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Inspired by C*-algebras, we are looking for a statement such as:
Let E and F be graphs. Then

L(E) = L(F)

if and only if
Ko(L(E)) = Ko(L(F)).

or something like this...
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Grothendieck group Ky

Let A be a ring with identity.

V(A) = {[P] | P is f.g projective A — module}

This is a monoid with direct sum as addition.
Define

Ko(A) = V(A)*.

Ko(A) is a pre-ordered abelian group with an order unit [A].
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Ultramatricial algebras

Matricial algebras: M, (K) x - -+ x M, (K), where K is a field.
Ultramatricial algebras: |J R; where R; are matricial algebras and
RiCR C....

Example

K — M(K) — My(K) — ...
3H<g g)

K@K—)Mz(K)@K—)Mg,(K)@Mg(K)—>'--

G.o— (3 5) )



Classification of Ultramatricial algebras

Theorem (Elliott)

Let R and S be ultramatricial K-algebra. Then R = S as
K-algebra if and only if

(Ko(R), Ko(R): [R]) = (Ko(S), Ko(S)s+ 1))
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Classification of LPAs via K-groups

F o— >~0— >0 E(F)2M3(K)
E .H./\. L(E) = Ms(K[x,x"])
AN

(Ko(£(F)). Ko(L(F)) -, [£(F)]) = (2.1, 3)

(Ko(L(E)). Ko(L(E))+, [L(E)]) = (2, N,3)

But
Mi(K) 2 M3 (K[x,x']).

So Ky doesn’t seem to classify all types of LPAs.
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(not a division ring and Vx # 0, 3a, b, axb = 1).

® L(E) is simple

® E contains a cycle

e Abrams, Anh, Louly, Pardo, The classification question for Leavitt path
algebras, J. Algebra-2008

e Abrams, Anh, Pardo, Isomorphisms between Leavitt algebras and their
matrix rings, J. Reine Angew. Math 2008

e Abrams, Tomforde, Isomorphism and Morita equivalence of graph
algebras, Trans. AMS 2011.

e Ara, Goodearl, Pardo, Ky of purely infinite simple regular rings,
K-Theory-2002

e Cuntz, Simple C*-algebras generated by isometries, Comm. Math.
Phys-1977

e Cuntz, K-theory for certain C*-algebras, Ann. of Math-1981. 181-197.
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Towards grading of LPAs

Abrams, Aranda Pino, Siles Molina (Acyclic graphs, JPAA 2007)
Acyclic:

.
|

o<——0
o<———0

Ei: e—se¢——

Then £(E1) = £(E) = Ms(K).
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Length of the paths in LPA

E: O*>a o — |

Let p1 = u,pp = B, p3 = af. Then p,-pj’-k generate the Leavitt path
algebra L(E), and these are the K-basis.

L(E) — M3(K)
Pipj +— €jj

p3p; = aff’ = a > e

F:e——u

Let p1 = u, p2 = B, p3 = a. Again an iso. L(F) — M3(K).

p3ps = o — e
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Grading on rings

Aring A= . A, is [-graded ring, if

e A, additive subgroup of A

] A,YA(; - A,y+5 for all ’)/,5 erl.

A is strongly graded ring if A,As = Ay 45 forall v,d € T.
Consider (01,...,0,), §; € I'. Define a grading on M,(A) by

Artsi—51 Artso—sr 1 Axtsa—o

Artsr—6, Arto—6 0 Artoa—d
Mn(A))\ — . . .

Arisi—6, Artoo—6, 7 Arts,—6n

Denote this matrix ring with this grading by M,(A)(d1,. .., 0n).
We have

deg(ejj(x)) = deg(x) + d; — ¢;,
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Let K be a graded ring concentrated on degree 0. Then
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Let K be a graded ring concentrated in degree 0. Then

Ki Ko Ks 0 00
M3(K)(0,1,2)1= | Ko Ki K| =[K 0 0
Ka Ko Ki 0 K 0

E: .4>a o —— |

Let pr = u,pp = B, p3 = aff. L(E) — M3(K).
0 00O
p?,pi'< = aﬁﬁ* =ar—ep=|0 0 0
010

Here £(E) =g Ms(K)(lpa, |pal. |ps|) = Ms(K)(0,1,2)
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Grading on LPA

For an arbitrary group I', one can equip £(E) with a [-graded
structure. Let w : E? — T be a weight map. Define

w(a*) = w(a) !, for a € E and w(v) = e for v € EC.

The free algebra

K(o,a*,v|veE®acEY)

has a -graded structure.
Leavitt path algebra is the quotient of this algebra by relations
® v,v; = d;v; for every v;,vj € EO.
® s(a)a = ar(a) = a and r(a)a* = a*s(a) = o* for all a €
EL.
® o*d/ = Saur(a), forall a, o € EL.
@ D (ncEl s(a)y) @ = v forevery v € E? for which s71(v) is
non-empty.

which are all homogeneous. Thus Lx(E) is a [-graded K-algebra.
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Natural Z-grading

Let w : E' — Z constant maps 1.

In L(E) any word can be written as o = pqpa ... By - .. 51,
where pipo ... pg and By ... Bt are finite paths in the graph. The
homogeneous degree of « is then k — t.

LR(E) = @ycy LrR(E)k where,

LR(E) = { 3" raif |, B; paths with finite lengths, r; € R,

and |o;| — |Bi| = k for all i}.
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Theorem

E be a finite acyclic graph with sinks {vi,...,v+}. For any sink vs,
let {p/* | 1 < i < n(vs)} be the set of all paths which end in vs.
Then there is a 7Z-graded isomorphism

—gr @Mn(vs) |P1 |7"'>|pxzvs)|)' (1)

Furthermore, F be another acyclic graph with sinks {u1, ..., ux}
and {p;* | 1 <i < n(us)} be the set of all paths which end in us.
Then

LRr(E) =g Lr(F)
if and only if k = t, and after a permutation of indices,
n(vs) = n(us) and {|p;*| | 1 < i < n(vs)} and
{Ipi*| | 1 <i < n(us)} present the same list.



Theorem
Let E be a finite graph. The Leavitt path algebra Lr(E) with

coefficients in a ring R is strongly graded if and only if any vertex
connects to a cycle.



Theorem

Let E be a finite graph. The Leavitt path algebra Lr(E) with
coefficients in a ring R is strongly graded if and only if any vertex
connects to a cycle.

For example:

v J
(Vs /N
V——Uu——>Ww z
\/

a€ Ly. But L1 =L3L_5:



Theorem

Let E be a finite graph. The Leavitt path algebra Lr(E) with
coefficients in a ring R is strongly graded if and only if any vertex
connects to a cycle.

For example:

v J
(s /N
V——Uu——>Ww z
\/

a€ Ly. But L1 =L3L_5:

a=au=a(yy" +B67)

= ayuy" + afwp”

= ay(yy* + BB )Y + aBds* B

= ayyy™ " + ayBB™Y" + aBos BT € L3 Lo
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Abrams, Aranda Pino, Siles Molina (C,-comet graphs, Israel J.
2008)

Theorem

Let C, be a comet with the cycle C of length n > 1. Let u be a
vertex on the cycle C. Eliminate the edge in the cycle whose
source is u and consider the set {p; | 1 < i < m} of all paths
which end in u. Then

L(E) Zg Mo (K" 5" (Ip. . [om]).

Proof.
Set of monomials {p,-Cka’-k |1<i,j<n k€Z}is an K-basis of
Lk(E). Define the map

¢ Lk(E) = Mm (KIX",x7"]) (Ipal, - - . [Pml).

by ¢(piC*p}) = e(x*"). But |piC*pf| = kn + |pi| — |p;| (note
that k € Z). And

dec(d(p: CXp*)) = decl(e: (x5 ™)) = nk = |pil — |p:|.



and

E4Z

[ ] [ ] [ ] .i) M4(K[X,Xﬁl])(0, ].,27 3)group ring

/N

o >0 o< o M (K[x2, x72])(0, 1, 1, 2)skew

N

7

I\AL]_("([Xz7 X72])(O, ]_7 ]_, ].)not crossec

M4(K[X4, X_4])(0, 17 27 3)skew
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w: E' — T be a weight map and w(a*) = w(a)}, for a € E?
and w(v) = e for v € EC.

The free K-algebra generated by the vertices, edges and ghost
edges is a [-graded K-algebra.

The Leavitt path algebra is the quotient of this algebra by
homogeneous relations. Thus Lx(E) is a [-graded K-algebra.
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Example
Consider the graphs

Assigning 0 to vertices and 1 to edges in the graphs in the usual
manner, we obtain £(E) &g My(K[x,x~1])(0,1) whereas

L(F) 2 Mp(K[x2,x72])(0,1) and one can easily observe that
L(E) Zy Lk (F).

However assigning 1 for the degree of f and 2 for the degree of e
in E and 1 for the degrees of g and hin F,

Lk(E) = My(K[x?,x72])(0,1) and

Lk (F) = Ma(K[x?,x72])(0,1). So with these gradings,

Lk(E) Sy Lk (F).
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Let A be a I-graded ring. A graded right A-module M is an
A-module with M = @wer M.,

e M, is an additive subgroup of M

e My-A, C M, ) forally,\eTl.

For some ¢ € I', we define the §-suspended A-module M(d) as
M(5) = @D.,cr M(6), where M(5)y = M, 1.

degrees -3 -2 -1 0 1 2

M(1) My My My M
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Graded Projective modules

Let A be a [-graded ring and P be a graded A-module. Then the
following are equivalent:

@ P is graded and projective;

® P is graded projective;

©® Homg,_A(P,—) is an exact functor in Gr — A;

® P is graded isomorphic to a direct summand of a graded free
A-module.
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Graded Grothendieck group

For a I-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

VE'(A) = {[P] | P is graded finitely generated projective A-module}
has a [-module structure: for v € I' and [P] € V&"(A),
v [Pl = [P(")]:

The group V&"(A)" is called the graded Grothendieck group and is
denoted by K§'(A), which is a Z[l'-module.
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Example: Z-graded ring A = K[x",x~ "], where K is a field and
neN,
Ks'(A) = Dz,

which is a Z[x, x"1]-module, with the action of x on
(a1,...,an) € P, Z is as follows:

x(a1,...,an) = (an, a1, ..., an-1).
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o K§' can be quite “useless”:
Consider I a group, and Z[I']. Then

KE'(Z[r) = Z
and the action of I is trivial. But Ko(Z[l']) is very complicated.

e Ais a [-graded ring. Then the forgetful functor induces
K§' (A) — Ko(A) and for some rings (ex. graded regular rings)

K5 (A)/([P] = [P(a)]) = Ko(A).

Theorem
E finite graph with no sink. Then for A= L(E) we have

Kg (A)/([P] = [P(1)]) = Ko(A).
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Graded Ultramatricial algebra

Definition
Let A be a I-graded field. A I'-graded matricial A-algebra is a
graded A-algebra of the form

M, (A)(01) % -+ x Mo, (A)(0)),

where 3; = (67,...,69)), 00 e, 1<j<mand1<i<1.

Definition

Let A be a [-graded field. Then the ring R is called a I'-graded
ultramatricial A-algebra if R = Uj’il R;, where R CR, C ... isa
sequence of graded matricial A-subalgebras.
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Theorem

Let R and S be '-graded ultramatricial algebras over a graded field
A. Then R =4 S as graded A-algebras if and only if there is an
order preserving Z[I'|-module isomorphism

(KE'(R), KE'(R)+, [R]) = (K§'(S), KE(S)+1S)).

Theorem

Let R and S be '-graded ultramatricial algebras over a graded field
A. Then R and S are graded Morita equivalent if and only if there
is an order preserving Z[I']-module isomorphism K§'(R) = K§'(S).

Conjecture. Leavitt path algebras is another class that fits into
the above two theorems.
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Graded versus non-graded K

y2

b1 Ay A2

a— (x1a, x2a)

Set x; = y;.

So in Ko(L(E)) we have [A?] = [A] which implies [A] = 0. In fact
by the Ko formula Ko(L(E)) = 0.
But considering ¢ as graded homomorphism we get

¢ A A=1) @ A(-1)
a— (x1a, x2a)

In same manner A(i) = A(i — 1) @ A(i — 1). This gives indication
K§' (L(E)) = Z[1/2].
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Let A be a strongly -graded ring. By Dade’s Theorem the functor

(=)o : gr-A — mod-Ay
M — My,

is an additive functor with an inverse
— ®a, A mod-Ag — gr-A
So that it induces an equivalence of categories. This implies that
KF'(A) = Ki(Ao),

for i > 0.
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Theorem
Let E and F be polycephaly graphs. Then L(E) =4 L(F) if and
only if there is a Z[x,x~*]-module isomorphism

(K5"(£(E)), [£(E)]) = (K5 (£(F)), [£(F)])-



Conjecture: Let E and F be finite graphs. Then L£(E) =g L(F) if
and only if there is an order Z[x, x~1]-module isomorphism

(K5"(£(E)), [£(E)) = (K5 (£(F)), [£(F)])-



Conjecture: Let E and F be finite graphs. Then L£(E) =g L(F) if
and only if there is an order Z[x, x~1]-module isomorphism

(K5"(£(E)), [£(E)) = (K5 (£(F)), [£(F)])-

Theorem (Ara, Pardo)
The conjecture is valid for finite graphs with no sinks and sources.
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E and F finite graphs and Ag and Af the adjacency matrices.

D(X(E)~D(X(F)) £ Agmse Ar

1Ara, Pardo

- Williams in/out splitting - N
Xe=Xp <= Apmsse Ar — L(E)mgr L(F) — K (L(E))=K5 (L(F))
)\L( T 135 ordered group

L(E)=g L(F) QGrP(E)=QGrP(F)
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