Grading of Leavitt Path Algebras and Classifications

Roozbeh Hazrat

University of Western Sydney
AUSTRALIA

Outline

Outline

- Classification of LPAs via K_{0}-group

Outline

- Classification of LPAs via K_{0}-group
- Graded rings

Outline

- Classification of LPAs via K_{0}-group
- Graded rings
- Graded K_{0} groups

Outline

- Classification of LPAs via K_{0}-group
- Graded rings
- Graded K_{0} groups
- Grading of Leavitt path algebras
- Classification of LPAs via K_{0}-group
- Graded rings
- Graded K_{0} groups
- Grading of Leavitt path algebras
- Classification of LPAs via graded K_{0}-group

Classification of Leavitt path algebras

Inspired by C^{*}-algebras, we are looking for a statement such as:

Classification of Leavitt path algebras

Inspired by C^{*}-algebras, we are looking for a statement such as: Let E and F be graphs. Then

$$
\mathcal{L}(E) \cong \mathcal{L}(F)
$$

if and only if

Classification of Leavitt path algebras

Inspired by C^{*}-algebras, we are looking for a statement such as: Let E and F be graphs. Then

$$
\mathcal{L}(E) \cong \mathcal{L}(F)
$$

if and only if

$$
K_{0}(\mathcal{L}(E)) \cong K_{0}(\mathcal{L}(F))
$$

or

Classification of Leavitt path algebras

Inspired by C^{*}-algebras, we are looking for a statement such as: Let E and F be graphs. Then

$$
\mathcal{L}(E) \cong \mathcal{L}(F)
$$

if and only if

$$
K_{0}(\mathcal{L}(E)) \cong K_{0}(\mathcal{L}(F))
$$

or something like this...

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition.

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition. Define

$$
K_{0}(A)=\mathcal{V}(A)^{+}
$$

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition. Define

$$
K_{0}(A)=\mathcal{V}(A)^{+}
$$

$K_{0}(A)$ is a pre-ordered abelian group with an order unit $[A]$.

Ultramatricial algebras

Ultramatricial algebras

Matricial algebras: $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$, where K is a field.

Ultramatricial algebras

Matricial algebras: $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$, where K is a field. Ultramatricial algebras: $\bigcup R_{i}$ where R_{i} are matricial algebras and $R_{1} \subseteq R_{2} \subseteq \ldots$.

Ultramatricial algebras

Matricial algebras: $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$, where K is a field. Ultramatricial algebras: $\bigcup R_{i}$ where R_{i} are matricial algebras and $R_{1} \subseteq R_{2} \subseteq \ldots$.

Example

$$
\begin{aligned}
K & \longrightarrow \mathbb{M}_{2}(K) \longrightarrow \mathbb{M}_{4}(K) \longrightarrow \ldots \\
& a \longmapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
\end{aligned}
$$

Ultramatricial algebras

Matricial algebras: $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$, where K is a field. Ultramatricial algebras: $\bigcup R_{i}$ where R_{i} are matricial algebras and $R_{1} \subseteq R_{2} \subseteq \ldots$.

Example

$$
\begin{aligned}
& K \mathbb{M}_{2}(K) \longrightarrow \mathbb{M}_{4}(K) \longrightarrow \ldots \\
& a \longmapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
\end{aligned}
$$

$K \oplus K \longrightarrow \mathbb{M}_{2}(K) \oplus K \longrightarrow \mathbb{M}_{3}(K) \oplus \mathbb{M}_{2}(K) \longrightarrow \cdots$

$$
(a, b) \longmapsto\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), a\right)
$$

Classification of Ultramatricial algebras

Theorem (Elliott)
Let R and S be ultramatricial K-algebra. Then $R \cong S$ as K-algebra if and only if

$$
\left(K_{0}(R), K_{0}(R)_{+},[R]\right) \cong\left(K_{0}(S), K_{0}(S)_{+},[S]\right)
$$

Classification of LPAs via K-groups

Classification of LPAs via K-groups

$$
\mathcal{L}(F) \cong \mathbb{M}_{3}(K)
$$

$$
\mathcal{L}(E) \cong \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right)
$$

Classification of LPAs via K-groups

Classification of LPAs via K-groups

$$
\begin{aligned}
& F \rightarrow \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
& \left(K_{0}(\mathcal{L}(F)), K_{0}(\mathcal{L}(F))_{+},[\mathcal{L}(F)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3) \\
& \left(K_{0}(\mathcal{L}(E)), K_{0}(\mathcal{L}(E))_{+},[\mathcal{L}(E)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3)
\end{aligned}
$$

Classification of LPAs via K-groups

But

$$
\mathbb{M}_{3}(K) \not \neq \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right)
$$

So K_{0} doesn't seem to classify all types of LPAs.

A conjecture is raised for the class of purely infinite simple LPA (not a division ring and $\forall x \neq 0, \exists a, b, a x b=1$).
(1) $L(E)$ is simple
(2) E contains a cycle

A conjecture is raised for the class of purely infinite simple LPA (not a division ring and $\forall x \neq 0, \exists a, b, a x b=1$).
(1) $L(E)$ is simple
(2) E contains a cycle

- Abrams, Ánh, Louly, Pardo, The classification question for Leavitt path algebras, J. Algebra-2008
- Abrams, Ánh, Pardo, Isomorphisms between Leavitt algebras and their matrix rings, J. Reine Angew. Math 2008
- Abrams, Tomforde, Isomorphism and Morita equivalence of graph algebras, Trans. AMS 2011.
- Ara, Goodearl, Pardo, K_{0} of purely infinite simple regular rings, K-Theory-2002

A conjecture is raised for the class of purely infinite simple LPA (not a division ring and $\forall x \neq 0, \exists a, b, a x b=1$).
(1) $L(E)$ is simple
(2) E contains a cycle

- Abrams, Ánh, Louly, Pardo, The classification question for Leavitt path algebras, J. Algebra-2008
- Abrams, Ánh, Pardo, Isomorphisms between Leavitt algebras and their matrix rings, J. Reine Angew. Math 2008
- Abrams, Tomforde, Isomorphism and Morita equivalence of graph algebras, Trans. AMS 2011.
- Ara, Goodearl, Pardo, K_{0} of purely infinite simple regular rings, K-Theory-2002
- Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys-1977
- Cuntz, K-theory for certain C^{*}-algebras, Ann. of Math-1981. 181-197.

Towards grading of LPAs

Towards grading of LPAs

Abrams, Aranda Pino, Siles Molina (Acyclic graphs, JPAA 2007)

Towards grading of LPAs

Abrams, Aranda Pino, Siles Molina (Acyclic graphs, JPAA 2007) Acyclic:

E_{2} :

Towards grading of LPAs

Abrams, Aranda Pino, Siles Molina (Acyclic graphs, JPAA 2007) Acyclic:

E_{2} :

Then $\mathcal{L}\left(E_{1}\right) \cong \mathcal{L}\left(E_{2}\right) \cong \mathbb{M}_{5}(K)$.

Length of the paths in LPA

$E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u$

Length of the paths in LPA

$$
\begin{gathered}
E: \quad \bullet \stackrel{\alpha}{\longrightarrow} \bullet \stackrel{\beta}{\longrightarrow} u \\
\text { Let } p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta .
\end{gathered}
$$

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \longrightarrow \xrightarrow{\beta} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \bullet \stackrel{\beta}{\longrightarrow} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

$$
\begin{aligned}
\mathcal{L}(E) & \longrightarrow \mathbb{M}_{3}(K) \\
p_{i} p_{j}^{*} & \longmapsto e_{i j}
\end{aligned}
$$

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

$$
\begin{gathered}
\mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) \\
p_{i} p_{j}^{*} \longmapsto e_{i j} \\
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}
\end{gathered}
$$

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

$$
\begin{gathered}
\mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) \\
p_{i} p_{j}^{*} \longmapsto e_{i j} \\
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}
\end{gathered}
$$

$$
F: \bullet \xrightarrow{\beta} \stackrel{i}{ }^{\bullet}
$$

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

$$
\begin{gathered}
\mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) \\
p_{i} p_{j}^{*} \longmapsto e_{i j} \\
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}
\end{gathered}
$$

$$
F: \bullet \xrightarrow{\beta} \stackrel{i}{u}^{\bullet}
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha$.

Length of the paths in LPA

$$
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta$. Then $p_{i} p_{j}^{*}$ generate the Leavitt path algebra $\mathcal{L}(E)$, and these are the K-basis.

$$
\begin{gathered}
\mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) \\
p_{i} p_{j}^{*} \longmapsto e_{i j} \\
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}
\end{gathered}
$$

$$
F: \bullet \xrightarrow{\beta} \downarrow^{\bullet}
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha$. Again an iso. $\mathcal{L}(F) \longrightarrow \mathbb{M}_{3}(K)$.

$$
p_{3} p_{2}^{*}=\alpha \beta^{*} \mapsto e_{32}
$$

Grading on rings

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
A is strongly graded ring if $A_{\gamma} A_{\delta}=A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
A is strongly graded ring if $A_{\gamma} A_{\delta}=A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$. Consider $\left(\delta_{1}, \ldots, \delta_{n}\right), \delta_{i} \in \Gamma$.

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
A is strongly graded ring if $A_{\gamma} A_{\delta}=A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
Consider $\left(\delta_{1}, \ldots, \delta_{n}\right), \delta_{i} \in \Gamma$. Define a grading on $\mathbb{M}_{n}(A)$ by

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
A is strongly graded ring if $A_{\gamma} A_{\delta}=A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
Consider $\left(\delta_{1}, \ldots, \delta_{n}\right), \delta_{i} \in \Gamma$. Define a grading on $\mathbb{M}_{n}(A)$ by

$$
\mathbb{M}_{n}(A)_{\lambda}=\left(\begin{array}{cccc}
A_{\lambda+\delta_{1}-\delta_{1}} & A_{\lambda+\delta_{2}-\delta_{1}} & \cdots & A_{\lambda+\delta_{n}-\delta_{1}} \\
A_{\lambda+\delta_{1}-\delta_{2}} & A_{\lambda+\delta_{2}-\delta_{2}} & \cdots & A_{\lambda+\delta_{n}-\delta_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
A_{\lambda+\delta_{1}-\delta_{n}} & A_{\lambda+\delta_{2}-\delta_{n}} & \cdots & A_{\lambda+\delta_{n}-\delta_{n}}
\end{array}\right) .
$$

Grading on rings

A ring $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$ is Γ-graded ring, if

- A_{γ} additive subgroup of A
- $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
A is strongly graded ring if $A_{\gamma} A_{\delta}=A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.
Consider $\left(\delta_{1}, \ldots, \delta_{n}\right), \delta_{i} \in \Gamma$. Define a grading on $\mathbb{M}_{n}(A)$ by

$$
\mathbb{M}_{n}(A)_{\lambda}=\left(\begin{array}{cccc}
A_{\lambda+\delta_{1}-\delta_{1}} & A_{\lambda+\delta_{2}-\delta_{1}} & \cdots & A_{\lambda+\delta_{n}-\delta_{1}} \\
A_{\lambda+\delta_{1}-\delta_{2}} & A_{\lambda+\delta_{2}-\delta_{2}} & \cdots & A_{\lambda+\delta_{n}-\delta_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
A_{\lambda+\delta_{1}-\delta_{n}} & A_{\lambda+\delta_{2}-\delta_{n}} & \cdots & A_{\lambda+\delta_{n}-\delta_{n}}
\end{array}\right) .
$$

Denote this matrix ring with this grading by $\mathbb{M}_{n}(A)\left(\delta_{1}, \ldots, \delta_{n}\right)$. We have

$$
\operatorname{deg}\left(e_{i j}(x)\right)=\operatorname{deg}(x)+\delta_{i}-\delta_{j}
$$

Let K be a graded ring concentrated on degree 0 . Then

$$
\mathbb{M}_{3}(K)(0,1,1)_{0}=\left(\begin{array}{ccc}
K_{0} & K_{1} & K_{1} \\
K_{-1} & K_{0} & K_{0} \\
K_{-1} & K_{0} & K_{0}
\end{array}\right)=\left(\begin{array}{ccc}
K & 0 & 0 \\
0 & K & K \\
0 & K & K
\end{array}\right)
$$

Let K be a graded ring concentrated on degree 0 . Then

$$
\mathbb{M}_{3}(K)(0,1,1)_{0}=\left(\begin{array}{lll}
K_{0} & K_{1} & K_{1} \\
K_{-1} & K_{0} & K_{0} \\
K_{-1} & K_{0} & K_{0}
\end{array}\right)=\left(\begin{array}{ccc}
K & 0 & 0 \\
0 & K & K \\
0 & K & K
\end{array}\right)
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha$. Then $\mathcal{L}(F) \longrightarrow \mathbb{M}_{3}(K)$.

Let K be a graded ring concentrated on degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,1)_{0}=\left(\begin{array}{ccc}
K_{0} & K_{1} & K_{1} \\
K_{-1} & K_{0} & K_{0} \\
K_{-1} & K_{0} & K_{0}
\end{array}\right)=\left(\begin{array}{ccc}
K & 0 & 0 \\
0 & K & K \\
0 & K & K
\end{array}\right) \\
\stackrel{\bullet}{\longrightarrow}{ }^{\alpha} \\
F: \bullet \stackrel{\beta}{u}
\end{gathered}
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha$. Then $\mathcal{L}(F) \longrightarrow \mathbb{M}_{3}(K)$.

$$
p_{3} p_{2}^{*}=\alpha \beta^{*} \mapsto e_{32}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Let K be a graded ring concentrated on degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,1)_{0}=\left(\begin{array}{ccc}
K_{0} & K_{1} & K_{1} \\
K_{-1} & K_{0} & K_{0} \\
K_{-1} & K_{0} & K_{0}
\end{array}\right)=\left(\begin{array}{ccc}
K & 0 & 0 \\
0 & K & K \\
0 & K & K
\end{array}\right) \\
\stackrel{\bullet}{\downarrow} \begin{array}{l}
\alpha \\
F: \bullet \stackrel{\beta}{u}
\end{array}
\end{gathered}
$$

Let $p_{1}=u, p_{2}=\beta, p_{3}=\alpha$. Then $\mathcal{L}(F) \longrightarrow \mathbb{M}_{3}(K)$.

$$
p_{3} p_{2}^{*}=\alpha \beta^{*} \mapsto e_{32}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Here $\mathcal{L}(F) \cong_{\mathrm{gr}} \mathbb{M}_{3}(K)\left(\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right|\right)=\mathbb{M}_{3}(K)(0,1,1)$

Let K be a graded ring concentrated in degree 0 . Then

$$
\mathbb{M}_{3}(K)(0,1,2)_{1}=\left(\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
K_{0} & K_{1} & K_{2} \\
K_{-1} & K_{0} & K_{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
K & 0 & 0 \\
0 & K & 0
\end{array}\right)
$$

Let K be a graded ring concentrated in degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,2)_{1}=\left(\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
K_{0} & K_{1} & K_{2} \\
K_{-1} & K_{0} & K_{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
K & 0 & 0 \\
0 & K & 0
\end{array}\right) \\
E: \\
\bullet \xrightarrow{\alpha} \xrightarrow{\beta} u
\end{gathered}
$$

Let K be a graded ring concentrated in degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,2)_{1}=\left(\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
K_{0} & K_{1} & K_{2} \\
K_{-1} & K_{0} & K_{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
K & 0 & 0 \\
0 & K & 0
\end{array}\right) \\
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u \\
\text { Let } p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta . \quad \mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) .
\end{gathered}
$$

Let K be a graded ring concentrated in degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,2)_{1}=\left(\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
K_{0} & K_{1} & K_{2} \\
K_{-1} & K_{0} & K_{1}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
K & 0 & 0 \\
0 & K & 0
\end{array}\right) \\
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u \\
\text { Let } p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta . \mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) . \\
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

Let K be a graded ring concentrated in degree 0 . Then

$$
\begin{gathered}
\mathbb{M}_{3}(K)(0,1,2)_{1}=\left(\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
K_{0} & K_{1} & K_{2} \\
K_{-1} & K_{0} & K_{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
K & 0 & 0 \\
0 & K & 0
\end{array}\right) \\
E: \quad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u \\
\text { Let } p_{1}=u, p_{2}=\beta, p_{3}=\alpha \beta . \quad \mathcal{L}(E) \longrightarrow \mathbb{M}_{3}(K) .
\end{gathered}
$$

$$
p_{3} p_{2}^{*}=\alpha \beta \beta^{*}=\alpha \mapsto e_{32}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Here $\mathcal{L}(E) \cong_{\mathrm{gr}} \mathbb{M}_{3}(K)\left(\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right|\right)=\mathbb{M}_{3}(K)(0,1,2)$

$$
\mathcal{L}(\bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} u) \cong{ }_{\operatorname{gr}} \mathbb{M}_{3}(K)(0,1,2)
$$

$$
\begin{aligned}
& \mathcal{L}(\bullet \quad) \cong_{\operatorname{gr}} \mathbb{M}_{3}(K)(0,1,1) \\
& \stackrel{\downarrow}{\bullet} \xrightarrow{\beta} u
\end{aligned}
$$

Grading on LPA

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a 「-graded structure.

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a 「-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map.

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a 「-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map. Define $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a Γ-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map. Define $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free algebra

$$
K\left(\alpha, \alpha^{*}, v \mid v \in E^{0}, \alpha \in E^{1}\right)
$$

has a 「-graded structure.

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a Γ-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map. Define $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free algebra

$$
K\left(\alpha, \alpha^{*}, v \mid v \in E^{0}, \alpha \in E^{1}\right)
$$

has a 「-graded structure.
Leavitt path algebra is the quotient of this algebra by relations

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a Γ-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map. Define $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free algebra

$$
K\left(\alpha, \alpha^{*}, v \mid v \in E^{0}, \alpha \in E^{1}\right)
$$

has a 「-graded structure.
Leavitt path algebra is the quotient of this algebra by relations
(1) $v_{i} v_{j}=\delta_{i j} v_{i}$ for every $v_{i}, v_{j} \in E^{0}$.
(2) $s(\alpha) \alpha=\alpha r(\alpha)=\alpha$ and $r(\alpha) \alpha^{*}=\alpha^{*} s(\alpha)=\alpha^{*}$ for all $\alpha \in$ E^{1}.
(3) $\alpha^{*} \alpha^{\prime}=\delta_{\alpha \alpha^{\prime}} r(\alpha)$, for all $\alpha, \alpha^{\prime} \in E^{1}$.
(4) $\sum_{\left\{\alpha \in E^{1}, s(\alpha)=v\right\}} \alpha \alpha^{*}=v$ for every $v \in E^{0}$ for which $s^{-1}(v)$ is non-empty.

Grading on LPA

For an arbitrary group Γ, one can equip $\mathcal{L}(E)$ with a Γ-graded structure. Let $w: E^{1} \rightarrow \Gamma$ be a weight map. Define $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free algebra

$$
K\left(\alpha, \alpha^{*}, v \mid v \in E^{0}, \alpha \in E^{1}\right)
$$

has a 「-graded structure.
Leavitt path algebra is the quotient of this algebra by relations
(1) $v_{i} v_{j}=\delta_{i j} v_{i}$ for every $v_{i}, v_{j} \in E^{0}$.
(2) $s(\alpha) \alpha=\alpha r(\alpha)=\alpha$ and $r(\alpha) \alpha^{*}=\alpha^{*} s(\alpha)=\alpha^{*}$ for all $\alpha \in$ E^{1}.
(3) $\alpha^{*} \alpha^{\prime}=\delta_{\alpha \alpha^{\prime}} r(\alpha)$, for all $\alpha, \alpha^{\prime} \in E^{1}$.
(4) $\sum_{\left\{\alpha \in E^{1}, s(\alpha)=v\right\}} \alpha \alpha^{*}=v$ for every $v \in E^{0}$ for which $s^{-1}(v)$ is non-empty.
which are all homogeneous. Thus $\mathcal{L}_{K}(E)$ is a [-graded K-algebra

Natural \mathbb{Z}-grading

Natural \mathbb{Z}-grading

Let $w: E^{1} \rightarrow \mathbb{Z}$ constant maps 1 .

Natural \mathbb{Z}-grading

Let $w: E^{1} \rightarrow \mathbb{Z}$ constant maps 1 .
In $\mathcal{L}(E)$ any word can be written as $\alpha=\mu_{1} \mu_{2} \ldots \mu_{k} \beta_{t}^{*} \ldots \beta_{1}^{*}$, where $\mu_{1} \mu_{2} \ldots \mu_{k}$ and $\beta_{1} \ldots \beta_{t}$ are finite paths in the graph. The homogeneous degree of α is then $k-t$.

Natural \mathbb{Z}-grading

Let $w: E^{1} \rightarrow \mathbb{Z}$ constant maps 1 .
In $\mathcal{L}(E)$ any word can be written as $\alpha=\mu_{1} \mu_{2} \ldots \mu_{k} \beta_{t}^{*} \ldots \beta_{1}^{*}$, where $\mu_{1} \mu_{2} \ldots \mu_{k}$ and $\beta_{1} \ldots \beta_{t}$ are finite paths in the graph. The homogeneous degree of α is then $k-t$.
$\mathcal{L}_{R}(E)=\bigoplus_{k \in \mathbb{Z}} \mathcal{L}_{R}(E)_{k}$ where,

$$
\begin{array}{r}
\mathcal{L}_{R}(E)_{k}=\left\{\sum_{i} r_{i} \alpha_{i} \beta_{i}^{*} \mid \alpha_{i}, \beta_{i} \text { paths with finite lengths, } r_{i} \in R\right. \\
\text { and } \left.\left|\alpha_{i}\right|-\left|\beta_{i}\right|=k \text { for all } i\right\}
\end{array}
$$

Theorem

E be a finite acyclic graph with sinks $\left\{v_{1}, \ldots, v_{t}\right\}$. For any sink v_{s}, let $\left\{p_{i}^{v_{s}} \mid 1 \leq i \leq n\left(v_{s}\right)\right\}$ be the set of all paths which end in v_{s}. Then there is a \mathbb{Z}-graded isomorphism

$$
\begin{equation*}
\mathcal{L}_{R}(E) \cong \cong_{\mathrm{gr}} \bigoplus_{s=1}^{t} \mathbb{M}_{n\left(v_{s}\right)}(R)\left(\left|p_{1}^{v_{s}}\right|, \ldots,\left|p_{n\left(v_{s}\right)}^{v_{s}}\right|\right) \tag{1}
\end{equation*}
$$

Theorem

E be a finite acyclic graph with sinks $\left\{v_{1}, \ldots, v_{t}\right\}$. For any sink v_{s}, let $\left\{p_{i}^{v_{s}} \mid 1 \leq i \leq n\left(v_{s}\right)\right\}$ be the set of all paths which end in v_{s}.
Then there is a \mathbb{Z}-graded isomorphism

$$
\begin{equation*}
\mathcal{L}_{R}(E) \cong \cong_{\mathrm{gr}} \bigoplus_{s=1}^{t} \mathbb{M}_{n\left(v_{s}\right)}(R)\left(\left|p_{1}^{v_{s}}\right|, \ldots,\left|p_{n\left(v_{s}\right)}^{v_{s}}\right|\right) \tag{1}
\end{equation*}
$$

Furthermore, F be another acyclic graph with sinks $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{p_{i}^{u_{s}} \mid 1 \leq i \leq n\left(u_{s}\right)\right\}$ be the set of all paths which end in u_{s}.

Theorem

E be a finite acyclic graph with sinks $\left\{v_{1}, \ldots, v_{t}\right\}$. For any sink v_{s}, let $\left\{p_{i}^{v_{s}} \mid 1 \leq i \leq n\left(v_{s}\right)\right\}$ be the set of all paths which end in v_{s}.
Then there is a \mathbb{Z}-graded isomorphism

$$
\begin{equation*}
\mathcal{L}_{R}(E) \cong \cong_{\mathrm{gr}} \bigoplus_{s=1}^{t} \mathbb{M}_{n\left(v_{s}\right)}(R)\left(\left|p_{1}^{v_{s}}\right|, \ldots,\left|p_{n\left(v_{s}\right)}^{v_{s}}\right|\right) \tag{1}
\end{equation*}
$$

Furthermore, F be another acyclic graph with sinks $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{p_{i}^{u_{s}} \mid 1 \leq i \leq n\left(u_{s}\right)\right\}$ be the set of all paths which end in u_{s}. Then

$$
\mathcal{L}_{R}(E) \cong \cong_{\operatorname{gr}} \mathcal{L}_{R}(F)
$$

if and only if $k=t$, and after a permutation of indices, $n\left(v_{s}\right)=n\left(u_{s}\right)$ and $\left\{\left|p_{i}^{v_{s}}\right| \mid 1 \leq i \leq n\left(v_{s}\right)\right\}$ and $\left\{\left|p_{i}^{u_{s}}\right| \mid 1 \leq i \leq n\left(u_{s}\right)\right\}$ present the same list.

Theorem
Let E be a finite graph. The Leavitt path algebra $\mathcal{L}_{R}(E)$ with coefficients in a ring R is strongly graded if and only if any vertex connects to a cycle.

Theorem
Let E be a finite graph. The Leavitt path algebra $\mathcal{L}_{R}(E)$ with coefficients in a ring R is strongly graded if and only if any vertex connects to a cycle.
For example:

$\alpha \in \mathcal{L}_{1}$. But $\mathcal{L}_{1}=\mathcal{L}_{3} \mathcal{L}_{-2}:$

Theorem

Let E be a finite graph. The Leavitt path algebra $\mathcal{L}_{R}(E)$ with coefficients in a ring R is strongly graded if and only if any vertex connects to a cycle.
For example:

$\alpha \in \mathcal{L}_{1}$. But $\mathcal{L}_{1}=\mathcal{L}_{3} \mathcal{L}_{-2}:$

$$
\begin{array}{r}
\alpha=\alpha u=\alpha\left(\gamma \gamma^{*}+\beta \beta^{*}\right) \\
=\alpha \gamma u \gamma^{*}+\alpha \beta w \beta^{*} \\
=\alpha \gamma\left(\gamma \gamma^{*}+\beta \beta^{*}\right) \gamma^{*}+\alpha \beta \delta \delta^{*} \beta^{*} \\
=\alpha \gamma \gamma \gamma^{*} \gamma^{*}+\alpha \gamma \beta \beta^{*} \gamma^{*}+\alpha \beta \delta \delta^{*} \beta^{*} \in \mathcal{L}_{3} \mathcal{L}_{-2}
\end{array}
$$

Abrams, Aranda Pino, Siles Molina (C_{n}-comet graphs, Israel J. 2008)

Abrams, Aranda Pino, Siles Molina (C_{n}-comet graphs, Israel J. 2008)

Theorem
Let C_{n} be a comet with the cycle C of length $n \geq 1$. Let u be a vertex on the cycle C. Eliminate the edge in the cycle whose source is u and consider the set $\left\{p_{i} \mid 1 \leq i \leq m\right\}$ of all paths which end in u. Then

$$
\mathcal{L}_{K}(E) \cong_{\operatorname{gr}} \mathbb{M}_{m}\left(K\left[x^{n}, x^{-n}\right]\right)\left(\left|p_{1}\right|, \ldots,\left|p_{m}\right|\right)
$$

Abrams, Aranda Pino, Siles Molina (C_{n}-comet graphs, Israel J. 2008)

Theorem
Let C_{n} be a comet with the cycle C of length $n \geq 1$. Let u be a vertex on the cycle C. Eliminate the edge in the cycle whose source is u and consider the set $\left\{p_{i} \mid 1 \leq i \leq m\right\}$ of all paths which end in u. Then

$$
\mathcal{L}_{K}(E) \cong_{\operatorname{gr}} \mathbb{M}_{m}\left(K\left[x^{n}, x^{-n}\right]\right)\left(\left|p_{1}\right|, \ldots,\left|p_{m}\right|\right)
$$

Proof.

Set of monomials $\left\{p_{i} C^{k} p_{j}^{*} \mid 1 \leq i, j \leq n, k \in \mathbb{Z}\right\}$ is an K-basis of $\mathcal{L}_{K}(E)$. Define the map

$$
\phi: \mathcal{L}_{K}(E) \rightarrow \mathbb{M}_{m}\left(K\left[x^{n}, x^{-n}\right]\right)\left(\left|p_{1}\right|, \ldots,\left|p_{m}\right|\right)
$$

by $\phi\left(p_{i} C^{k} p_{j}^{*}\right)=e_{i j}\left(x^{k n}\right)$.

Abrams, Aranda Pino, Siles Molina (C_{n}-comet graphs, Israel J. 2008)

Theorem
Let C_{n} be a comet with the cycle C of length $n \geq 1$. Let u be a vertex on the cycle C. Eliminate the edge in the cycle whose source is u and consider the set $\left\{p_{i} \mid 1 \leq i \leq m\right\}$ of all paths which end in u. Then

$$
\mathcal{L}_{K}(E) \cong \cong_{\operatorname{gr}} \mathbb{M}_{m}\left(K\left[x^{n}, x^{-n}\right]\right)\left(\left|p_{1}\right|, \ldots,\left|p_{m}\right|\right)
$$

Proof.

Set of monomials $\left\{p_{i} C^{k} p_{j}^{*} \mid 1 \leq i, j \leq n, k \in \mathbb{Z}\right\}$ is an K-basis of $\mathcal{L}_{K}(E)$. Define the map

$$
\phi: \mathcal{L}_{K}(E) \rightarrow \mathbb{M}_{m}\left(K\left[x^{n}, x^{-n}\right]\right)\left(\left|p_{1}\right|, \ldots,\left|p_{m}\right|\right)
$$

by $\phi\left(p_{i} C^{k} p_{j}^{*}\right)=e_{i j}\left(x^{k n}\right)$. But $\left|p_{i} C^{k} p_{j}^{*}\right|=k n+\left|p_{i}\right|-\left|p_{j}\right|$ (note that $k \in \mathbb{Z})$. And

$$
\operatorname{deg}\left(\phi\left(p_{i} C^{k} p_{i}^{*}\right)\right)=\operatorname{deg}\left(e_{i i}\left(x^{k n}\right)\right)=n k+\left|p_{i}\right|-\left|\bar{p}_{i}\right| .
$$

Comets:
E_{1} :

$\mathbb{M}_{4}\left(K\left[x, x^{-1}\right]\right)(0,1,2,3)_{\text {group ring }}$

$$
\mathbb{M}_{4}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1,1,2)_{\text {skew }}
$$

E_{3} :

$\mathbb{M}_{4}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1,1,1)_{\text {not crossed }}$
and
E_{4} :

Arbitrary grading

Let Γ be an arbitrary group with the identity element e, $w: E^{1} \rightarrow \Gamma$ be a weight map and $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.

Arbitrary grading

Let Γ be an arbitrary group with the identity element e, $w: E^{1} \rightarrow \Gamma$ be a weight map and $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free K-algebra generated by the vertices, edges and ghost edges is a Γ-graded K-algebra.

Arbitrary grading

Let Γ be an arbitrary group with the identity element e, $w: E^{1} \rightarrow \Gamma$ be a weight map and $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free K-algebra generated by the vertices, edges and ghost edges is a Γ-graded K-algebra.
The Leavitt path algebra is the quotient of this algebra by homogeneous relations.

Arbitrary grading

Let Γ be an arbitrary group with the identity element e, $w: E^{1} \rightarrow \Gamma$ be a weight map and $w\left(\alpha^{*}\right)=w(\alpha)^{-1}$, for $\alpha \in E^{1}$ and $w(v)=e$ for $v \in E^{0}$.
The free K-algebra generated by the vertices, edges and ghost edges is a Γ-graded K-algebra.
The Leavitt path algebra is the quotient of this algebra by homogeneous relations. Thus $\mathcal{L}_{K}(E)$ is a Γ-graded K-algebra.

Example

Consider the graphs

F :

Assigning 0 to vertices and 1 to edges in the graphs in the usual manner, we obtain $\mathcal{L}(E) \cong{ }_{\mathrm{gr}} \mathbb{M}_{2}\left(K\left[x, x^{-1}\right]\right)(0,1)$ whereas $\mathcal{L}(F) \cong \operatorname{gr}_{2}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1)$ and one can easily observe that $\mathcal{L}_{K}(E) \not \neq \mathrm{gr}^{\mathcal{L}_{K}(F) .}$

Example

Consider the graphs

Assigning 0 to vertices and 1 to edges in the graphs in the usual manner, we obtain $\mathcal{L}(E) \cong{ }_{\mathrm{gr}} \mathbb{M}_{2}\left(K\left[x, x^{-1}\right]\right)(0,1)$ whereas $\mathcal{L}(F) \cong{ }_{\operatorname{gr}} \mathbb{M}_{2}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1)$ and one can easily observe that $\mathcal{L}_{K}(E) \not \not_{\mathrm{gr}} \mathcal{L}_{K}(F)$.
However assigning 1 for the degree of f and 2 for the degree of e in E and 1 for the degrees of g and h in F,
$\mathcal{L}_{K}(E) \cong \mathbb{M}_{2}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1)$ and $\mathcal{L}_{K}(F) \cong \mathbb{M}_{2}\left(K\left[x^{2}, x^{-2}\right]\right)(0,1)$. So with these gradings, $\mathcal{L}_{K}(E) \cong{ }_{\mathrm{gr}} \mathcal{L}_{K}(F)$.

Let A be a Γ-graded ring. A graded right A-module M is an A-module with $M=\bigoplus_{\gamma \in \Gamma} M_{\gamma}$,

Let A be a Γ-graded ring. A graded right A-module M is an A-module with $M=\bigoplus_{\gamma \in \Gamma} M_{\gamma}$,

- M_{γ} is an additive subgroup of M
- $M_{\lambda} \cdot A_{\gamma} \subseteq M_{\gamma+\lambda}$ for all $\gamma, \lambda \in \Gamma$.

Let A be a Γ-graded ring. A graded right A-module M is an A-module with $M=\bigoplus_{\gamma \in \Gamma} M_{\gamma}$,

- M_{γ} is an additive subgroup of M
- $M_{\lambda} \cdot A_{\gamma} \subseteq M_{\gamma+\lambda}$ for all $\gamma, \lambda \in \Gamma$.

For some $\delta \in \Gamma$, we define the δ-suspended A-module $M(\delta)$ as $M(\delta)=\bigoplus_{\gamma \in \Gamma} M(\delta)_{\gamma}$ where $M(\delta)_{\gamma}=M_{\gamma+\delta}$.

Let A be a Γ-graded ring. A graded right A-module M is an A-module with $M=\bigoplus_{\gamma \in \Gamma} M_{\gamma}$,

- M_{γ} is an additive subgroup of M
- $M_{\lambda} \cdot A_{\gamma} \subseteq M_{\gamma+\lambda}$ for all $\gamma, \lambda \in \Gamma$.

For some $\delta \in \Gamma$, we define the δ-suspended A-module $M(\delta)$ as $M(\delta)=\bigoplus_{\gamma \in \Gamma} M(\delta)_{\gamma}$ where $M(\delta)_{\gamma}=M_{\gamma+\delta}$.

	degrees	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
M				M_{-1}	M_{0}	M_{1}	M_{2}	
$M(1)$			M_{-1}	M_{0}	M_{1}	M_{2}		
$M(2)$		M_{-1}	M_{0}	M_{1}	M_{2}			

Graded Projective modules

Graded Projective modules

Let A be a Γ-graded ring and P be a graded A-module. Then the following are equivalent:
(1) P is graded and projective;
(2) P is graded projective;
(3) $\operatorname{Hom}_{G r-A}(P,-)$ is an exact functor in $G r-A$;
(4) P is graded isomorphic to a direct summand of a graded free A-module.

Graded Grothendieck group

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid

Graded Grothendieck group

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\operatorname{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$

Graded Grothendieck group

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\operatorname{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$
has a Γ-module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathrm{gr}}(A)$,

$$
\gamma \cdot[P]=[P(\gamma)] .
$$

Graded Grothendieck group

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\mathrm{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$
has a Γ-module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathrm{gr}}(A)$,

$$
\gamma \cdot[P]=[P(\gamma)] .
$$

The group $\mathcal{V}^{\mathrm{gr}}(A)^{+}$is called the graded Grothendieck group and is denoted by $K_{0}^{\mathrm{gr}}(A)$, which is a $\mathbb{Z}[\Gamma]$-module.

Example: \mathbb{Z}-graded ring $A=K\left[x^{n}, x^{-n}\right]$, where K is a field and $n \in \mathbb{N}$,

Example: \mathbb{Z}-graded ring $A=K\left[x^{n}, x^{-n}\right]$, where K is a field and $n \in \mathbb{N}$,

$$
K_{0}^{\mathrm{gr}}(A) \cong \bigoplus_{n} \mathbb{Z}
$$

which is a $\mathbb{Z}\left[x, x^{-1}\right]$-module, with the action of x on $\left(a_{1}, \ldots, a_{n}\right) \in \bigoplus_{n} \mathbb{Z}$ is as follows:

$$
x\left(a_{1}, \ldots, a_{n}\right)=\left(a_{n}, a_{1}, \ldots, a_{n-1}\right)
$$

Graded versus non-graded K_{0}

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$.

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial.

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial. But $K_{0}(\mathbb{Z}[\Gamma])$ is very complicated.

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial. But $K_{0}(\mathbb{Z}[\Gamma])$ is very complicated.

- A is a Γ-graded ring. Then the forgetful functor induces $K_{0}^{\mathrm{gr}}(A) \rightarrow K_{0}(A)$

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial. But $K_{0}(\mathbb{Z}[\Gamma])$ is very complicated.

- A is a Γ-graded ring. Then the forgetful functor induces $K_{0}^{\mathrm{gr}}(A) \rightarrow K_{0}(A)$ and for some rings (ex. graded regular rings)

$$
K_{0}^{\mathrm{gr}}(A) /\langle[P]-[P(\alpha)]\rangle
$$

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial. But $K_{0}(\mathbb{Z}[\Gamma])$ is very complicated.

- A is a Γ-graded ring. Then the forgetful functor induces $K_{0}^{\mathrm{gr}}(A) \rightarrow K_{0}(A)$ and for some rings (ex. graded regular rings)

$$
K_{0}^{\mathrm{gr}}(A) /\langle[P]-[P(\alpha)]\rangle \cong K_{0}(A)
$$

Graded versus non-graded K_{0}

- K_{0}^{gr} can be quite "useless":

Consider Γ a group, and $\mathbb{Z}[\Gamma]$. Then

$$
K_{0}^{\mathrm{gr}}(\mathbb{Z}[\Gamma]) \cong \mathbb{Z}
$$

and the action of Γ is trivial. But $K_{0}(\mathbb{Z}[\Gamma])$ is very complicated.

- A is a Γ-graded ring. Then the forgetful functor induces $K_{0}^{\mathrm{gr}}(A) \rightarrow K_{0}(A)$ and for some rings (ex. graded regular rings)

$$
K_{0}^{\mathrm{gr}}(A) /\langle[P]-[P(\alpha)]\rangle \cong K_{0}(A)
$$

Theorem
E finite graph with no sink. Then for $A=\mathcal{L}(E)$ we have

$$
K_{0}^{\mathrm{gr}}(A) /\langle[P]-[P(1)]\rangle \cong K_{0}(A)
$$

Graded Ultramatricial algebra

Graded Ultramatricial algebra

Definition

Let A be a 「-graded field. A Г-graded matricial A-algebra is a graded A-algebra of the form

$$
\mathbb{M}_{n_{1}}(A)\left(\bar{\delta}_{1}\right) \times \cdots \times \mathbb{M}_{n_{l}}(A)\left(\bar{\delta}_{l}\right)
$$

where $\bar{\delta}_{i}=\left(\delta_{1}^{(i)}, \ldots, \delta_{n_{i}}^{(i)}\right), \delta_{j}^{(i)} \in \Gamma, 1 \leq j \leq n_{i}$ and $1 \leq i \leq 1$.

Graded Ultramatricial algebra

Definition

Let A be a 「-graded field. A Г-graded matricial A-algebra is a graded A-algebra of the form

$$
\mathbb{M}_{n_{1}}(A)\left(\bar{\delta}_{1}\right) \times \cdots \times \mathbb{M}_{n_{l}}(A)\left(\bar{\delta}_{l}\right)
$$

where $\bar{\delta}_{i}=\left(\delta_{1}^{(i)}, \ldots, \delta_{n_{i}}^{(i)}\right), \delta_{j}^{(i)} \in \Gamma, 1 \leq j \leq n_{i}$ and $1 \leq i \leq 1$.

Definition

Let A be a Γ-graded field. Then the ring R is called a Γ-graded ultramatricial A-algebra if $R=\bigcup_{i=1}^{\infty} R_{i}$, where $R_{1} \subseteq R_{2} \subseteq \ldots$ is a sequence of graded matricial A-subalgebras.

Theorem
Let R and S be Γ-graded ultramatricial algebras over a graded field A. Then $R \cong{ }_{\mathrm{gr}} S$ as graded A-algebras if and only if there is an order preserving $\mathbb{Z}[\Gamma]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(R), K_{0}^{\mathrm{gr}}(R)_{+},[R]\right) \cong\left(K_{0}^{\mathrm{gr}}(S), K_{0}^{\mathrm{gr}}(S)_{+},[S]\right)
$$

Theorem

Let R and S be Γ-graded ultramatricial algebras over a graded field A. Then $R \cong{ }_{\mathrm{gr}} S$ as graded A-algebras if and only if there is an order preserving $\mathbb{Z}[\Gamma]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(R), K_{0}^{\mathrm{gr}}(R)_{+},[R]\right) \cong\left(K_{0}^{\mathrm{gr}}(S), K_{0}^{\mathrm{gr}}(S)_{+},[S]\right)
$$

Theorem
Let R and S be Γ-graded ultramatricial algebras over a graded field A. Then R and S are graded Morita equivalent if and only if there is an order preserving $\mathbb{Z}[\Gamma]$-module isomorphism $K_{0}^{\mathrm{gr}}(R) \cong K_{0}^{\mathrm{gr}}(S)$.

Theorem

Let R and S be Γ-graded ultramatricial algebras over a graded field A. Then $R \cong{ }_{\mathrm{gr}} S$ as graded A-algebras if and only if there is an order preserving $\mathbb{Z}[\Gamma]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(R), K_{0}^{\mathrm{gr}}(R)_{+},[R]\right) \cong\left(K_{0}^{\mathrm{gr}}(S), K_{0}^{\mathrm{gr}}(S)_{+},[S]\right)
$$

Theorem
Let R and S be Γ-graded ultramatricial algebras over a graded field A. Then R and S are graded Morita equivalent if and only if there is an order preserving $\mathbb{Z}[\Gamma]$-module isomorphism $K_{0}^{\mathrm{gr}}(R) \cong K_{0}^{\mathrm{gr}}(S)$.

Conjecture. Leavitt path algebras is another class that fits into the above two theorems.

Graded versus non-graded K_{0}

Set $x_{i}=y_{i}^{*}$.

Graded versus non-graded K_{0}

Set $x_{i}=y_{i}^{*}$.

$$
\begin{aligned}
\phi: A & \cong \\
& a \mapsto\left(x_{1} a, x_{2} a\right)
\end{aligned}
$$

Graded versus non-graded K_{0}

Set $x_{i}=y_{i}^{*}$.

$$
\begin{aligned}
\phi: A & \xrightarrow{\cong} A^{2} \\
a & \mapsto\left(x_{1} a, x_{2} a\right)
\end{aligned}
$$

So in $K_{0}(\mathcal{L}(E))$ we have $\left[A^{2}\right]=[A]$ which implies $[A]=0$. In fact by the K_{0} formula $K_{0}(\mathcal{L}(E))=0$.

Graded versus non-graded K_{0}

Set $x_{i}=y_{i}^{*}$.

$$
\begin{aligned}
\phi: A & \cong A^{2} \\
a & \mapsto\left(x_{1} a, x_{2} a\right)
\end{aligned}
$$

So in $K_{0}(\mathcal{L}(E))$ we have $\left[A^{2}\right]=[A]$ which implies $[A]=0$. In fact by the K_{0} formula $K_{0}(\mathcal{L}(E))=0$.
But considering ϕ as graded homomorphism we get

$$
\begin{aligned}
\phi: A & \cong \\
& a \mapsto(-1) \oplus A(-1) \\
& \left.\mapsto x_{1} a, x_{2} a\right)
\end{aligned}
$$

In same manner $A(i) \cong A(i-1) \oplus A(i-1)$. This gives indication $K_{0}^{g r}(\mathcal{L}(E))=\mathbb{Z}[1 / 2]$.

Let A be a strongly Γ-graded ring. By Dade's Theorem the functor

$$
\begin{aligned}
(-)_{0}: \operatorname{gr}-A & \rightarrow \bmod -A_{0} \\
M & \mapsto M_{0},
\end{aligned}
$$

is an additive functor with an inverse

Let A be a strongly Γ-graded ring. By Dade's Theorem the functor

$$
\begin{aligned}
(-)_{0}: \operatorname{gr}-A & \rightarrow \bmod -A_{0} \\
M & \mapsto M_{0},
\end{aligned}
$$

is an additive functor with an inverse

$$
-\otimes_{A_{0}} A: \bmod -A_{0} \rightarrow \operatorname{gr}-A
$$

So that it induces an equivalence of categories.

Let A be a strongly Γ-graded ring. By Dade's Theorem the functor

$$
\begin{array}{r}
(-)_{0}: \operatorname{gr}-A \rightarrow \bmod -A_{0} \\
M \mapsto M_{0},
\end{array}
$$

is an additive functor with an inverse

$$
-\otimes_{A_{0}} A: \bmod -A_{0} \rightarrow \operatorname{gr}-A
$$

So that it induces an equivalence of categories. This implies that

$$
K_{i}^{\mathrm{gr}}(A) \cong K_{i}\left(A_{0}\right),
$$

for $i \geq 0$.

(2)

Theorem
Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right)
$$

Conjecture: Let E and F be finite graphs. Then $\mathcal{L}(E) \cong_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right) .
$$

Conjecture: Let E and F be finite graphs. Then $\mathcal{L}(E) \cong_{g r} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right) .
$$

Theorem (Ara, Pardo)
The conjecture is valid for finite graphs with no sinks and sources.

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
X_{E} \cong X_{F}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong x_{F} \xrightarrow{\text { Williams }}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong x_{F} \xrightarrow{\text { Williams }^{\Longrightarrow} A_{E} \approx S S E A_{F} .}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
X_{E} \cong X_{F} \stackrel{\text { Williams }}{\longleftrightarrow} A_{E} \approx S_{S E} A_{F}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
\stackrel{\text { Krieger }}{\gtrless} A_{E} \approx{ }_{S E} A_{F}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong x_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong x_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}^{\text {in/out splitting }}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx_{S S E} A_{F}^{\text {in/out splitting }} \xrightarrow{\mathcal{L}}(E) \approx_{\text {gr }} \mathcal{L}(F)
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong x_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}^{\text {in/out splitting }} \mathcal{L}(E) \approx \approx_{\mathrm{gr}} \mathcal{L}(F) \rightarrow
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
x_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}^{\text {in/out spliting }} \mathcal{L}(E) \approx_{g r} \mathcal{L}(F) \longrightarrow K_{0}^{\mathrm{gr}}(\mathcal{L}(E)) \cong K_{0}^{\mathrm{gr}}(\mathcal{L}(F))
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
\begin{aligned}
& D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\hookrightarrow} A_{E} \approx S E A_{F} \\
& \wedge_{\text {Ara, Pardo }} \\
& X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}^{\text {in/out spliting }} \mathcal{L}(E) \approx_{g r} \mathcal{L}(F) \longrightarrow K_{0}^{\text {gr }}(\mathcal{L}(E)) \cong K_{0}^{\mathrm{gr}}(\mathcal{L}(F))
\end{aligned}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
Q G r P(E) \approx Q G r P(F)
$$

$$
\begin{aligned}
& D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\hookrightarrow} A_{E} \approx S E A_{F} \\
& \uparrow_{\text {Ara, Pardo }} \\
& X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F}^{\text {in/out splitting }} \mathcal{L}(E) \approx_{g r} \mathcal{L}(F) \rightarrow K_{0}^{\text {gr }}(\mathcal{L}(E)) \cong K_{0}^{\text {gr }}(\mathcal{L}(F))
\end{aligned}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
\begin{aligned}
& D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\hookrightarrow} A_{E} \approx S E A_{F} \\
& \imath_{\text {Ara, Pardo }} \\
& X_{E} \cong X_{F} \xrightarrow{\text { Williams }}_{\longrightarrow} A_{E} \approx S S E A_{F}^{\text {in/out splitting }} \mathcal{L}(E) \approx_{\text {gr }} \mathcal{L}(F) \rightarrow K_{0}^{\mathrm{gr}}(\mathcal{L}(E)) \cong K_{0}^{\mathrm{gr}}(\mathcal{L}(F)) \\
& \uparrow^{\text {as ordered group }} \\
& Q \operatorname{Gr} P(E) \approx Q G r P(F)
\end{aligned}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

$$
\begin{aligned}
& D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\hookrightarrow} A_{E} \approx S_{E} A_{F} \\
& \uparrow_{\text {Ara, Pardo }}
\end{aligned}
$$

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

Relation with symbolic dynamics

E and F finite graphs and A_{E} and A_{F} the adjacency matrices.

References

- P. Ara, E. Pardo, K-theoretic characterization of graded isomorphisms between Leavitt path algebras, Preprint (2012), 27p.
- The graded structure of Leavitt path algebras, Israel J. Math. (2013), 63p.
- The graded Grothendieck group and classification of Leavitt path algebras,
Math. Annalen, (2013), 53p.
- The dynamics of Leavitt path algebras, Journal of Algebra, (2013), 25p.
- A note on the isomorphism conjectures for Leavitt path algebras, Journal of Algebra, (2013), 8p.

