)}(J)^{(-n)}=\operatorname{span}\left(\left\{T^{k}(q) S^{k+n}(p) \mid k \in \mathbb{N}, q \in Q^{\otimes k}, p \in P^{\otimes k+n}\right\}\right. \\
&\left.\cup\left\{S^{n}(p) \mid p \in P^{\otimes n}\right\}\right) \\
& \mathcal{O}_{(P, Q, \psi)}(J)^{(0)}=\operatorname{span}\left(\left\{T^{k}(q) S^{k}(p) \mid k \in \mathbb{N}, q \in Q^{\otimes k}, p \in P^{\otimes k}\right\}\right. \\
&\cup\{\sigma(r) \mid r \in R\})
\end{aligned}
$$

Leavitt path algebras

Simple
Cuntz-
Pimsner Rings
E. Ortega

Cuntz-

Pimsner Rings

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a directed graph and let F be any field. We define the ring $R_{E}:=\oplus_{v \in E^{0}} R_{v}$ where each R_{v} is a copy of F. We define the R_{E}-bimodules $Q_{E}:=\oplus_{e \in E^{1}} Q_{e}$ and $P_{E}:=\oplus_{e \in E^{1}} P_{\bar{e}}$ where each $Q_{e}, P_{\bar{e}}$ is a copy of F. The left and the right multiplication are defined by

```
                                    rv}\cdot\mp@subsup{q}{e}{}\cdot\mp@subsup{s}{w}{}=\mp@subsup{\delta}{v,s(e)}{}\mp@subsup{\delta}{w,r(e)}{}\mp@subsup{r}{v}{}\mp@subsup{r}{w}{
                                    rv
    Finally we define \mp@subsup{\psi}{E}{}:\mp@subsup{P}{E}{}\otimes\mp@subsup{R}{E}{}\mp@subsup{Q}{E}{}->\mp@subsup{R}{E}{}\mathrm{ the RE-bimodule homomorphism}
given by
                                    \psi
    Then
\[
\begin{aligned}
\text { ker } \Delta & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1}=\emptyset\right\}, \\
\Delta^{-1}\left(\mathcal{F}_{P_{E}}\left(Q_{E}\right)\right) & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1} \text { is finite }\right\}, \\
J_{E} & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } 0<\left|v E^{1}\right|<\infty\right\}
\end{aligned}
\]
```


Leavitt path algebras

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz

 Pimsner RingsThe ideal intersection Property

The Cuntz Krieger uniqueness Property

Simplicity
Examples

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a directed graph and let F be any field. We define the ring $R_{E}:=\oplus_{v \in E^{0}} R_{v}$ where each R_{v} is a copy of F. We define the R_{E}-bimodules $Q_{E}:=\oplus_{e \in E^{1}} Q_{e}$ and $P_{E}:=\oplus_{e \in E^{1}} P_{\bar{e}}$ where each $Q_{e}, P_{\bar{e}}$ is a copy of F. The left and the right multiplication are defined by

```
                    rv}\cdot\mp@code{q}\mp@subsup{q}{e}{}\cdot\mp@subsup{s}{w}{}=\mp@subsup{\delta}{v,s(e)}{}\mp@subsup{\delta}{w,r(e)}{}\mp@subsup{r}{v}{}\mp@subsup{s}{w}{
    Finally we define }\mp@subsup{\psi}{E}{}:\mp@subsup{P}{E}{}\otimes\mp@subsup{R}{E}{}\mp@subsup{Q}{E}{}->\mp@subsup{R}{E}{}\mathrm{ the R RE-bimodule homomorphism
given by
    \psi
    Then
    ker\Delta=\mp@subsup{\operatorname{span}}{F}{}{\mp@subsup{\mathbf{1}}{v}{}|v\in\mp@subsup{E}{}{0}\mathrm{ and }v\mp@subsup{E}{}{1}=\emptyset}
    \Delta -1 ( F}\mp@subsup{F}{\mp@subsup{P}{E}{}}{}(\mp@subsup{Q}{E}{}))=\mp@subsup{\operatorname{span}}{F}{}{\mp@subsup{\mathbf{1}}{v}{}|v\in\mp@subsup{E}{}{0}\mathrm{ and }v\mp@subsup{E}{}{1}\mathrm{ is finite }
        JE =\mp@subsup{\operatorname{span}}{F}{}{\mp@subsup{1}{v}{}|v\in\mp@subsup{E}{}{0}\mathrm{ and 0< |vE ' }|<\infty}
```


Leavitt path algebras

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a directed graph and let F be any field. We define the ring $R_{E}:=\oplus_{v \in E^{0}} R_{v}$ where each R_{v} is a copy of F. We define the R_{E}-bimodules $Q_{E}:=\oplus_{e \in E^{1}} Q_{e}$ and $P_{E}:=\oplus_{e \in E^{1}} P_{\bar{e}}$ where each $Q_{e}, P_{\bar{e}}$ is a copy of F. The left and the right multiplication are defined by

$$
\begin{aligned}
& r_{v} \cdot q_{e} \cdot s_{w}=\delta_{v, s(e)} \delta_{w, r(e)} r_{v} s_{w} q_{e} \\
& r_{v} \cdot p_{\bar{e}} \cdot s_{w}=\delta_{w, s(e)} \delta_{v, r(e)} r_{v} s_{w} p_{\bar{e}}
\end{aligned}
$$

Finally we define $\psi_{E}: P_{E} \otimes R_{E} Q_{E} \rightarrow R_{E}$ the R_{E}-bimodule homomorphism given by

$$
\psi_{E}\left(p_{\bar{f}} \otimes q_{e}\right)=\delta_{s(e), s(f)} p_{\bar{f}} q_{e}
$$

Then

$$
\operatorname{ker} \Delta=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1}=\emptyset\right\}
$$

$$
\Delta^{-1}\left(\mathcal{F}_{P_{E}}\left(Q_{E}\right)\right)=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1} \text { is finite }\right\}
$$

$$
J_{E}=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } 0<\left|v E^{1}\right|<\infty\right\}
$$

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a directed graph and let F be any field. We define the ring $R_{E}:=\oplus_{v \in E^{0}} R_{v}$ where each R_{V} is a copy of F. We define the R_{E}-bimodules $Q_{E}:=\oplus_{e \in E^{1}} Q_{e}$ and $P_{E}:=\oplus_{e \in E^{1}} P_{\bar{e}}$ where each $Q_{e}, P_{\bar{e}}$ is a copy of F. The left and the right multiplication are defined by

$$
\begin{gathered}
r_{v} \cdot q_{e} \cdot s_{w}=\delta_{v, s(e)} \delta_{w, r(e)} r_{v} s_{w} q_{e} \\
r_{v} \cdot p_{\bar{e}} \cdot s_{w}=\delta_{w, s(e)} \delta_{v, r(e)} r_{v} s_{w} p_{\bar{e}}
\end{gathered}
$$

Finally we define $\psi_{E}: P_{E} \otimes_{R_{E}} Q_{E} \rightarrow R_{E}$ the R_{E}-bimodule homomorphism given by

$$
\psi_{E}\left(p_{\bar{f}} \otimes q_{e}\right)=\delta_{s(e), s(f)} p_{\bar{f}} q_{e}
$$

Then
ker $\Delta=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0}\right.$ and $\left.v E^{1}=\emptyset\right\}$ $\Delta^{-1}\left(F_{P_{E}}\left(Q_{E}\right)\right)=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0}\right.$ and $v E^{1}$ is finite $\}$ $J_{E}=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0}\right.$ and $\left.0<\left|v E^{1}\right|<\infty\right\}$

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a directed graph and let F be any field. We define the ring $R_{E}:=\oplus_{v \in E^{0}} R_{v}$ where each R_{v} is a copy of F. We define the R_{E}-bimodules $Q_{E}:=\oplus_{e \in E^{1}} Q_{e}$ and $P_{E}:=\oplus_{e \in E^{1}} P_{\bar{e}}$ where each $Q_{e}, P_{\bar{e}}$ is a copy of F. The left and the right multiplication are defined by

$$
\begin{aligned}
& r_{v} \cdot q_{e} \cdot s_{w}=\delta_{v, s(e)} \delta_{w, r(e)} r_{v} s_{w} q_{e} \\
& r_{v} \cdot p_{\bar{e}} \cdot s_{w}=\delta_{w, s(e)} \delta_{v, r(e)} r_{v} s_{w} p_{\bar{e}}
\end{aligned}
$$

Finally we define $\psi_{E}: P_{E} \otimes_{R_{E}} Q_{E} \rightarrow R_{E}$ the R_{E}-bimodule homomorphism given by

$$
\psi_{E}\left(p_{\bar{f}} \otimes q_{e}\right)=\delta_{s(e), s(f)} p_{\bar{f}} q_{e}
$$

Then

$$
\begin{aligned}
\text { ker } \Delta & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1}=\emptyset\right\} \\
\Delta^{-1}\left(\mathcal{F}_{P_{E}}\left(Q_{E}\right)\right) & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } v E^{1} \text { is finite }\right\} \\
J_{E} & =\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } 0<\left|v E^{1}\right|<\infty\right\}
\end{aligned}
$$

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let $\left(S, T, \sigma, \mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)\right)$ be the universal covariant representation of $\left(P_{E}, Q_{E}, \psi_{E}\right)$. Then if for each $v \in E^{0}$ and $e \in E^{1}$ define

$$
p_{v}=\sigma\left(\mathbf{1}_{\vee}\right), \quad x_{e}=T\left(\mathbf{1}_{e}\right) \quad \text { and } \quad y_{e}=S\left(\mathbf{1}_{\bar{e}}\right)
$$

$\mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)$ is generated by

and these elements satisfy (i) $p_{s(e)} x_{e}=x_{e}=x_{e} D_{r(e)}$ for $e \in E^{1}$, (ii) $p_{r(e)} y_{e}=y_{e}=y_{e} p_{s(e)}$ for $e \in E^{1}$, (iii) $y_{e} x_{f}=\delta_{e, f} p_{r(e)}$ for $e, f \in E^{1}$, (iv) $p_{v}=\sum_{\text {CcVE1 }} x_{e} y_{e}$ for $v \in E^{0}$ with $0<\left|v E^{1}\right|<\infty$.

In fact, $\mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)$ is isomorphic to the Leavitt path algebra $L_{F}(E)$ of E.

Let $\left(S, T, \sigma, \mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)\right)$ be the universal covariant representation of $\left(P_{E}, Q_{E}, \psi_{E}\right)$. Then if for each $v \in E^{0}$ and $e \in E^{1}$ define

$$
p_{v}=\sigma\left(\mathbf{1}_{v}\right), \quad x_{e}=T\left(\mathbf{1}_{e}\right) \quad \text { and } \quad y_{e}=S\left(\mathbf{1}_{\bar{e}}\right)
$$

$\mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)$ is generated by

$$
\left\{p_{v} \mid v \in E^{0}\right\} \cup\left\{x_{e} \mid e \in E^{1}\right\} \cup\left\{y_{e} \mid e \in E^{1}\right\}
$$

and these elements satisfy:
(i) $p_{s(e)} x_{e}=x_{e}=x_{e} p_{r(e)}$ for $e \in E^{1}$,
(ii) $p_{r(e)} y_{e}=y_{e}=y_{e} p_{s(e)}$ for $e \in E^{1}$,
(iii) $y_{e} x_{f}=\delta_{e, f} p_{r(e)}$ for $e, f \in E^{1}$,
(iv) $p_{v}=\sum_{e \in v E^{1}} x_{e} y_{e}$ for $v \in E^{0}$ with $0<\left|v E^{1}\right|<\infty$.

In fact, $\mathcal{O}_{\left(P_{E}, Q_{E}, \psi_{E}\right)}\left(J_{E}\right)$ is isomorphic to the Leavitt path algebra $L_{F}(E)$ of E.

Section The ideal intersection Property

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz-
Pimsner Rings

The ideal intersection Property
(1) Cuntz-Pimsner rings
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

Simple
CuntzPimsner Rings
E. Ortega

Definition 5

For an ideal I in R, let $\psi^{-1}(I)$ be the ideal

$$
\{x \in R \mid \psi(p x \otimes q) \in I \text { for all } q \in Q \text { and all } p \in P\}
$$

and let $I^{[\infty]}$ be the ideal

$$
\bigcap_{k=1}^{\infty} I^{[k]}
$$

where $I^{[k]}$ is defined recursively by $I^{[1]}=I$ and $I^{[k]}=\psi^{-1}\left(I^{[k-1]}\right) \cap I$ for $k>1$.

Example 6

Let $\left(P_{E}, Q_{E}, \psi_{E}\right)$ and let I be an ideal of R_{E} and let $H=\left\{v \in E^{0} \mid \mathbf{1}_{v} \in I\right\}$ Then $I=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in H\right\}$ and it follows that

Definition 5

For an ideal I in R, let $\psi^{-1}(I)$ be the ideal

$$
\{x \in R \mid \psi(p x \otimes q) \in I \text { for all } q \in Q \text { and all } p \in P\}
$$

and let $I^{[\infty]}$ be the ideal

$$
\bigcap_{k=1}^{\infty} I^{[k]}
$$

where $I^{[k]}$ is defined recursively by $I^{[1]}=I$ and $I^{[k]}=\psi^{-1}\left(I^{[k-1]}\right) \cap I$ for $k>1$.

Example 6

Let $\left(P_{E}, Q_{E}, \psi_{E}\right)$ and let I be an ideal of R_{E} and let $H=\left\{v \in E^{0} \mid \mathbf{1}_{v} \in I\right\}$. Then $I=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in H\right\}$ and it follows that

$$
I^{[k]}=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in H \text { and } r(e) \in H \text { for all } e \in \bigcup_{i=1}^{k-1} v E^{i}\right\}
$$

for $k>1$.

The ideal intersection property

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz

Pimsner

 RingsThe ideal intersection Property

The CuntzKrieger uniqueness Property Simplicity Examples

Definition 7

A subring A of $\mathcal{O}_{(P, Q, \psi)}(J)$ has the ideal intersection property if the implication $K \cap A=\{0\} \Longrightarrow K=\{0\}$ holds for every ideal K in $\mathcal{O}_{(P, Q, \psi)}(J)$.

Proposition 8

The following 3 conditions are equivalent.
(1) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ does not have the ideal intersection property.
(3) There is a non-zero graded ideal \bigoplus_{k} a family $\left(\phi_{k}\right)_{k \in \mathbb{Z}}$ of injective $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$-bimodule homomorphisms $\phi_{k}: H^{(k)} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J)^{(k+n)}$ such that $x \phi_{k}(y)=\phi_{k+j}(x y)$ and $\phi_{k}(y) x=\phi_{k+j}(y x)$ for $k, j \in \mathbb{Z}, x \in \mathcal{O}_{(P, Q, \psi)}(J)^{(j)}$ and $y \in H^{(k)}$.

- There is a non-zero ψ-invariant ideal I_{0} of R, an $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: l_{0} \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I_{0}$ and $q \in Q$, and such that $10 \subseteq J^{[\infty]}$

The ideal intersection property

Definition 7

A subring A of $\mathcal{O}_{(P, Q, \psi)}(J)$ has the ideal intersection property if the implication $K \cap A=\{0\} \Longrightarrow K=\{0\}$ holds for every ideal K in $\mathcal{O}_{(P, Q, \psi)}(J)$.

Proposition 8

The following 3 conditions are equivalent:
(1) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ does not have the ideal intersection property.
(2) There is a non-zero graded ideal $\bigoplus_{k \in \mathbb{Z}} H^{(k)}$ in $\mathcal{O}_{(P, Q, \psi)}(J)$, an $n \in \mathbb{N}$ and a family $\left(\phi_{k}\right)_{k \in \mathbb{Z}}$ of injective $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$-bimodule homomorphisms $\phi_{k}: H^{(k)} \rightarrow \mathcal{O}_{(P, Q, \psi)}(J)^{(k+n)}$ such that $x \phi_{k}(y)=\phi_{k+j}(x y)$ and $\phi_{k}(y) x=\phi_{k+j}(y x)$ for $k, j \in \mathbb{Z}, x \in \mathcal{O}_{(P, Q, \psi)}(J)^{(j)}$ and $y \in H^{(k)}$.
(3) There is a non-zero ψ-invariant ideal I_{0} of R, an $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: I_{0} \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I_{0}$ and $q \in Q$, and such that $I_{0} \subseteq J^{[\infty]}$.

Section The Cuntz-Krieger uniqueness Property

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz-

Pimsner Rings

The ideal intersection Property

The CuntzKrieger uniqueness Property

Simplicity
Examples
(1) Cuntz-Pimsner rings
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

Condition (L)

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz-

Pimsner Rings

The ideal intersection Property

The CuntzKrieger uniqueness Property

Simplicity
Examples

Definition 9

We say that a ψ-invariant ideal I in R is a ψ-invariant cycle if there exist $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: I \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I$ and $q \in Q$
satisfies condition (L) with respect to the R-system (P, Q, ψ) if there are no non-zero ψ-invariant cycles $/$ in R such that $I \subseteq J^{[\infty]}$

Define $J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}=\left\{x \in R \mid \sigma^{\prime}(x) \in \pi_{T^{\prime}, S^{\prime}}\left(\mathcal{F}_{P}(Q)\right)\right\}$
Theorem 10
The following 4 conditions are equivalent
(1) The ideal I satisfies condition (L)
(2) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property.

- Every non-zero ideal in $\mathcal{O}_{(P, Q, \psi)}(J)$ contains a non-zero graded ideal$B)$ is an injective covariant representation of (P, Q, ψ) and $J=J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism $\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B$ is injective.

Condition (L)

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 9

We say that a ψ-invariant ideal I in R is a ψ-invariant cycle if there exist $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: I \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I$ and $q \in Q$, and we say that J satisfies condition (L) with respect to the R-system (P, Q, ψ) if there are no non-zero ψ-invariant cycles I in R such that $I \subseteq J^{[\infty]}$.

Define $J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}=\left\{x \in R \mid \sigma^{\prime}(x) \in \pi_{T^{\prime}, S^{\prime}}\left(\mathcal{F}_{P}(Q)\right)\right\}$

Theorem 10

The following 4 conditions are equivalent.
(1) The ideal J satisfies condition (L).
(2) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property.

- Every non-zero ideal in Oin ((I) contains a non-zero graded ideal
- If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is an injective covariant representation of (P, Q, ψ) and
$J=J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism
$\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B$ is injective.

Condition (L)

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 9

We say that a ψ-invariant ideal I in R is a ψ-invariant cycle if there exist $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: I \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I$ and $q \in Q$, and we say that J satisfies condition (L) with respect to the R-system (P, Q, ψ) if there are no non-zero ψ-invariant cycles I in R such that $I \subseteq J^{[\infty]}$.

Define $J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}=\left\{x \in R \mid \sigma^{\prime}(x) \in \pi_{T^{\prime}, s^{\prime}}\left(\mathcal{F}_{P}(Q)\right)\right\}$.

Theorem 10

The following 4 conditions are equivalent - The ideal I satisfies condition (I)
(2) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property.
(3) Every non-zero ideal in $\mathcal{O}_{(P, Q, \psi)}(J)$ contains a non-zero graded ideal.

Q If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime} R\right)$ is an injective covariant representation of $(P Q a$,$) and$ $J=J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism $\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B$ is injective.

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 9

We say that a ψ-invariant ideal I in R is a ψ-invariant cycle if there exist $n \in \mathbb{N}$ and an injective R-bimodule homomorphism $\eta: I \rightarrow Q^{\otimes n}$ such that $S_{p}\left(T_{\eta(x)}(q)\right)=\eta(\psi(p x \otimes q))$ for $p \in P, x \in I$ and $q \in Q$, and we say that J satisfies condition (L) with respect to the R-system (P, Q, ψ) if there are no non-zero ψ-invariant cycles I in R such that $I \subseteq J^{[\infty]}$.

Define $J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}=\left\{x \in R \mid \sigma^{\prime}(x) \in \pi_{T^{\prime}, S^{\prime}}\left(\mathcal{F}_{P}(Q)\right)\right\}$.

Theorem 10

The following 4 conditions are equivalent:
(3) The ideal J satisfies condition (L).
(2) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property.
(3) Every non-zero ideal in $\mathcal{O}_{(P, Q, \psi)}(J)$ contains a non-zero graded ideal.

- If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is an injective covariant representation of (P, Q, ψ) and $J=J_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism $\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B$ is injective.

Example 11

Let $\left(P_{E}, Q_{E}, \psi_{E}\right)$ and let J_{E}. Then

$$
J_{E}^{[k]}=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } 0<\left|v E^{i}\right|<\infty \text { for } i=1,2, \ldots, k\right\}
$$

for each $k \in \mathbb{N}$ and that

$$
J_{E}^{[\infty]}=\operatorname{span}_{F}\left\{\mathbf{1}_{v} \mid v \in E^{0} \text { and } 0<\left|v E^{i}\right|<\infty \text { for all } i \in \mathbb{N}\right\}
$$

A non-zero ideal I_{H} of R_{E} is a ψ_{E}-invariant cycle if and only if H is the union of cycles without exit.
Thus J_{E} satisfies condition (L) with respect to the R_{E}-system $\left(P_{E}, Q_{E}, \psi_{E}\right)$ if and only every closed path in (E^{0}, E^{1}, r, s) has an exit.

Cuntz-Krieger uniqueness property

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz
Pimsner Rings

The ideal intersection Property

The CuntzKrieger uniqueness Property

Definition 12
We say that the ideal J has the Cuntz-Krieger uniqueness property with respect to the R-system (P, Q, ψ) if the following holds:

> If $\left(S_{1}, T_{1}, \sigma_{1}, B_{1}\right)$ and $\left(S_{2}, T_{2}, \sigma_{2}, B_{2}\right)$ are two injective covariant representations of (P, Q, ψ) and they are both Cuntz-Pimsner invariant relative to J, then there is a ring isomorphism ϕ between $\mathcal{R}\left\langle S_{1}, T_{1}, \sigma_{1}\right\rangle$ and $R\left\langle S_{2}, T_{2}, \sigma_{2}\right\rangle$ such that $\phi \circ \sigma_{1}=\sigma_{2}, \phi \circ S_{1}=S_{2}$ and $\phi \circ T_{1}=T_{2}$.

Cuntz-Krieger uniqueness property

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 12

We say that the ideal J has the Cuntz-Krieger uniqueness property with respect to the R-system (P, Q, ψ) if the following holds:

If $\left(S_{1}, T_{1}, \sigma_{1}, B_{1}\right)$ and $\left(S_{2}, T_{2}, \sigma_{2}, B_{2}\right)$ are two injective covariant representations of (P, Q, ψ) and they are both Cuntz-Pimsner invariant relative to J, then there is a ring isomorphism ϕ between $\mathcal{R}\left\langle S_{1}, T_{1}, \sigma_{1}\right\rangle$ and $\mathcal{R}\left\langle S_{2}, T_{2}, \sigma_{2}\right\rangle$ such that $\phi \circ \sigma_{1}=\sigma_{2}, \phi \circ S_{1}=S_{2}$ and $\phi \circ T_{1}=T_{2}$.

Cuntz-Krieger uniqueness property

Theorem 13

The following 5 conditions are equivalent:
(3) The ideal J has the Cuntz-Krieger uniqueness property.
(2) If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is an injective covariant representation of (P, Q, ψ) which is Cuntz-Pimsner invariant relative to J, then the ring homomorphism

$$
\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B
$$

is injective.
(3) The subring $\sigma(R)$ has the ideal intersection property.
(The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property, and J is a maximal faithful, ψ-compatible ideal.
(3) The ideal J satisfies condition (L) and is a maximal faithful, ψ-compatible ideal.

Graded ideals

Simple
Cuntz-
Pimsner
Rings
E. Ortega

If I is a ψ-invariant ideal in R, then $R_{I}=R / I, Q_{I}=Q / Q I$ and ${ }_{I} P=P / I P$, and \wp, denotes the corresponding quotient maps.

There is an R_{l}-bimodule homomorphism $\psi_{l}: l P \otimes Q_{l} \rightarrow R_{l}$ given by $\psi_{l}\left(\wp_{1}(p) \otimes \wp_{1}(q)\right)=\wp_{1}(\psi(p \otimes q))$

The triple (P, $\left.Q_{l}, \psi_{l}\right)$ is then an R_{l}-system satisfying condition (FS)

Definition 14

a T-pair is a pair $\left(I, J^{\prime}\right)$ where I and J^{\prime} are ideals in R such that $I \subseteq J, I$ is ψ-invariant, and $J_{l}^{\prime}:=\wp_{l}\left(J^{\prime}\right)$ is a faithful, ψ_{l}-compatible ideal in R_{l}.

Theorem 15

There is a bijection between the T-pairs $\left(I, J^{\prime}\right)$ with $J \subseteq J^{\prime}$ and the graded ideals of $\mathcal{O}_{(P, Q, \psi)}(J)$

Graded ideals

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz

 Pimsner RingsThe ideal intersection Property

The CuntzKrieger uniqueness Property Simplicity Examples

If I is a ψ-invariant ideal in R, then $R_{I}=R / I, Q_{I}=Q / Q I$ and ${ }_{I} P=P / I P$, and \wp_{1} denotes the corresponding quotient maps.

There is an R_{l}-bimodule homomorphism $\psi_{I}:, P \otimes Q_{I} \rightarrow R_{I}$ given by $\psi_{l}\left(\wp_{l}(p) \otimes \wp_{l}(q)\right)=\gamma_{l}(\psi(p \otimes q))$.

The triple (IP, $\left.Q_{I}, \psi_{I}\right)$ is then an $R_{l \text {-system satisfying condition (FS) }}$

Definition 14

a T-pair is a pair $\left(I, J^{\prime}\right)$ where I and J^{\prime} are ideals in R such that $I \subseteq J, I$ is ψ-invariant, and $J_{l}^{\prime}:=\gamma_{l}\left(J^{\prime}\right)$ is a faithful, ψ_{l}-compatible ideal in R_{l}.

Theorem 15
There is a bijection between the T-pairs $\left(I, J^{\prime}\right)$ with $J \subseteq J^{\prime}$ and the graded ideals of $\mathcal{O}_{(P, Q, w)}(J)$.

Graded ideals

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz

Pimsner
Rings
The ideal intersection Property

The CuntzKrieger uniqueness Property

Simplicity
Examples

If I is a ψ-invariant ideal in R, then $R_{I}=R / I, Q_{I}=Q / Q I$ and ${ }_{I} P=P / I P$, and \wp । denotes the corresponding quotient maps.

There is an R_{l}-bimodule homomorphism $\psi_{l}:{ }_{l} P \otimes Q_{l} \rightarrow R_{l}$ given by $\psi_{l}\left(\wp_{l}(p) \otimes \wp_{l}(q)\right)=\wp_{l}(\psi(p \otimes q))$.

The triple $\left(I P, Q_{I}, \psi_{l}\right)$ is then an R_{l}-system satisfying condition (FS).

Definition 14

a T-pair is a pair $\left(I, J^{\prime}\right)$ where I and J^{\prime} are ideals in R such that $I \subseteq J, I$ is ψ-invariant, and $J_{l}^{\prime}:=\wp_{l}\left(J^{\prime}\right)$ is a faithful, ψ_{l}-compatible ideal in R_{l}

Theorem 15

There is a bijection between the T-pairs $\left(I, J^{\prime}\right)$ with $J \subseteq J^{\prime}$ and the graded ideals of $\mathcal{O}_{(P, Q, \psi)}(J)$

Graded ideals

If I is a ψ-invariant ideal in R, then $R_{I}=R / I, Q_{I}=Q / Q I$ and ${ }_{l} P=P / I P$, and $\wp ।$ denotes the corresponding quotient maps.

There is an R_{l}-bimodule homomorphism $\psi_{l}:{ }_{l} P \otimes Q_{l} \rightarrow R_{l}$ given by $\psi_{l}\left(\wp_{l}(p) \otimes \wp_{l}(q)\right)=\wp_{l}(\psi(p \otimes q))$.

The triple $\left(I P, Q_{I}, \psi_{l}\right)$ is then an R_{l}-system satisfying condition (FS).

Definition 14

a T-pair is a pair $\left(I, J^{\prime}\right)$ where I and J^{\prime} are ideals in R such that $I \subseteq J, I$ is ψ-invariant, and $J_{l}^{\prime}:=\wp_{I}\left(J^{\prime}\right)$ is a faithful, ψ_{l}-compatible ideal in R_{l}.

Theorem 15

There is a bijection between the T-pairs $\left(I, J^{\prime}\right)$ with $J \subseteq J^{\prime}$ and the graded ideals of $\mathcal{O}_{(P, Q, \psi)}(J)$

Graded ideals

If I is a ψ-invariant ideal in R, then $R_{I}=R / I, Q_{I}=Q / Q I$ and ${ }_{I} P=P / I P$, and $\wp ।$ denotes the corresponding quotient maps.

There is an R_{l}-bimodule homomorphism $\psi_{l}:{ }_{l} P \otimes Q_{l} \rightarrow R_{l}$ given by $\psi_{l}\left(\wp_{l}(p) \otimes \wp_{l}(q)\right)=\wp_{l}(\psi(p \otimes q))$.

The triple $\left(I P, Q_{l}, \psi_{l}\right)$ is then an R_{l}-system satisfying condition (FS).

Definition 14

a T-pair is a pair $\left(I, J^{\prime}\right)$ where I and J^{\prime} are ideals in R such that $I \subseteq J, I$ is ψ-invariant, and $J_{l}^{\prime}:=\wp_{I}\left(J^{\prime}\right)$ is a faithful, ψ_{l}-compatible ideal in R_{l}.

Theorem 15

There is a bijection between the T-pairs $\left(I, J^{\prime}\right)$ with $J \subseteq J^{\prime}$ and the graded ideals of $\mathcal{O}_{(P, Q, \psi)}(J)$.

Condition (K)

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz

 Pimsner RingsThe ideal intersection Property

The CuntzKrieger uniqueness Property Simplicity Examples

Definition 16

We say that the ideal J satisfies condition (K) with respect to the R-system (P, Q, ψ) if J_{l}^{\prime} satisfies condition (L) with respect to the R_{l}-system $\left(I P, Q_{I}, \psi_{I}\right)$ whenever $\left(I, J^{\prime}\right)$ is a T-pair of (P, Q, ψ) such that $J \subseteq J^{\prime}$.

Theorem 17

The following 3 conditions are equivalent
(1) Every ideal of $\mathcal{O}_{(P, Q, \psi)}(J)$ is graded.
(3) The ideal J satisfies condition (K).

- If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is a covariant representation of (P, Q, ψ) which is

Cuntz-Pimsner invariant relative to J, and $\left(I, J^{\prime}\right)=\omega_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism
is injective.

Definition 16

We say that the ideal J satisfies condition (K) with respect to the R-system (P, Q, ψ) if J_{l}^{\prime} satisfies condition (L) with respect to the R_{l}-system $\left(I P, Q_{I}, \psi_{I}\right)$ whenever $\left(I, J^{\prime}\right)$ is a T-pair of (P, Q, ψ) such that $J \subseteq J^{\prime}$.

Theorem 17

The following 3 conditions are equivalent:
(1) Every ideal of $\mathcal{O}_{(P, Q, \psi)}(J)$ is graded.
(2) The ideal J satisfies condition (K).
(3) If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is a covariant representation of (P, Q, ψ) which is Cuntz-Pimsner invariant relative to J, and $\left(I, J^{\prime}\right)=\omega_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}$, then the ring homomorphism

$$
\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{\left(I, J^{\prime}\right)}: \mathcal{O}_{\left(, P, Q_{l}, \psi_{l}\right)}\left(J_{l}^{\prime}\right) \rightarrow B
$$

is injective.

Section Simplicity

SimpleCuntz-
PimsnerRings
E. Ortega
Cuntz-Pimsner
Rings
(1) Cuntz-Pimsner rings
(2) The ideal intersection Property
(3) The Cuntz-Krieger uniqueness Property
(4) Simplicity
(5) Examples

\mathbb{Z}-simple Cuntz-Pimnser rings

Simple CuntzPimsner Rings
E. Ortega

Definition 18

We say that J is a super maximal ψ-compatible ideal if the only T-pairs $\left(I, J^{\prime}\right)$ of (P, Q, ψ) which satisfies that $J \subseteq J^{\prime}$, are $(0, J)$ and (R, R).

It follows that J is a super maximal ψ-compatible ideal if and only if the only graded ideals in $\mathcal{O}_{(P, Q, \psi)}(J)$ are $\{0\}$ and $\mathcal{O}_{(P, Q, \psi)}(J)$

Example 19
Let $\left(P_{E}, Q_{E}, \psi_{E}\right)$ and J_{E}. It follows that J_{E} is super maximal ψ_{E}-compatible ideal if and only if the only saturated hereditary subsets of E^{0} are \emptyset and E^{0}

\mathbb{Z}-simple Cuntz-Pimnser rings

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 18

We say that J is a super maximal ψ-compatible ideal if the only T-pairs $\left(I, J^{\prime}\right)$ of (P, Q, ψ) which satisfies that $J \subseteq J^{\prime}$, are $(0, J)$ and (R, R).

It follows that J is a super maximal ψ-compatible ideal if and only if the only graded ideals in $\mathcal{O}_{(P, Q, \psi)}(J)$ are $\{0\}$ and $\mathcal{O}_{(P, Q, \psi)}(J)$.

Example 19
Let $\left(P_{E}, Q_{E}, v \psi_{E}\right)$ and J_{E}. It follows that J_{E} is super maximal $\psi_{E-c o m p a t i b l e}$ ideal if and only if the only saturated hereditary subsets of E^{0} are \emptyset and E^{0}.

\mathbb{Z}-simple Cuntz-Pimnser rings

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 18

We say that J is a super maximal ψ-compatible ideal if the only T-pairs $\left(I, J^{\prime}\right)$ of (P, Q, ψ) which satisfies that $J \subseteq J^{\prime}$, are $(0, J)$ and (R, R).

It follows that J is a super maximal ψ-compatible ideal if and only if the only graded ideals in $\mathcal{O}_{(P, Q, \psi)}(J)$ are $\{0\}$ and $\mathcal{O}_{(P, Q, \psi)}(J)$.

Example 19

Let $\left(P_{E}, Q_{E}, \psi_{E}\right)$ and J_{E}. It follows that J_{E} is super maximal ψ_{E}-compatible ideal if and only if the only saturated hereditary subsets of E^{0} are \emptyset and E^{0}.

Simple Cuntz-Pimsner rings

Theorem 20

The following 5 conditions are equivalent:
(1) The ring $\mathcal{O}_{(P, Q, \psi)}(J)$ is simple.
(2) The subring $\sigma(R)$ has the ideal intersection property and J is a super maximal ψ-compatible ideal.
(3) The subring $\mathcal{O}_{(P, Q, \psi)}(J)^{(0)}$ has the ideal intersection property and J is a super maximal ψ-compatible ideal.

- The ideal J satisfies condition (L) and is a super maximal ψ-compatible ideal.
(0) If $\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)$ is a non-zero covariant representation of (P, Q, ψ) which is Cuntz-Pimsner invariant relative to J, then the ring homomorphism

$$
\eta_{\left(S^{\prime}, T^{\prime}, \sigma^{\prime}, B\right)}^{J}: \mathcal{O}_{(P, Q, \psi)}(J) \rightarrow B
$$

is injective.

Section Examples

Simple
Cuntz－
Pimsner
Rings
E．Ortega

Cuntz－
Pimsner
Rings
The ideal intersection Property

The Cuntz－ Krieger uniqueness Property

Simplicity
Examples
（1）Cuntz－Pimsner rings
（2）The ideal intersection Property
（3）The Cuntz－Krieger uniqueness Property
（4）Simplicity
（5）Examples

fractional skew monoid ring

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz-

Pimsner
Rings
The ideal intersection Property

The Cuntz Krieger uniqueness Property

Simplicity
Examples

Let R be a ring with local units and let $\alpha: R \rightarrow R$ be an injective ring homomorphism such that $\alpha(R) R \alpha(R) \subseteq \alpha(R)$.

and
given by $\quad p \otimes q \mapsto p q$
then (P, Q, ψ) is an R-system.

Then R is a uniquely maximal, faithful, ψ-compatible ideal and that if
(a) α is an automorphism then $\mathcal{O}_{(D \cap} \cap(R) \cong R \times_{\sim} \mathbb{Z}$.
(1) R is unital and $\alpha(R)=\alpha(R) R \alpha(R)=\alpha(1) R \alpha(1)$ then $\mathcal{O}_{(P, Q, \psi)}(R) \cong R\left[t_{+}, t_{-} ; \alpha\right]$

fractional skew monoid ring

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Let R be a ring with local units and let $\alpha: R \rightarrow R$ be an injective ring homomorphism such that $\alpha(R) R \alpha(R) \subseteq \alpha(R)$.
Let

$$
P=\operatorname{span}\left\{r_{1} \alpha\left(r_{2}\right) \mid r_{1}, r_{2} \in R\right\} \quad \text { and } \quad Q=\operatorname{span}\left\{\alpha\left(r_{1}\right) r_{2} \mid r_{1}, r_{2} \in R\right\}
$$

and

$$
\psi: P \otimes Q \rightarrow R \quad \text { given by } \quad p \otimes q \mapsto p q
$$

then (P, Q, ψ) is an R-system.
Then R is a uniquely maximal, faithful, ψ-compatible ideal and that if
(1) α is an automorphism then $\mathcal{O}_{(P, Q, \psi)}(R) \cong R \times{ }_{\alpha} \mathbb{Z}$.
(2) R is unital and $\alpha(R)=\alpha(R) R \alpha(R)=\alpha(1) R \alpha(1)$ then $\mathcal{O}_{(P, Q, \psi)}(R) \cong R\left[t_{+}, t_{-} ; \alpha\right]$

fractional skew monoid ring

Let R be a ring with local units and let $\alpha: R \rightarrow R$ be an injective ring homomorphism such that $\alpha(R) R \alpha(R) \subseteq \alpha(R)$.
Let

$$
P=\operatorname{span}\left\{r_{1} \alpha\left(r_{2}\right) \mid r_{1}, r_{2} \in R\right\} \quad \text { and } \quad Q=\operatorname{span}\left\{\alpha\left(r_{1}\right) r_{2} \mid r_{1}, r_{2} \in R\right\}
$$

and

$$
\psi: P \otimes Q \rightarrow R \quad \text { given by } \quad p \otimes q \mapsto p q
$$

then (P, Q, ψ) is an R-system.
Then R is a uniquely maximal, faithful, ψ-compatible ideal and that if:
(1) α is an automorphism then $\mathcal{O}_{(P, Q, \psi)}(R) \cong R \times{ }_{\alpha} \mathbb{Z}$.
(2) R is unital and $\alpha(R)=\alpha(R) R \alpha(R)=\alpha(1) R \alpha(1)$ then

$$
\mathcal{O}_{(P, Q, \psi)}(R) \cong R\left[t_{+}, t_{-} ; \alpha\right]
$$

fractional skew monoid ring

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Cuntz-

Pimsner Rings

The ideal intersection Property

The Cuntz Krieger uniqueness Property

Simplicity
Examples

We say that an ideal I of R is strongly α-invariant if $\alpha^{-1}(I)=I$.

Proposition 21

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then there is a bijective correspondence between graded ideals of $R\left[t_{+}, t_{-} ; \alpha\right]$ and strongly α-invariant ideals of R.

Corollary 22

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then the following three conditions are equivalent:
(1) The ring R is a super maximal ψ-compatible ideal.

- The only graded ideals in $R\left[t_{+}, t_{-} ; \alpha\right]$ are $\{0\}$ and $R\left[t, t_{-} ; \alpha\right]$
- The only strongly α-invariant ideals in R are $\{0\}$ and R.

fractional skew monoid ring

Simple CuntzPimsner Rings E. Ortega

We say that an ideal I of R is strongly α-invariant if $\alpha^{-1}(I)=I$.

Proposition 21

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then there is a bijective correspondence between graded ideals of $R\left[t_{+}, t_{-} ; \alpha\right]$ and strongly α-invariant ideals of R.

Corollary 22
 Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then the following three conditions are equivalent:
 (1) The ring R is a super maximal ψ-compatible ideal
 (3) The only graded ideals in $R\left[t_{+}, t_{-} ; \alpha\right]$ are $\{0\}$ and $R\left[t_{+}, t_{-} ; \alpha\right]$
 - The only strongly α-invariant ideals in R are $\{0\}$ and R.

fractional skew monoid ring

We say that an ideal I of R is strongly α-invariant if $\alpha^{-1}(I)=I$.

Proposition 21

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then there is a bijective correspondence between graded ideals of $R\left[t_{+}, t_{-} ; \alpha\right]$ and strongly α-invariant ideals of R.

Corollary 22

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Then the following three conditions are equivalent:
(1) The ring R is a super maximal ψ-compatible ideal.
(2) The only graded ideals in $R\left[t_{+}, t_{-} ; \alpha\right]$ are $\{0\}$ and $R\left[t_{+}, t_{-} ; \alpha\right]$.
(3) The only strongly α-invariant ideals in R are $\{0\}$ and R.

fractional skew monoid ring

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 23

Let $n \in \mathbb{N}$ and let R be a ring with local units. A ring homomorphism $\alpha: R \rightarrow R$ is said to be inner with periodicity n if there exist $u, v \in \mathcal{M}(R)$ such that $v u=1$ (where 1 denotes the unit of $\mathcal{M}(R)$), and $\alpha^{n}(r)=u r v$ and $\alpha(u r)=u \alpha(r)$ for all $r \in R$. If α is not inner of any periodicity, then it is said to be outer.

Proposition 24

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Consider the following three conditions.
(1) There exists an $n \in \mathbb{N}$ such that the homomorphism α is inner with periodicity n.
(3) The ring R is a ψ-invariant cycle.

- The ring R does not satisfy condition (L) with respect to (P, Q, ψ)

Then (1) implies (2), and (2) implies (3). If in addition R is a super maximal ψ-compatible ideal, and α^{n} is strict for every $n \in \mathbb{N}$, then (3) implies (1) and the three conditions are equivalent

fractional skew monoid ring

Simple
Cuntz-
Pimsner
Rings
E. Ortega

Definition 23

Let $n \in \mathbb{N}$ and let R be a ring with local units. A ring homomorphism $\alpha: R \rightarrow R$ is said to be inner with periodicity n if there exist $u, v \in \mathcal{M}(R)$ such that $v u=1$ (where 1 denotes the unit of $\mathcal{M}(R)$), and $\alpha^{n}(r)=u r v$ and $\alpha(u r)=u \alpha(r)$ for all $r \in R$. If α is not inner of any periodicity, then it is said to be outer.

Proposition 24

Let R be a ring with local units, $\alpha: R \rightarrow R$ an injective ring homomorphism satisfying $\alpha(R) R \alpha(R) \subseteq \alpha(R)$. Consider the following three conditions:
(3) There exists an $n \in \mathbb{N}$ such that the homomorphism α is inner with periodicity n.
(2) The ring R is a ψ-invariant cycle.
(3) The ring R does not satisfy condition (L) with respect to (P, Q, ψ).

Then (1) implies (2), and (2) implies (3). If in addition R is a super maximal ψ-compatible ideal, and α^{n} is strict for every $n \in \mathbb{N}$, then (3) implies (1) and the three conditions are equivalent.

fractional skew monoid ring

Simple CuntzPimsner Rings
E. Ortega

Corollary 25

Let R be a unital ring and let $\alpha: R \rightarrow R$ be an injective ring homomorphism such that $\alpha(R)=e R e$ for some idempotent $e \in R$. Then the following two statements are equivalent:
(1) The fractional skew monoid ring $R\left[t_{+}, t_{-} ; \alpha\right]$ is simple.
(2) The homomorphism α is outer and the only strongly α-invariant ideals in R are $\{0\}$ and R.

Corollary 26

let R be a ring with local units and let $\alpha: R \rightarrow R$ be a ring automorphism Then the following two statements are equivalent
(1) The crossed product $R \times{ }_{\alpha} \mathbb{Z}$ is simple.

Q The automornhism α is outer and the only strongly α-invariant ideals in R are $\{0\}$ and R

fractional skew monoid ring

Corollary 25

Let R be a unital ring and let $\alpha: R \rightarrow R$ be an injective ring homomorphism such that $\alpha(R)=e R e$ for some idempotent $e \in R$. Then the following two statements are equivalent:
(1) The fractional skew monoid ring $R\left[t_{+}, t_{-} ; \alpha\right]$ is simple.
(2) The homomorphism α is outer and the only strongly α-invariant ideals in R are $\{0\}$ and R.

Corollary 26

Let R be a ring with local units and let $\alpha: R \rightarrow R$ be a ring automorphism. Then the following two statements are equivalent:
(1) The crossed product $R \times{ }_{\alpha} \mathbb{Z}$ is simple.
(2) The automorphism α is outer and the only strongly α-invariant ideals in R are $\{0\}$ and R.

