Orbit equivalence and graph C^{*}-algebras

Work in progress with Nathan Brownlowe and Michael Whittaker

Toke Meier Carlsen
Norwegian University of Science and Technology
Graph Algebras: Bridges between graph C^{*}-algebras and Leavitt path algebras
Banff 2013-04-23

Directed graphs

0
NTNU
Norwegian University of
Science and Technology

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.

Norwegian University of
Science and Technology

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.
- The elements of E^{0} are called vertices.

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.
- The elements of E^{0} are called vertices.
- The elements of E^{1} are called edges.

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.
- The elements of E^{0} are called vertices.
- The elements of E^{1} are called edges.
- If e is an edge, $s(e)$ is called the source of e, and $r(e)$ is called the range of e.

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.
- The elements of E^{0} are called vertices.
- The elements of E^{1} are called edges.
- If e is an edge, $s(e)$ is called the source of e, and $r(e)$ is called the range of e.
- If $s(e)=v$ and $r(e)=w$, then we say that v emits e, and that w receives e.

Directed graphs

- A directed graph E is a quadruple (E^{0}, E^{1}, r, s) consisting of two sets E^{0} and E^{1} and two maps $r, s: E^{1} \rightarrow E^{0}$.
- The elements of E^{0} are called vertices.
- The elements of E^{1} are called edges.
- If e is an edge, $s(e)$ is called the source of e, and $r(e)$ is called the range of e.
- If $s(e)=v$ and $r(e)=w$, then we say that v emits e, and that w receives e.
- If $v \in E^{0}$, then we let $v E^{1}=\left\{e \in E^{n}: r(e)=v\right\}$ and $E^{1} v=\left\{e \in E^{n}: s(e)=v\right\}$.

Paths

Paths

- A path of length n in a directed graph E is a sequence $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ of edges in E such that $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for $i \in\{1,2, \ldots, n-1\}$.

Paths

- A path of length n in a directed graph E is a sequence $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ of edges in E such that $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for $i \in\{1,2, \ldots, n-1\}$.
- We write $|\mu|$ for the length n of a path.

Paths

- A path of length n in a directed graph E is a sequence $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ of edges in E such that $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for $i \in\{1,2, \ldots, n-1\}$.
- We write $|\mu|$ for the length n of a path.
- We denote by E^{n} the set of paths of length n, and let $E^{*}=\bigcup_{n=0}^{\infty} E^{n}$.

Paths

- A path of length n in a directed graph E is a sequence $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ of edges in E such that $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for $i \in\{1,2, \ldots, n-1\}$.
- We write $|\mu|$ for the length n of a path.
- We denote by E^{n} the set of paths of length n, and let $E^{*}=\bigcup_{n=0}^{\infty} E^{n}$.
- We extend the range and source maps to E^{*} by setting $r(\mu)=r\left(\mu_{1}\right)$ and $s(\mu)=s\left(\mu_{n}\right)$ when $|\mu| \geq 1$, and $r(\mu)=s(\mu)=\mu$ when $\mu \in E^{0}$.

Paths

- A path of length n in a directed graph E is a sequence $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ of edges in E such that $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for $i \in\{1,2, \ldots, n-1\}$.
- We write $|\mu|$ for the length n of a path.
- We denote by E^{n} the set of paths of length n, and let $E^{*}=\bigcup_{n=0}^{\infty} E^{n}$.
- We extend the range and source maps to E^{*} by setting $r(\mu)=r\left(\mu_{1}\right)$ and $s(\mu)=s\left(\mu_{n}\right)$ when $|\mu| \geq 1$, and $r(\mu)=s(\mu)=\mu$ when $\mu \in E^{0}$.
- If $\mu, \nu \in E^{*}$ and $s(\mu)=r(\nu)$, then we write $\mu \nu$ for the path $\mu_{1} \ldots \mu_{|\mu|} \nu_{1} \ldots \nu_{|\nu|}$.

Sinks, sources and row-finite graphs

Sinks, sources and row-finite graphs

- A vertex $v \in E^{*}$ is called a sink if $E^{1} v=\emptyset$, and a source if $v E^{1}=\emptyset$.

Sinks, sources and row-finite graphs

- A vertex $v \in E^{*}$ is called a sink if $E^{1} v=\emptyset$, and a source if $v E^{1}=\emptyset$.
- A directed graph is said to be row-finite if $v E^{1}$ is finite for all $v \in E^{0}$.

Graph C^{*}-algebras

0
NTNU
Norwegian University of
Science and Technology

Graph C^{*}-algebras

Let E be a row-finite directed graph with no sources.

0
Norwegian University of
Science and Technology

Graph C^{*}-algebras

Let E be a row-finite directed graph with no sources. The C^{*}-algebra $C^{*}(E)$ of the graph E is defined as the universal C^{*}-algebra generated by a family $\left(s_{e}, p_{V}\right)_{e \in E^{1}, v \in E^{0}}$ consisting of partial isometries $\left(s_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(p_{v}\right)_{v \in E^{0}}$ satisfying
(1) $s_{e}^{*} s_{e}=p_{s(e)}$ for all $e \in E^{1}$,
(2) $p_{v}=\sum_{e \in V E^{1}} s_{e} s_{e}^{*}$ for all $v \in E^{0}$.

The C^{*}-subalgebra $\mathcal{D}(E)$

NTNU
Norwegian University of
Science and Technology

The C^{*}-subalgebra $\mathcal{D}(E)$

- For $\mu \in E^{*}$, we let $s_{\mu}=s_{\mu_{1}} \ldots s_{\mu_{|\mu|}}$ when $|\mu| \geq 1$, and $s_{\mu}=p_{\mu}$ when $\mu \in E^{0}$.

The C^{*}-subalgebra $\mathcal{D}(E)$

- For $\mu \in E^{*}$, we let $s_{\mu}=s_{\mu_{1}} \ldots s_{\mu_{|\mu|}}$ when $|\mu| \geq 1$, and $s_{\mu}=p_{\mu}$ when $\mu \in E^{0}$.
- We let $\mathcal{D}(E)$ denote the C^{*}-subalgebra of $C^{*}(E)$ generated by, $\left\{s_{\mu} s_{\mu}^{*} \mid \mu \in E^{*}\right\}$.

The C^{*}-subalgebra $\mathcal{D}(E)$

- For $\mu \in E^{*}$, we let $s_{\mu}=s_{\mu_{1}} \ldots s_{\mu_{|\mu|}}$ when $|\mu| \geq 1$, and $s_{\mu}=p_{\mu}$ when $\mu \in E^{0}$.
- We let $\mathcal{D}(E)$ denote the C^{*}-subalgebra of $C^{*}(E)$ generated by $\left\{s_{\mu} s_{\mu}^{*} \mid \mu \in E^{*}\right\}$.
- Let E and F be two row-finite directed graphs with no sources.

The C^{*}-subalgebra $\mathcal{D}(E)$

- For $\mu \in E^{*}$, we let $s_{\mu}=s_{\mu_{1}} \ldots s_{\mu_{|\mu|}}$ when $|\mu| \geq 1$, and $s_{\mu}=p_{\mu}$ when $\mu \in E^{0}$.
- We let $\mathcal{D}(E)$ denote the C^{*}-subalgebra of $C^{*}(E)$ generated by, $\left\{s_{\mu} s_{\mu}^{*} \mid \mu \in E^{*}\right\}$.
- Let E and F be two row-finite directed graphs with no sources. We are interested in determining when there is an isomorphism $\psi: C^{*}(E) \rightarrow C^{*}(F)$ such that $\psi(\mathcal{D}(E))=\mathcal{D}(F)$.

Infinite paths

0
NTNU
Norwegian University of
Science and Technology

Infinite paths

- An infinite path in a directed graph E is an infinite sequence $x=x_{1} x_{2} \ldots$ of edges in E such that $s\left(x_{i}\right)=r\left(x_{i+1}\right)$ for $i \in\{1,2, \ldots\}$.

Infinite paths

- An infinite path in a directed graph E is an infinite sequence $x=x_{1} x_{2} \ldots$ of edges in E such that $s\left(x_{i}\right)=r\left(x_{i+1}\right)$ for $i \in\{1,2, \ldots\}$.
- We denote by E^{∞} the set of infinite paths in E.

Infinite paths

- An infinite path in a directed graph E is an infinite sequence $x=x_{1} x_{2} \ldots$ of edges in E such that $s\left(x_{i}\right)=r\left(x_{i+1}\right)$ for $i \in\{1,2, \ldots\}$.
- We denote by E^{∞} the set of infinite paths in E.
- We extend the range map to E^{∞} by setting $r(x)=r\left(x_{1}\right)$.

Infinite paths

- An infinite path in a directed graph E is an infinite sequence $x=x_{1} x_{2} \ldots$ of edges in E such that $s\left(x_{i}\right)=r\left(x_{i+1}\right)$ for $i \in\{1,2, \ldots\}$.
- We denote by E^{∞} the set of infinite paths in E.
- We extend the range map to E^{∞} by setting $r(x)=r\left(x_{1}\right)$.
- If $\mu \in E^{*}, x \in E^{\infty}$ and $s(\mu)=r(x)$, then we write μx for the path $\mu_{1} \ldots \mu_{|\mu|} x_{1} x_{2} \ldots$ (if $\mu \in E^{0}$, then $\mu x=x$).

Infinite paths

- An infinite path in a directed graph E is an infinite sequence $x=x_{1} x_{2} \ldots$ of edges in E such that $s\left(x_{i}\right)=r\left(x_{i+1}\right)$ for $i \in\{1,2, \ldots\}$.
- We denote by E^{∞} the set of infinite paths in E.
- We extend the range map to E^{∞} by setting $r(x)=r\left(x_{1}\right)$.
- If $\mu \in E^{*}, x \in E^{\infty}$ and $s(\mu)=r(x)$, then we write μx for the path $\mu_{1} \ldots \mu_{|\mu|} x_{1} x_{2} \ldots$ (if $\mu \in E^{0}$, then $\mu x=x$).
- For $\mu \in E^{*}$, we let $Z(\mu)=\left\{\mu x \mid x \in E^{\infty}, s(\mu)=r(x)\right\}$.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.
- E^{∞} then becomes a totally disconnected locally compact Hausdorff space.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.
- E^{∞} then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^{*}$.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.
- E^{∞} then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^{*}$.
- E^{∞} is compact if and only if E^{0} is finite.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.
- E^{∞} then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^{*}$.
- E^{∞} is compact if and only if E^{0} is finite.
- There is a $*$-isomorphism from $\mathcal{D}(E)$ to $C_{0}\left(E^{\infty}\right)$ which, for every $\mu \in E^{*}$, maps $s_{\mu} s_{\mu}^{*}$ to the characteristic function of $Z(\mu)$.

The infinite path space

- We equip E^{∞} with the topology generated by $\left\{Z(u) \mid u \in E^{*}\right\}$.
- E^{∞} then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^{*}$.
- E^{∞} is compact if and only if E^{0} is finite.
- There is a $*$-isomorphism from $\mathcal{D}(E)$ to $C_{0}\left(E^{\infty}\right)$ which, for every $\mu \in E^{*}$, maps $s_{\mu} s_{\mu}^{*}$ to the characteristic function of $Z(\mu)$.
- We let $\sigma_{E}: E^{\infty} \rightarrow E^{\infty}$ denote the map

$$
x_{1} x_{2} x_{3} \ldots \mapsto x_{2} x_{3} \ldots
$$

Continuously orbit equivalence

Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources.

Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are continuously orbit equivalent

Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are continuously orbit equivalent if there exists a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ and continuous functions $k_{1}, l_{1}: E^{\infty} \rightarrow \mathbb{N}$ and $k_{2}, l_{2}: F^{\infty} \rightarrow \mathbb{N}$ such that

Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are continuously orbit equivalent if there exists a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ and continuous functions $k_{1}, l_{1}: E^{\infty} \rightarrow \mathbb{N}$ and $k_{2}, l_{2}: F^{\infty} \rightarrow \mathbb{N}$ such that

$$
\begin{aligned}
& \sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x)=\sigma_{F}^{h_{1}(x)} \circ h(x) \text { and } \\
& \sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y)=\sigma_{E}^{l_{2}(y)} \circ h^{-1}(y)
\end{aligned}
$$

for all $x \in E^{\infty}, y \in F^{\infty}$.

Cycles

Cycles

- A cycle is a path $\mu \in E^{*}$ for which $\mu \geq 1$ and $s(\mu)=r(\mu)$.

Cycles

- A cycle is a path $\mu \in E^{*}$ for which $\mu \geq 1$ and $s(\mu)=r(\mu)$.
- An entry for a cycle μ is an edge $e \in E^{1}$ such that $r(e)=r\left(\mu_{i}\right)$ and $e \neq \mu_{i}$ for some $i \in\{1,2, \ldots,|\mu|\}$.

The main theorem

NTNU
Norwegian University of
Science and Technology

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:
(1) There is an isomorphism $\psi: C^{*}(E) \rightarrow C^{*}(F)$ such that $\psi(\mathcal{D}(E))=\mathcal{D}(F) ;$
(2) E^{∞} and F^{∞} are continuously orbit equivalent.

Examples

Examples

(1) Let E be the graph •

-

Examples

(1) Let E be the graph - and let F be the graph 6

Examples

(1) Let E be the graph \bullet and let F be the graph $ه \checkmark$

Then $E^{\infty}=\{\star\}=F^{\infty}$,

NTNU
Norwegian University of
Science and Technology

Examples

(1) Let E be the graph \bullet and let F be the graph $ه \checkmark$

Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent,

Examples

(1) Let E be the graph \bullet and let F be the graph

Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \nsubseteq C(\mathbb{T}) \cong C^{*}(F)$.

Examples

(1) Let E be the graph \bullet and let F be the graph $<\checkmark$ Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \not \not \subset C(\mathbb{T}) \cong C^{*}(F)$.
(2) Let E be the graph $\bullet \longleftarrow \bullet \longleftarrow \bullet \leftarrow \cdots$

Examples

(1) Let E be the graph \bullet and let F be the graph Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \not \approx C(\mathbb{T}) \cong C^{*}(F)$.
(2) Let E be the graph $\bullet \longleftarrow \bullet \longleftarrow \longleftrightarrow \cdots$

0

Examples

(1) Let E be the graph \bullet and let F be the graph Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \not \approx C(\mathbb{T}) \cong C^{*}(F)$.
(2) Let E be the graph $\bullet \longleftarrow \bullet \longleftarrow \longleftrightarrow \cdots$
and let F be the graph

Then $E^{\infty}=\mathbb{N}=F^{\infty}$,

Examples

(1) Let E be the graph \bullet and let F be the graph

Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \not \approx C(\mathbb{T}) \cong C^{*}(F)$.
(2) Let E be the graph $\bullet \longleftarrow \longleftarrow \longleftarrow \Leftarrow$
and let F be the graph
Then $E^{\infty}=\mathbb{N}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent,

0

Examples

(1) Let E be the graph \bullet and let F be the graph

Then $E^{\infty}=\{\star\}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathbb{C} \not \approx C(\mathbb{T}) \cong C^{*}(F)$.
(2) Let E be the graph $\bullet \longleftrightarrow \longleftrightarrow \longleftrightarrow \cdots$
and let F be the graph

Then $E^{\infty}=\mathbb{N}=F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^{*}(E) \cong \mathcal{K} \not \approx \mathcal{K} \otimes C(\mathbb{T}) \cong C^{*}(F)$.

The full inverse semigroup

NTNU
Norwegian University of
Science and Technology

The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which every cycle has an entry.

0

The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. We denote by $\mathcal{S}\left(E^{\infty}\right)$ the set of all partial homeomorphisms of E^{∞} whose domain and range are compact open sets, and such that there exist continuous functions $k_{\tau}, l_{\tau}: \operatorname{Dom}(\tau) \rightarrow \mathbb{N}$ satisfying

$$
\sigma_{E}^{k_{\tau}(x)}(\tau(x))=\sigma_{E}^{I_{\tau}(x)}(x)
$$

The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. We denote by $\mathcal{S}\left(E^{\infty}\right)$ the set of all partial homeomorphisms of E^{∞} whose domain and range are compact open sets, and such that there exist continuous functions $k_{\tau}, l_{\tau}: \operatorname{Dom}(\tau) \rightarrow \mathbb{N}$ satisfying

$$
\sigma_{E}^{k_{F}(x)}(\tau(x))=\sigma_{E}^{I_{E}(x)}(x) .
$$

If $h: E^{\infty} \rightarrow F^{\infty}$ is a homeomorphism, we denote by $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}$ the set

$$
\left\{h \circ \tau \circ h^{-1} \mid h(\operatorname{Dom}(\tau)): \tau \in \mathcal{S}\left(E^{\infty}\right)\right\} .
$$

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:
(1) There is an isomorphism $\psi: C^{*}(E) \rightarrow C^{*}(F)$ such that $\psi(\mathcal{D}(E))=\mathcal{D}(F) ;$
(2) E^{∞} and F^{∞} are continuously orbit equivalent;
(3) there is a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$.

The groupoid of the full inverse semigroup

The groupoid of the full inverse semigroup

- When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ be the groupoid

$$
\left\{(x, \tau) \mid \tau \in \mathcal{S}\left(E^{\infty}\right), x \in \operatorname{Dom}(\tau)\right\} / \sim
$$

where $\left(x_{1}, \tau_{1}\right) \sim\left(x_{2}, \tau_{2}\right)$ if $x_{1}=x_{2}$ and there is a a compact open neighbourhood $U \subseteq \operatorname{Dom}\left(\tau_{1}\right) \cap \operatorname{Dom}\left(\tau_{2}\right)$ of x_{1} such that τ_{1} and τ_{2} are equal on U.

The groupoid of the full inverse semigroup

- When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ be the groupoid

$$
\left\{(x, \tau) \mid \tau \in \mathcal{S}\left(E^{\infty}\right), x \in \operatorname{Dom}(\tau)\right\} / \sim
$$

where $\left(x_{1}, \tau_{1}\right) \sim\left(x_{2}, \tau_{2}\right)$ if $x_{1}=x_{2}$ and there is a a compact open neighbourhood $U \subseteq \operatorname{Dom}\left(\tau_{1}\right) \cap \operatorname{Dom}\left(\tau_{2}\right)$ of x_{1} such that τ_{1} and τ_{2} are equal on U.

- $[x, \tau]^{-1}=\left[\tau(x), \tau^{-1}\right]$.

The groupoid of the full inverse semigroup

- When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ be the groupoid

$$
\left\{(x, \tau) \mid \tau \in \mathcal{S}\left(E^{\infty}\right), x \in \operatorname{Dom}(\tau)\right\} / \sim
$$

where $\left(x_{1}, \tau_{1}\right) \sim\left(x_{2}, \tau_{2}\right)$ if $x_{1}=x_{2}$ and there is a a compact open neighbourhood $U \subseteq \operatorname{Dom}\left(\tau_{1}\right) \cap \operatorname{Dom}\left(\tau_{2}\right)$ of x_{1} such that τ_{1} and τ_{2} are equal on U.

- $[x, \tau]^{-1}=\left[\tau(x), \tau^{-1}\right]$.
- $\left[x_{1}, \tau_{1}\right]$ and $\left[x_{2}, \tau_{2}\right]$ are composable if $x_{1}=\tau_{2}\left(x_{2}\right)$ in which case $\left[x_{1}, \tau_{1}\right]\left[x_{2}, \tau_{2}\right]=\left[x_{2}, \tau_{1} \circ \tau_{2}\right]$.

The groupoid of the full inverse semigroup

- When $\tau \in \mathcal{S}\left(E^{\infty}\right)$ and U is an open subset of $\operatorname{Dom}(\tau)$, then we let $Z(U, \tau)=\{[x, \tau] \mid x \in U\}$.

The groupoid of the full inverse semigroup

- When $\tau \in \mathcal{S}\left(E^{\infty}\right)$ and U is an open subset of $\operatorname{Dom}(\tau)$, then we let $Z(U, \tau)=\{[x, \tau] \mid x \in U\}$.
- We equip $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ with the topology generated by $\left\{Z(U, \tau) \mid \tau \in \mathcal{S}\left(E^{\infty}\right), U\right.$ is an open subset of $\left.\operatorname{Dom}(\tau)\right\}$.

The groupoid of the full inverse semigroup

- When $\tau \in \mathcal{S}\left(E^{\infty}\right)$ and U is an open subset of $\operatorname{Dom}(\tau)$, then we let $Z(U, \tau)=\{[x, \tau] \mid x \in U\}$.
- We equip $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ with the topology generated by $\left\{Z(U, \tau) \mid \tau \in \mathcal{S}\left(E^{\infty}\right), U\right.$ is an open subset of $\left.\operatorname{Dom}(\tau)\right\}$.
- Then $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ becomes a locally compact, Hausdorff, étale topological groupoid and $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}$ is homeomorphic to E^{∞}.

The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which every cycle has an entry.

The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Let ϕ be a $*$-homomorphism defined on $C^{*}(E)$.

The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Let ϕ be a $*$-homomorphism defined on $C^{*}(E)$. Then ϕ is injective if and only if $\phi\left(p_{v}\right) \neq 0$ for all $v \in E^{0}$.

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

Let E be a row-finite directed graph with no sources and in which every cycle has an entry.

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{E}\right)$ such that

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism
$\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{E}\right)$ such that
(1) $\phi\left(p_{v}\right)=\chi z\left(Z(v), \mathrm{Id}_{z(v)}\right)$ for $v \in E^{0}$,

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{E}\right)$ such that
(1) $\phi\left(p_{v}\right)=\chi z\left(z(v), \mathrm{Id}_{z(v)}\right)$ for $v \in E^{0}$,
(2) $\phi\left(s_{e}\right)=\chi_{Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)}$ for $e \in E^{1}$,

$C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right) \cong C^{*}(E)$

Let E be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{E}\right)$ such that
(1) $\phi\left(p_{v}\right)=\chi z\left(z(v), \mathrm{Id}_{z(v)}\right)$ for $v \in E^{0}$,
(2) $\phi\left(s_{e}\right)=\chi_{z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)}$ for $e \in E^{1}$,
(3) $\phi(\mathcal{D}(E))=C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$.

Proof:

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of $Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$.

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of
$Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$. It is not difficult to check that $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$ is a family consisting of partial isometries $\left(t_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(q_{v}\right)_{v \in E^{0}}$ satisfying
(1) $t_{e}^{*} t_{e}=q_{s(e)}$ for all $e \in E^{1}$,
(2) $q_{v}=\sum_{e \in v E^{1}} t_{e} t_{e}^{*}$ for all $v \in E^{0}$.

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of
$Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$. It is not difficult to check that $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$ is a family consisting of partial isometries $\left(t_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(q_{v}\right)_{v \in E^{0}}$ satisfying
(1) $t_{e}^{*} t_{e}=q_{s(e)}$ for all $e \in E^{1}$,
(2) $q_{v}=\sum_{e \in v E^{1}} t_{e} t_{e}^{*}$ for all $v \in E^{0}$.

It then follows from the universal property of $C^{*}(E)$ that there exists a $*$-homomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ such that $\phi\left(p_{v}\right)=q_{v}$ and $\phi\left(s_{e}\right)=t_{e}$.

0

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of
$Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$. It is not difficult to check that $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$ is a family consisting of partial isometries $\left(t_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(q_{v}\right)_{v \in E^{0}}$ satisfying
(1) $t_{e}^{*} t_{e}=q_{s(e)}$ for all $e \in E^{1}$,
(2) $q_{v}=\sum_{e \in v E^{1}} t_{e} t_{e}^{*}$ for all $v \in E^{0}$.

It then follows from the universal property of $C^{*}(E)$ that there exists a $*$-homomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ such that $\phi\left(p_{v}\right)=q_{v}$ and $\phi\left(s_{e}\right)=t_{e}$. ϕ is surjective since $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ is generated by $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$.

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of
$Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$. It is not difficult to check that $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$ is a family consisting of partial isometries $\left(t_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(q_{v}\right)_{v \in E^{0}}$ satisfying
(1) $t_{e}^{*} t_{e}=q_{s(e)}$ for all $e \in E^{1}$,
(2) $q_{v}=\sum_{e \in v E^{1}} t_{e} t_{e}^{*}$ for all $v \in E^{0}$.

It then follows from the universal property of $C^{*}(E)$ that there exists a $*$-homomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ such that $\phi\left(p_{v}\right)=q_{v}$ and $\phi\left(s_{e}\right)=t_{e}$. ϕ is surjective since $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ is generated by $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$. It is easy to check that $\phi(\mathcal{D}(E))=C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$ and that ϕ restricted to $\mathcal{D}(E)$ is injective.

Proof:

For $v \in E^{0}$ let q_{v} denote the characteristic function of
$Z\left(Z(v), \operatorname{ld}_{Z(v)}\right)$, and for $e \in E^{1}$ let t_{e} denote the characteristic function of $Z\left(Z(e),\left(\sigma_{E}\right)_{\mid Z(e)}\right)$. It is not difficult to check that $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$ is a family consisting of partial isometries $\left(t_{e}\right)_{e \in E^{1}}$ with mutually orthogonal range projections and mutually orthogonal projections $\left(q_{v}\right)_{v \in E^{0}}$ satisfying
(1) $t_{e}^{*} t_{e}=q_{s(e)}$ for all $e \in E^{1}$,
(2) $q_{v}=\sum_{e \in v E^{1}} t_{e} t_{e}^{*}$ for all $v \in E^{0}$.

It then follows from the universal property of $C^{*}(E)$ that there exists a $*$-homomorphism $\phi: C^{*}(E) \rightarrow C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ such that $\phi\left(p_{v}\right)=q_{v}$ and $\phi\left(s_{e}\right)=t_{e}$. ϕ is surjective since $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ is generated by $\left(t_{e}, q_{v}\right)_{e \in E^{1}, v \in E^{0}}$. It is easy to check that $\phi(\mathcal{D}(E))=C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$ and that ϕ restricted to $\mathcal{D}(E)$ is injective. It then follows from the
Cuntz-Krieger uniqueness theorem that ϕ is injective.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:
(1) There is an isomorphism $\psi: C^{*}(E) \rightarrow C^{*}(F)$ such that $\psi(\mathcal{D}(E))=\mathcal{D}(F) ;$
(2) E^{∞} and F^{∞} are continuously orbit equivalent;
(3) there is a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$;
(a) the groupoids $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic (as topological groupoids with Haar systems).

Remark

Remark

The main theorem, and its proof, is inspired by the results in Kengo Matsumoto's two papers
(1) Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras,
(2) Orbit equivalence of one-sided subshifts and the associated C^{*}-algebras.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:
(1) There is an isomorphism $\psi: C^{*}(E) \rightarrow C^{*}(F)$ such that $\psi(\mathcal{D}(E))=\mathcal{D}(F) ;$
(2) E^{∞} and F^{∞} are continuously orbit equivalent;
(3) there is a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$;
(a) the groupoids $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic (as topological groupoids with Haar systems).

On the proof of the main theorem

On the proof of the main theorem

(2) \Longleftrightarrow (3:

On the proof of the main theorem

(2) \Longleftrightarrow (3: Let $h: E^{\infty} \rightarrow F^{\infty}$ be a homeomorphism.

On the proof of the main theorem

(2) \Longleftrightarrow (3: Let $h: E^{\infty} \rightarrow F^{\infty}$ be a homeomorphism. It is straight forward to check that there exist continuous functions
$k_{1}, l_{1}: E^{\infty} \rightarrow \mathbb{N}$ and $k_{2}, l_{2}: F^{\infty} \rightarrow \mathbb{N}$ such that

$$
\begin{aligned}
& \sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x)=\sigma_{F}^{l_{1}(x)} \circ h(x) \text { and } \\
& \sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y)=\sigma_{E}^{l_{2}(y)} \circ h^{-1}(y),
\end{aligned}
$$

for all $x \in E^{\infty}, y \in F^{\infty}$,

On the proof of the main theorem

(2) \Longleftrightarrow (3: Let $h: E^{\infty} \rightarrow F^{\infty}$ be a homeomorphism. It is straight forward to check that there exist continuous functions
$k_{1}, l_{1}: E^{\infty} \rightarrow \mathbb{N}$ and $k_{2}, l_{2}: F^{\infty} \rightarrow \mathbb{N}$ such that

$$
\begin{aligned}
& \sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x)=\sigma_{F}^{l_{1}(x)} \circ h(x) \text { and } \\
& \sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y)=\sigma_{E}^{l_{2}(y)} \circ h^{-1}(y),
\end{aligned}
$$

for all $x \in E^{\infty}, y \in F^{\infty}$, if and only if $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$.

On the proof of the main theorem

$0 \Rightarrow \boldsymbol{0}$:

On the proof of the main theorem

(3) (4): It is also easy to check that if $h: E^{\infty} \rightarrow F^{\infty}$ is a homeomorphism such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$,

On the proof of the main theorem

(3) (4): It is also easy to check that if $h: E^{\infty} \rightarrow F^{\infty}$ is a homeomorphism such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$, then $[x, \tau] \mapsto\left[h(x), h \circ \tau \circ h^{-1}\right]$ is an isomorphism between $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$.

On the proof of the main theorem

$0 \rightarrow \boldsymbol{0}$:

On the proof of the main theorem

(4) \Longrightarrow : If $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic,

On the proof of the main theorem

(4) \Longrightarrow : If $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic, then there is an isomorphism between $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}\right)$ which maps $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}^{0}\right)$,

On the proof of the main theorem

(4) \Longrightarrow : If $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic, then there is an isomorphism between $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}\right)$ which maps $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}^{0}\right)$, and since there is an isomorphism between $C^{*}(E)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ which maps $\mathcal{D}(E)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$, and an isomorphism between $C^{*}(F)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}\right)$ which maps $\mathcal{D}(F)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}^{0}\right)$,

On the proof of the main theorem

(4) \Longrightarrow : If $\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}$ and $\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}$ are isomorphic, then there is an isomorphism between $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}\right)$ which maps $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}^{0}\right)$, and since there is an isomorphism between $C^{*}(E)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}\right)$ which maps $\mathcal{D}(E)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(E^{\infty}\right)}^{0}\right)$, and an isomorphism between $C^{*}(F)$ and $C^{*}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}\right)$ which maps $\mathcal{D}(F)$ onto $C_{0}\left(\mathcal{G}_{\mathcal{S}\left(F^{\infty}\right)}^{0}\right)$, it follows that there is an isomorphism between $C^{*}(E)$ and $C^{*}(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$.

On the proof of the main theorem

$\bullet \Rightarrow \boldsymbol{0}$:

On the proof of the main theorem

(1) \Longrightarrow (Let
$N_{E}=\left\{u \in C^{*}(E): u\right.$ is a partial isometry,

$$
\left.u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\}
$$

On the proof of the main theorem

(1) \Longrightarrow (3) Let
$N_{E}=\left\{u \in C^{*}(E): u\right.$ is a partial isometry,

$$
\left.u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\}
$$

If $u \in N_{E}$, then $u u^{*}$ and $u^{*} u$ belong to $\mathcal{D}(E)$ which we will identify with $C_{0}\left(E^{\infty}\right)$.

On the proof of the main theorem

(1) \Longrightarrow (3) Let

$$
\begin{aligned}
& N_{E}=\left\{u \in C^{*}(E): u\right. \text { is a partial isometry, } \\
& \left.\qquad u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\} .
\end{aligned}
$$

If $u \in N_{E}$, then $u u^{*}$ and $u^{*} u$ belong to $\mathcal{D}(E)$ which we will identify with $C_{0}\left(E^{\infty}\right)$. There is for each $u \in N_{E}$ a unique $\tau_{u} \in \mathcal{S}\left(E^{\infty}\right)$ satisfying $u f u^{*}=f \circ \tau_{u}$ and $u^{*} f u=f \circ \tau_{u}^{-1}$ for all $f \in C_{0}\left(E^{\infty}\right)$.

On the proof of the main theorem

(1) \Longrightarrow (3) Let

$$
\begin{aligned}
& N_{E}=\left\{u \in C^{*}(E): u\right. \text { is a partial isometry, } \\
& \left.\qquad u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\} .
\end{aligned}
$$

If $u \in N_{E}$, then $u u^{*}$ and $u^{*} u$ belong to $\mathcal{D}(E)$ which we will identify with $C_{0}\left(E^{\infty}\right)$. There is for each $u \in N_{E}$ a unique $\tau_{u} \in \mathcal{S}\left(E^{\infty}\right)$ satisfying $u f u^{*}=f \circ \tau_{u}$ and $u^{*} f u=f \circ \tau_{u}^{-1}$ for all $f \in C_{0}\left(E^{\infty}\right)$. The map $u \mapsto \tau_{u}$ is a surjective map from N_{E} to $\mathcal{S}\left(E^{\infty}\right)$,

On the proof of the main theorem

(1) \Longrightarrow (3) Let
$N_{E}=\left\{u \in C^{*}(E): u\right.$ is a partial isometry,

$$
\left.u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\}
$$

If $u \in N_{E}$, then $u u^{*}$ and $u^{*} u$ belong to $\mathcal{D}(E)$ which we will identify with $C_{0}\left(E^{\infty}\right)$. There is for each $u \in N_{E}$ a unique $\tau_{u} \in \mathcal{S}\left(E^{\infty}\right)$ satisfying $u f u^{*}=f \circ \tau_{u}$ and $u^{*} f u=f \circ \tau_{u}^{-1}$ for all $f \in C_{0}\left(E^{\infty}\right)$. The map $u \mapsto \tau_{u}$ is a surjective map from N_{E} to $\mathcal{S}\left(E^{\infty}\right)$, and $\tau_{u_{1}}=\tau_{u_{2}}$ iff $u_{1} u_{1}^{*}=u_{2} u_{2}^{*}, u_{1}^{*} u_{1}=u_{2}^{*} u_{2}$, and $u_{1} u_{2}^{*}$ and $u_{1}^{*} u_{2}$ both belong to $\mathcal{D}(E)$.

On the proof of the main theorem

(1) \Longrightarrow 3: Let
$N_{E}=\left\{u \in C^{*}(E): u\right.$ is a partial isometry,

$$
\left.u \mathcal{D}(E) u^{*} \subseteq \mathcal{D}(E), u^{*} \mathcal{D}(E) u \subseteq \mathcal{D}(E)\right\}
$$

If $u \in N_{E}$, then $u u^{*}$ and $u^{*} u$ belong to $\mathcal{D}(E)$ which we will identify with $C_{0}\left(E^{\infty}\right)$. There is for each $u \in N_{E}$ a unique $\tau_{u} \in \mathcal{S}\left(E^{\infty}\right)$ satisfying $u f u^{*}=f \circ \tau_{u}$ and $u^{*} f u=f \circ \tau_{u}^{-1}$ for all $f \in C_{0}\left(E^{\infty}\right)$. The map $u \mapsto \tau_{u}$ is a surjective map from N_{E} to $\mathcal{S}\left(E^{\infty}\right)$, and $\tau_{u_{1}}=\tau_{u_{2}}$ iff $u_{1} u_{1}^{*}=u_{2} u_{2}^{*}, u_{1}^{*} u_{1}=u_{2}^{*} u_{2}$, and $u_{1} u_{2}^{*}$ and $u_{1}^{*} u_{2}$ both belong to $\mathcal{D}(E)$. It follows that if there is an isomorphism between $C^{*}(E)$ and $C^{*}(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$, then there is a homeomorphism $h: E^{\infty} \rightarrow F^{\infty}$ such that $h \circ \mathcal{S}\left(E^{\infty}\right) \circ h^{-1}=\mathcal{S}\left(F^{\infty}\right)$.

Some remarks about the main theorem

Some remarks about the main theorem

(1) We believe that the assumptions that E and F are row-finite with no sources can be dropped without too much problems.

Some remarks about the main theorem

(1) We believe that the assumptions that E and F are row-finite with no sources can be dropped without too much problems.
(2) We also believe that the theorem (and the proof) holds if E and F are replaced by higher rank graphs.

Examples

Examples

(1) If $\left(E^{\infty}, \sigma_{E}\right)$ and $\left(F^{\infty}, \sigma_{F}\right)$ are conjugate, then E^{∞} and F^{∞} are continuously orbit equivalent.

Examples

(1) If $\left(E^{\infty}, \sigma_{E}\right)$ and $\left(F^{\infty}, \sigma_{F}\right)$ are conjugate, then E^{∞} and F^{∞} are continuously orbit equivalent. It follows that if F is an in-split of E, then there is an isomorphism between $C^{*}(E)$ and $C^{*}(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$ (this is a small improvement of a result by Bates and Pask).

Examples

(2) Let E be the graph

Examples

(2) Let E be the graph

and let F be the graph

Examples

(2) Let E be the graph

and let F be the graph

Then $e_{1} e_{2}^{n} x \mapsto f_{1}\left(f_{2} f_{1}\right)^{n} x, e_{2}^{n} x \mapsto\left(f_{2} f_{1}\right)^{n} x, x \mapsto x$ give raise to a continuously orbit equivalence between E^{∞} and F^{∞}.

Examples

(2) Let E be the graph

and let F be the graph

Then $e_{1} e_{2}^{n} x \mapsto f_{1}\left(f_{2} f_{1}\right)^{n} x, e_{2}^{n} x \mapsto\left(f_{2} f_{1}\right)^{n} x, x \mapsto x$ give raise to a continuously orbit equivalence between E^{∞} and F^{∞}. So there is an isomorphism between $C^{*}(E)$ and $C^{*}(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$.

Examples

(3) Let E be the graph

Examples

(3) Let E be the graph

and let F be the graph

Examples

(3) Let E be the graph

and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set,

Examples

(3) Let E be the graph

and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set, but $C^{*}(E) \cong \mathcal{O}_{2} \not \approx \mathcal{O}_{3} \cong C^{*}(F)$,

-

Examples

(3) Let E be the graph

and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set, but $C^{*}(E) \cong \mathcal{O}_{2} \not \approx \mathcal{O}_{3} \cong C^{*}(F)$, so E^{∞} and F^{∞} are not continuously orbit equivalent.

-

Questions

Questions

(1) Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, and E^{∞} is not homeomorphic to F^{∞} ?

Questions

(1) Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, and E^{∞} is not homeomorphic to F^{∞} ?
(2) Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, E^{∞} is homeomorphic to F^{∞}, but E^{∞} and F^{∞} are not continuously orbit equivalent?

Questions

(1) Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, and E^{∞} is not homeomorphic to F^{∞} ?
(2) Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, E^{∞} is homeomorphic to F^{∞}, but E^{∞} and F^{∞} are not continuously orbit equivalent?
(0. Can any of you find graphs E and F such that $C^{*}(E) \cong C^{*}(F)$, E^{∞} is homeomorphic to F^{∞}, the diagram

$$
\begin{array}{cc}
K_{0}(\mathcal{D}(E)) & \longrightarrow K_{0}\left(C^{*}(E)\right) \\
\cong \uparrow & \downarrow \\
K_{0}(\mathcal{D}(F)) \longrightarrow K_{0}\left(C^{*}(F)\right)
\end{array}
$$

commutes, but E^{∞} and F^{∞} are not continuously orbit equivalent?

NTNU
Norwegian University of
Science and Technology

Questions

(4) Let E be the graph

Questions

(4) Let E be the graph

and let F be the graph

Questions

(4) Let E be the graph

and let F be the graph

Are E^{∞} and F^{∞} continuously orbit equivalent?

0
Norwegian University of
Science and Technology

