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Classification of Leavitt path algebras

Inspired by C ∗-algebras, we are looking for a statement such as:

Let E and F be graphs. Then

L(E ) ∼= L(F )

if and only if
K0(L(E )) ∼= K0(L(F )).

or something like this...
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Grothendieck group K0

Let A be a ring with identity.

V(A) =
{

[P] | P is f.g projective A−module
}

This is a monoid with direct sum as addition.

Define

K0(A) = V(A)+.

K0(A) is a pre-ordered abelian group with an order unit [A].



Grothendieck group K0

Let A be a ring with identity.

V(A) =
{

[P] | P is f.g projective A−module
}

This is a monoid with direct sum as addition.
Define

K0(A) = V(A)+.

K0(A) is a pre-ordered abelian group with an order unit [A].



Grothendieck group K0

Let A be a ring with identity.

V(A) =
{

[P] | P is f.g projective A−module
}

This is a monoid with direct sum as addition.
Define

K0(A) = V(A)+.

K0(A) is a pre-ordered abelian group with an order unit [A].



Ultramatricial algebras

Matricial algebras: Mn1(K )× · · · ×Mnl (K ), where K is a field.
Ultramatricial algebras:

⋃
Ri where Ri are matricial algebras and

R1 ⊆ R2 ⊆ . . . .

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(

a 0
0 a

)

K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)



Ultramatricial algebras

Matricial algebras: Mn1(K )× · · · ×Mnl (K ), where K is a field.

Ultramatricial algebras:
⋃

Ri where Ri are matricial algebras and
R1 ⊆ R2 ⊆ . . . .

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(

a 0
0 a

)

K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)



Ultramatricial algebras

Matricial algebras: Mn1(K )× · · · ×Mnl (K ), where K is a field.
Ultramatricial algebras:

⋃
Ri where Ri are matricial algebras and

R1 ⊆ R2 ⊆ . . . .

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(

a 0
0 a

)

K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)



Ultramatricial algebras

Matricial algebras: Mn1(K )× · · · ×Mnl (K ), where K is a field.
Ultramatricial algebras:

⋃
Ri where Ri are matricial algebras and

R1 ⊆ R2 ⊆ . . . .

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(

a 0
0 a

)

K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)



Ultramatricial algebras

Matricial algebras: Mn1(K )× · · · ×Mnl (K ), where K is a field.
Ultramatricial algebras:

⋃
Ri where Ri are matricial algebras and

R1 ⊆ R2 ⊆ . . . .

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(

a 0
0 a

)

K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)



Classification of Ultramatricial algebras

Theorem (Elliott)

Let R and S be ultramatricial K-algebra. Then R ∼= S as
K -algebra if and only if(

K0(R),K0(R)+, [R]
) ∼= (

K0(S),K0(S)+, [S ]
)
.



Classification of LPAs via K-groups

F • // • // • L(F ) ∼= M3(K )

E • // •
��
•XX L(E ) ∼= M3(K [x , x−1])

(
K0(L(F )),K0(L(F ))+, [L(F )]

)
∼=
(
Z,N, 3

)
(

K0(L(E )),K0(L(E ))+, [L(E )]
)
∼=
(
Z,N, 3

)
But

M3(K ) 6∼= M3(K [x , x−1]).

So K0 doesn’t seem to classify all types of LPAs.
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A conjecture is raised for the class of purely infinite simple LPA
(not a division ring and ∀x 6= 0,∃a, b, axb = 1).

1 L(E) is simple

2 E contains a cycle

• Abrams, Ánh, Louly, Pardo, The classification question for Leavitt path
algebras, J. Algebra-2008
• Abrams, Ánh, Pardo, Isomorphisms between Leavitt algebras and their
matrix rings, J. Reine Angew. Math 2008
• Abrams, Tomforde, Isomorphism and Morita equivalence of graph
algebras, Trans. AMS 2011.

• Ara, Goodearl, Pardo, K0 of purely infinite simple regular rings,

K-Theory-2002

• Cuntz, Simple C∗-algebras generated by isometries, Comm. Math.
Phys-1977
• Cuntz, K -theory for certain C∗-algebras, Ann. of Math-1981. 181–197.
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Towards grading of LPAs

Abrams, Aranda Pino, Siles Molina (Acyclic graphs, JPAA 2007)
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•

��
•

��

•

��

•

��
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Length of the paths in LPA

E : • α // • β // u

Let p1 = u, p2 = β, p3 = αβ. Then pip
∗
j generate the Leavitt path

algebra L(E ), and these are the K -basis.

L(E ) −→M3(K )

pip
∗
j 7−→ eij

p3p∗2 = αββ∗ = α 7→ e32

•
α

��
F : • β // u

Let p1 = u, p2 = β, p3 = α. Again an iso. L(F ) −→M3(K ).

p3p∗2 = αβ∗ 7→ e32
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Grading on rings

A ring A =
⊕

γ∈ΓAγ is Γ-graded ring, if
• Aγ additive subgroup of A
• AγAδ ⊆ Aγ+δ for all γ, δ ∈ Γ.
A is strongly graded ring if AγAδ = Aγ+δ for all γ, δ ∈ Γ.
Consider (δ1, . . . , δn), δi ∈ Γ. Define a grading on Mn(A) by

Mn(A)λ =


Aλ+δ1−δ1 Aλ+δ2−δ1 · · · Aλ+δn−δ1

Aλ+δ1−δ2 Aλ+δ2−δ2 · · · Aλ+δn−δ2

...
...

. . .
...

Aλ+δ1−δn Aλ+δ2−δn · · · Aλ+δn−δn

 .

Denote this matrix ring with this grading by Mn(A)(δ1, . . . , δn).
We have

deg(eij(x)) = deg(x) + δi − δj ,
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Let K be a graded ring concentrated on degree 0. Then

M3(K )(0, 1, 1)0 =

 K0 K1 K1

K−1 K0 K0

K−1 K0 K0

 =

K 0 0
0 K K
0 K K



•
α

��
F : • β // u

Let p1 = u, p2 = β, p3 = α. Then L(F ) −→M3(K ).

p3p∗2 = αβ∗ 7→ e32 =

0 0 0
0 0 0
0 1 0

 .

Here L(F ) ∼=gr M3(K )(|p1|, |p2|, |p3|) = M3(K )(0, 1, 1)
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Grading on LPA

For an arbitrary group Γ, one can equip L(E ) with a Γ-graded
structure. Let w : E 1 → Γ be a weight map. Define
w(α∗) = w(α)−1, for α ∈ E 1 and w(v) = e for v ∈ E 0.
The free algebra

K (α, α∗, v | v ∈ E 0, α ∈ E 1)

has a Γ-graded structure.
Leavitt path algebra is the quotient of this algebra by relations

1 vivj = δijvi for every vi , vj ∈ E 0.

2 s(α)α = αr(α) = α and r(α)α∗ = α∗s(α) = α∗ for all α ∈
E 1.

3 α∗α′ = δαα′r(α), for all α, α′ ∈ E 1.

4
∑
{α∈E1,s(α)=v} αα

∗ = v for every v ∈ E 0 for which s−1(v) is
non-empty.

which are all homogeneous. Thus LK (E ) is a Γ-graded K -algebra.
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Natural Z-grading

Let w : E 1 → Z constant maps 1.
In L(E ) any word can be written as α = µ1µ2 . . . µkβ

∗
t . . . β

∗
1 ,

where µ1µ2 . . . µk and β1 . . . βt are finite paths in the graph. The
homogeneous degree of α is then k − t.

LR(E ) =
⊕

k∈Z LR(E )k where,

LR(E )k =
{∑

i

riαiβ
∗
i | αi , βi paths with finite lengths, ri ∈ R,

and |αi | − |βi | = k for all i
}
.
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Theorem
E be a finite acyclic graph with sinks {v1, . . . , vt}. For any sink vs ,
let {pvs

i | 1 ≤ i ≤ n(vs)} be the set of all paths which end in vs .
Then there is a Z-graded isomorphism

LR(E ) ∼=gr

t⊕
s=1

Mn(vs)(R)
(
|pvs

1 |, . . . , |p
vs
n(vs)|

)
. (1)

Furthermore, F be another acyclic graph with sinks {u1, . . . , uk}
and {pus

i | 1 ≤ i ≤ n(us)} be the set of all paths which end in us .
Then

LR(E ) ∼=gr LR(F )

if and only if k = t, and after a permutation of indices,
n(vs) = n(us) and {|pvs

i | | 1 ≤ i ≤ n(vs)} and
{|pus

i | | 1 ≤ i ≤ n(us)} present the same list.
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Theorem
Let E be a finite graph. The Leavitt path algebra LR(E ) with
coefficients in a ring R is strongly graded if and only if any vertex
connects to a cycle.

For example:

v
α // u

β //

γ

��
w

δ

��
z

µ

YY

α ∈ L1. But L1 = L3 L−2:

α = αu = α(γγ∗ + ββ∗)

= αγuγ∗ + αβwβ∗

= αγ(γγ∗ + ββ∗)γ∗ + αβδδ∗β∗

= αγγγ∗γ∗ + αγββ∗γ∗ + αβδδ∗β∗ ∈ L3 L−2
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Abrams, Aranda Pino, Siles Molina (Cn-comet graphs, Israel J.
2008)

Theorem
Let Cn be a comet with the cycle C of length n ≥ 1. Let u be a
vertex on the cycle C. Eliminate the edge in the cycle whose
source is u and consider the set {pi | 1 ≤ i ≤ m} of all paths
which end in u. Then

LK (E ) ∼=gr Mm

(
K [xn, x−n]

)(
|p1|, . . . , |pm|

)
.

Proof.
Set of monomials {piC

kp∗j | 1 ≤ i , j ≤ n, k ∈ Z} is an K -basis of
LK (E ). Define the map

φ : LK (E )→Mm

(
K [xn, x−n]

)(
|p1|, . . . , |pm|

)
,

by φ(piC
kp∗j ) = eij(xkn). But |piC

kp∗j | = kn + |pi | − |pj | (note
that k ∈ Z). And

deg(φ(piC
kp∗j )) = deg(eij(xkn)) = nk + |pi | − |pj |.
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Comets:

E1 : • // • // • // •
yy

M4(K [x , x−1])(0, 1, 2, 3)group ring

E2 : • // •
��
•XX •oo M4(K [x2, x−2])(0, 1, 1, 2)skew

•

��
E3 : •

��
•XX M4(K [x2, x−2])(0, 1, 1, 1)not crossed

•

@@

and

E4 : •
$$
•

��

M4(K [x4, x−4])(0, 1, 2, 3)skew

•

EE

•dd



Arbitrary grading

Let Γ be an arbitrary group with the identity element e,
w : E 1 → Γ be a weight map and w(α∗) = w(α)−1, for α ∈ E 1

and w(v) = e for v ∈ E 0.

The free K -algebra generated by the vertices, edges and ghost
edges is a Γ-graded K -algebra.
The Leavitt path algebra is the quotient of this algebra by
homogeneous relations. Thus LK (E ) is a Γ-graded K -algebra.
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Example

Consider the graphs

E : • f // • e
yy

F : •

g

��
•

h

XX

Assigning 0 to vertices and 1 to edges in the graphs in the usual
manner, we obtain L(E ) ∼=gr M2(K [x , x−1])(0, 1) whereas
L(F ) ∼=gr M2(K [x2, x−2])(0, 1) and one can easily observe that
LK (E ) 6∼=gr LK (F ).

However assigning 1 for the degree of f and 2 for the degree of e
in E and 1 for the degrees of g and h in F ,
LK (E ) ∼= M2(K [x2, x−2])(0, 1) and
LK (F ) ∼= M2(K [x2, x−2])(0, 1). So with these gradings,
LK (E ) ∼=gr LK (F ).
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Let A be a Γ-graded ring. A graded right A-module M is an
A-module with M =

⊕
γ∈Γ Mγ ,

• Mγ is an additive subgroup of M
• Mλ · Aγ ⊆ Mγ+λ for all γ, λ ∈ Γ.

For some δ ∈ Γ, we define the δ-suspended A-module M(δ) as
M(δ) =

⊕
γ∈Γ M(δ)γ where M(δ)γ = Mγ+δ.

degrees -3 -2 -1 0 1 2 3
M M−1 M0 M1 M2

M(1) M−1 M0 M1 M2

M(2) M−1 M0 M1 M2
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Graded Projective modules

Let A be a Γ-graded ring and P be a graded A-module. Then the
following are equivalent:

1 P is graded and projective;

2 P is graded projective;

3 HomGr−A(P,−) is an exact functor in Gr − A;

4 P is graded isomorphic to a direct summand of a graded free
A-module.
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Graded Grothendieck group

For a Γ-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

Vgr(A) =
{

[P] | P is graded finitely generated projective A-module
}

has a Γ-module structure: for γ ∈ Γ and [P] ∈ Vgr(A),

γ .[P] = [P(γ)].

The group Vgr(A)+ is called the graded Grothendieck group and is
denoted by K gr

0 (A), which is a Z[Γ]-module.
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Example: Z-graded ring A = K [xn, x−n], where K is a field and
n ∈ N,

K gr
0 (A) ∼=

⊕
n

Z,

which is a Z[x , x−1]-module, with the action of x on
(a1, . . . , an) ∈

⊕
n Z is as follows:

x(a1, . . . , an) = (an, a1, . . . , an−1).
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Graded versus non-graded K0

• K gr
0 can be quite “useless”:

Consider Γ a group, and Z[Γ]. Then

K gr
0 (Z[Γ]) ∼= Z

and the action of Γ is trivial. But K0(Z[Γ]) is very complicated.

• A is a Γ-graded ring. Then the forgetful functor induces
K gr

0 (A)→ K0(A) and for some rings (ex. graded regular rings)

K gr
0 (A)/〈[P]− [P(α)]〉 ∼= K0(A).

Theorem
E finite graph with no sink. Then for A = L(E ) we have

K gr
0 (A)/〈[P]− [P(1)]〉 ∼= K0(A).
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Graded Ultramatricial algebra

Definition
Let A be a Γ-graded field. A Γ-graded matricial A-algebra is a
graded A-algebra of the form

Mn1(A)(δ1)× · · · ×Mnl (A)(δl),

where δi = (δ
(i)
1 , . . . , δ

(i)
ni ), δ

(i)
j ∈ Γ, 1 ≤ j ≤ ni and 1 ≤ i ≤ l .

Definition
Let A be a Γ-graded field. Then the ring R is called a Γ-graded
ultramatricial A-algebra if R =

⋃∞
i=1 Ri , where R1 ⊆ R2 ⊆ . . . is a

sequence of graded matricial A-subalgebras.
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Theorem
Let R and S be Γ-graded ultramatricial algebras over a graded field
A. Then R ∼=gr S as graded A-algebras if and only if there is an
order preserving Z[Γ]-module isomorphism(

K gr
0 (R),K gr

0 (R)+, [R]
) ∼= (

K gr
0 (S),K gr

0 (S)+, [S ]
)
.

Theorem
Let R and S be Γ-graded ultramatricial algebras over a graded field
A. Then R and S are graded Morita equivalent if and only if there
is an order preserving Z[Γ]-module isomorphism K gr

0 (R) ∼= K gr
0 (S).

Conjecture. Leavitt path algebras is another class that fits into
the above two theorems.
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Graded versus non-graded K0

• y1ee

y2

qq

Set xi = y∗i .

φ : A
∼=−→ A2

a 7→ (x1a, x2a)

So in K0(L(E )) we have [A2] = [A] which implies [A] = 0. In fact
by the K0 formula K0(L(E )) = 0.
But considering φ as graded homomorphism we get

φ : A
∼=−→ A(−1)⊕ A(−1)

a 7→ (x1a, x2a)

In same manner A(i) ∼= A(i − 1)⊕ A(i − 1). This gives indication
K gr

0 (L(E )) = Z[1/2].



Graded versus non-graded K0

• y1ee

y2

qq

Set xi = y∗i .

φ : A
∼=−→ A2

a 7→ (x1a, x2a)

So in K0(L(E )) we have [A2] = [A] which implies [A] = 0. In fact
by the K0 formula K0(L(E )) = 0.
But considering φ as graded homomorphism we get

φ : A
∼=−→ A(−1)⊕ A(−1)

a 7→ (x1a, x2a)

In same manner A(i) ∼= A(i − 1)⊕ A(i − 1). This gives indication
K gr

0 (L(E )) = Z[1/2].



Graded versus non-graded K0

• y1ee

y2

qq

Set xi = y∗i .

φ : A
∼=−→ A2

a 7→ (x1a, x2a)

So in K0(L(E )) we have [A2] = [A] which implies [A] = 0. In fact
by the K0 formula K0(L(E )) = 0.

But considering φ as graded homomorphism we get

φ : A
∼=−→ A(−1)⊕ A(−1)

a 7→ (x1a, x2a)

In same manner A(i) ∼= A(i − 1)⊕ A(i − 1). This gives indication
K gr

0 (L(E )) = Z[1/2].



Graded versus non-graded K0

• y1ee

y2

qq

Set xi = y∗i .

φ : A
∼=−→ A2

a 7→ (x1a, x2a)

So in K0(L(E )) we have [A2] = [A] which implies [A] = 0. In fact
by the K0 formula K0(L(E )) = 0.
But considering φ as graded homomorphism we get

φ : A
∼=−→ A(−1)⊕ A(−1)

a 7→ (x1a, x2a)

In same manner A(i) ∼= A(i − 1)⊕ A(i − 1). This gives indication
K gr

0 (L(E )) = Z[1/2].



Let A be a strongly Γ-graded ring. By Dade’s Theorem the functor

(−)0 : gr-A→ mod-A0

M 7→ M0,

is an additive functor with an inverse

−⊗A0 A : mod-A0 → gr-A

So that it induces an equivalence of categories. This implies that

K gr
i (A) ∼= Ki (A0),

for i ≥ 0.



Let A be a strongly Γ-graded ring. By Dade’s Theorem the functor

(−)0 : gr-A→ mod-A0

M 7→ M0,

is an additive functor with an inverse

−⊗A0 A : mod-A0 → gr-A

So that it induces an equivalence of categories.

This implies that

K gr
i (A) ∼= Ki (A0),

for i ≥ 0.



Let A be a strongly Γ-graded ring. By Dade’s Theorem the functor

(−)0 : gr-A→ mod-A0

M 7→ M0,

is an additive functor with an inverse

−⊗A0 A : mod-A0 → gr-A

So that it induces an equivalence of categories. This implies that

K gr
i (A) ∼= Ki (A0),

for i ≥ 0.



•
��

// • •
��

•
  
•
��

•
��

•
�� qq
QQ

• • // •

33

•XX •oo • // • // • //

77

• //

  
• // • // •

�� qq
QQ

• // • // • qqQQ

•
��

• •

44

•

tt•

UU

• // • //

GG

��

• // • //

GG

• //

��

??

• // • // •
�� qq
QQ

• • // • // •
�� qq
QQ

(2)



Theorem
Let E and F be polycephaly graphs. Then L(E ) ∼=gr L(F ) if and
only if there is a Z[x , x−1]-module isomorphism(

K gr
0 (L(E )), [L(E )]

) ∼= (
K gr

0 (L(F )), [L(F )]
)
.



Conjecture: Let E and F be finite graphs. Then L(E ) ∼=gr L(F ) if
and only if there is an order Z[x , x−1]-module isomorphism(

K gr
0 (L(E )), [L(E )]

) ∼= (
K gr

0 (L(F )), [L(F )]
)
.

Theorem (Ara, Pardo)

The conjecture is valid for finite graphs with no sinks and sources.
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Relation with symbolic dynamics

E and F finite graphs and AE and AF the adjacency matrices.

D(X (E))≈D(X (F )) AE≈SEAF

XE
∼=XF AE≈SSEAF L(E)≈grL(F ) Kgr

0 (L(E))∼=Kgr
0 (L(F ))

L(E)∼=grL(F ) QGrP(E)≈QGrP(F )
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