

Orbit equivalence and graph *C**-algebras Work in progress with Nathan Brownlowe and Michael Whittaker

Toke Meier Carlsen

Norwegian University of Science and Technology

Graph Algebras: Bridges between graph *C**-algebras and Leavitt path algebras Banff 2013-04-23

Carlsen, Orbit equivalence and graph C^* -algebras, page 2

A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.

- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.
- The elements of E⁰ are called vertices.

- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.
- The elements of E⁰ are called vertices.
- The elements of E^1 are called *edges*.

- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.
- The elements of E⁰ are called vertices.
- The elements of E^1 are called *edges*.
- If e is an edge, s(e) is called the source of e, and r(e) is called the range of e.

- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.
- The elements of E⁰ are called vertices.
- The elements of E^1 are called *edges*.
- If e is an edge, s(e) is called the source of e, and r(e) is called the range of e.
- If s(e) = v and r(e) = w, then we say that v emits e, and that w receives e.

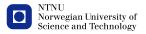
- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s : E¹ → E⁰.
- The elements of E⁰ are called vertices.
- The elements of E^1 are called *edges*.
- If e is an edge, s(e) is called the source of e, and r(e) is called the range of e.
- If s(e) = v and r(e) = w, then we say that v emits e, and that w receives e.
- If $v \in E^0$, then we let $vE^1 = \{e \in E^n : r(e) = v\}$ and $E^1v = \{e \in E^n : s(e) = v\}.$

• A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $s(\mu_i) = r(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.

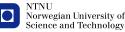
- A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $s(\mu_i) = r(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.
- We write $|\mu|$ for the length *n* of a path.

- A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $s(\mu_i) = r(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.
- We write $|\mu|$ for the length *n* of a path.
- We denote by E^n the set of paths of length *n*, and let $E^* = \bigcup_{n=0}^{\infty} E^n$.

- A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $s(\mu_i) = r(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.
- We write $|\mu|$ for the length *n* of a path.
- We denote by E^n the set of paths of length *n*, and let $E^* = \bigcup_{n=0}^{\infty} E^n$.
- We extend the range and source maps to E^* by setting $r(\mu) = r(\mu_1)$ and $s(\mu) = s(\mu_n)$ when $|\mu| \ge 1$, and $r(\mu) = s(\mu) = \mu$ when $\mu \in E^0$.



- A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $s(\mu_i) = r(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.
- We write $|\mu|$ for the length *n* of a path.
- We denote by E^n the set of paths of length *n*, and let $E^* = \bigcup_{n=0}^{\infty} E^n$.
- We extend the range and source maps to E^* by setting $r(\mu) = r(\mu_1)$ and $s(\mu) = s(\mu_n)$ when $|\mu| \ge 1$, and $r(\mu) = s(\mu) = \mu$ when $\mu \in E^0$.
- If $\mu, \nu \in E^*$ and $s(\mu) = r(\nu)$, then we write $\mu\nu$ for the path $\mu_1 \dots \mu_{|\mu|}\nu_1 \dots \nu_{|\nu|}$.



Sinks, sources and row-finite graphs

Carlsen, Orbit equivalence and graph C*-algebras, page 4

Sinks, sources and row-finite graphs

• A vertex $v \in E^*$ is called a *sink* if $E^1v = \emptyset$, and a *source* if $vE^1 = \emptyset$.

Sinks, sources and row-finite graphs

- A vertex $v \in E^*$ is called a *sink* if $E^1v = \emptyset$, and a *source* if $vE^1 = \emptyset$.
- A directed graph is said to be row-finite if vE¹ is finite for all v ∈ E⁰.

Graph C*-algebras

Carlsen, Orbit equivalence and graph C^* -algebras, page 5

www.ntnu.no

Graph C*-algebras

Let E be a row-finite directed graph with no sources.

Graph C*-algebras

Let *E* be a row-finite directed graph with no sources. The *C**-algebra *C**(*E*) of the graph *E* is defined as the universal *C**-algebra generated by a family $(s_e, p_v)_{e \in E^1, v \in E^0}$ consisting of *-* - partial isometries $(s_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(p_v)_{v \in E^0}$ satisfying

①
$$s_e^*s_e = p_{s(e)}$$
 for all $e \in E^1$

2
$$p_v = \sum_{e \in vE^1} s_e s_e^*$$
 for all $v \in E^0$.

Carlsen, Orbit equivalence and graph C^* -algebras, page 6

• For $\mu \in E^*$, we let $s_\mu = s_{\mu_1} \dots s_{\mu_{|\mu|}}$ when $|\mu| \ge 1$, and $s_\mu = p_\mu$ when $\mu \in E^0$.

- For $\mu \in E^*$, we let $s_\mu = s_{\mu_1} \dots s_{\mu_{|\mu|}}$ when $|\mu| \ge 1$, and $s_\mu = p_\mu$ when $\mu \in E^0$.
- We let $\mathcal{D}(E)$ denote the *C**-subalgebra of *C**(*E*) generated by $\{s_{\mu}s_{\mu}^{*} \mid \mu \in E^{*}\}.$

- For $\mu \in E^*$, we let $s_\mu = s_{\mu_1} \dots s_{\mu_{|\mu|}}$ when $|\mu| \ge 1$, and $s_\mu = p_\mu$ when $\mu \in E^0$.
- We let $\mathcal{D}(E)$ denote the *C**-subalgebra of *C**(*E*) generated by $\{s_{\mu}s_{\mu}^{*} \mid \mu \in E^{*}\}.$
- Let E and F be two row-finite directed graphs with no sources.

- For $\mu \in E^*$, we let $s_\mu = s_{\mu_1} \dots s_{\mu_{|\mu|}}$ when $|\mu| \ge 1$, and $s_\mu = p_\mu$ when $\mu \in E^0$.
- We let $\mathcal{D}(E)$ denote the *C**-subalgebra of *C**(*E*) generated by $\{s_{\mu}s_{\mu}^{*} \mid \mu \in E^{*}\}.$
- Let *E* and *F* be two row-finite directed graphs with no sources. We are interested in determining when there is an isomorphism ψ : C^{*}(E) → C^{*}(F) such that ψ(D(E)) = D(F).

Carlsen, Orbit equivalence and graph C^* -algebras, page 7

• An *infinite path* in a directed graph *E* is an infinite sequence $x = x_1 x_2 \dots$ of edges in *E* such that $s(x_i) = r(x_{i+1})$ for $i \in \{1, 2, \dots\}$.

- An *infinite path* in a directed graph *E* is an infinite sequence $x = x_1 x_2 \dots$ of edges in *E* such that $s(x_i) = r(x_{i+1})$ for $i \in \{1, 2, \dots\}$.
- We denote by E^{∞} the set of infinite paths in *E*.

- An *infinite path* in a directed graph *E* is an infinite sequence $x = x_1 x_2 \dots$ of edges in *E* such that $s(x_i) = r(x_{i+1})$ for $i \in \{1, 2, \dots\}$.
- We denote by E^{∞} the set of infinite paths in *E*.
- We extend the range map to E^{∞} by setting $r(x) = r(x_1)$.

- An *infinite path* in a directed graph *E* is an infinite sequence $x = x_1 x_2 \dots$ of edges in *E* such that $s(x_i) = r(x_{i+1})$ for $i \in \{1, 2, \dots\}$.
- We denote by E^{∞} the set of infinite paths in *E*.
- We extend the range map to E^{∞} by setting $r(x) = r(x_1)$.
- If $\mu \in E^*$, $x \in E^{\infty}$ and $s(\mu) = r(x)$, then we write μx for the path $\mu_1 \dots \mu_{|\mu|} x_1 x_2 \dots$ (if $\mu \in E^0$, then $\mu x = x$).

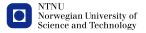
- An *infinite path* in a directed graph *E* is an infinite sequence $x = x_1 x_2 \dots$ of edges in *E* such that $s(x_i) = r(x_{i+1})$ for $i \in \{1, 2, \dots\}$.
- We denote by E^{∞} the set of infinite paths in *E*.
- We extend the range map to E^{∞} by setting $r(x) = r(x_1)$.
- If $\mu \in E^*$, $x \in E^{\infty}$ and $s(\mu) = r(x)$, then we write μx for the path $\mu_1 \dots \mu_{|\mu|} x_1 x_2 \dots$ (if $\mu \in E^0$, then $\mu x = x$).
- For $\mu \in E^*$, we let $Z(\mu) = \{\mu x \mid x \in E^{\infty}, \ s(\mu) = r(x)\}.$

• We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.

- We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.
- E[∞] then becomes a totally disconnected locally compact Hausdorff space.

- We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.
- E[∞] then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^*$.

- We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.
- E[∞] then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^*$.
- E^{∞} is compact if and only if E^{0} is finite.

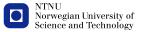


- We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.
- E[∞] then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^*$.
- E^{∞} is compact if and only if E^{0} is finite.
- There is a *-isomorphism from D(E) to C₀(E[∞]) which, for every μ ∈ E*, maps s_μs^{*}_μ to the characteristic function of Z(μ).

The infinite path space

- We equip E^{∞} with the topology generated by $\{Z(u) \mid u \in E^*\}$.
- E[∞] then becomes a totally disconnected locally compact Hausdorff space.
- $Z(\mu)$ is open and compact for all $\mu \in E^*$.
- E^{∞} is compact if and only if E^{0} is finite.
- There is a *-isomorphism from D(E) to C₀(E[∞]) which, for every μ ∈ E*, maps s_μs^{*}_μ to the characteristic function of Z(μ).
- We let $\sigma_E: E^{\infty} \to E^{\infty}$ denote the map

$$x_1 x_2 x_3 \ldots \mapsto x_2 x_3 \ldots$$



Carlsen, Orbit equivalence and graph C*-algebras, page 9

Let E and F be two row-finite directed graphs with no sources.

Let *E* and *F* be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are *continuously orbit* equivalent

Let *E* and *F* be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are *continuously orbit equivalent* if there exists a homeomorphism $h : E^{\infty} \to F^{\infty}$ and \dots continuous functions $k_1, l_1 : E^{\infty} \to \mathbb{N}$ and $k_2, l_2 : F^{\infty} \to \mathbb{N}$ such that

Let *E* and *F* be two row-finite directed graphs with no sources. We say the infinite path spaces E^{∞} and F^{∞} are *continuously orbit* equivalent if there exists a homeomorphism $h: E^{\infty} \to F^{\infty}$ and ____ continuous functions $k_1, l_1: E^{\infty} \to \mathbb{N}$ and $k_2, l_2: F^{\infty} \to \mathbb{N}$ such that

$$\sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x) = \sigma_{F}^{l_{1}(x)} \circ h(x) \text{ and}$$

$$\sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y) = \sigma_{E}^{l_{2}(y)} \circ h^{-1}(y),$$

for all $x \in E^{\infty}$, $y \in F^{\infty}$.

Cycles



www.ntnu.no

Cycles

• A *cycle* is a path $\mu \in E^*$ for which $\mu \ge 1$ and $s(\mu) = r(\mu)$.

Cycles

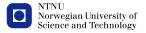
- A cycle is a path $\mu \in E^*$ for which $\mu \ge 1$ and $s(\mu) = r(\mu)$.
- An *entry* for a cycle μ is an edge $e \in E^1$ such that $r(e) = r(\mu_i)$ and $e \neq \mu_i$ for some $i \in \{1, 2, ..., |\mu|\}$.

Carlsen, Orbit equivalence and graph C*-algebras, page 11

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

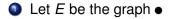
Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:

- There is an isomorphism $\psi : C^*(E) \to C^*(F)$ such that $\psi(\mathcal{D}(E)) = \mathcal{D}(F)$;
- 2 E^{∞} and F^{∞} are continuously orbit equivalent.



Carlsen, Orbit equivalence and graph C^* -algebras, page 12

www.ntnu.no



Carlsen, Orbit equivalence and graph C^* -algebras, page 12

• Let *E* be the graph • and let *F* be the graph $\bullet \blacktriangleleft$

Let E be the graph ● and let F be the graph ●
Then E[∞] = {*} = F[∞],

Let E be the graph ● and let F be the graph ▲
Then E[∞] = {*} = F[∞], so E[∞] and F[∞] are continuously orbit equivalent,

• Let *E* be the graph • and let *F* be the graph • Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.

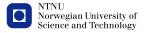
- Let *E* be the graph and let *F* be the graph Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.

- Let *E* be the graph and let *F* be the graph \checkmark Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.
- 2 Let E be the graph •

and let F be the graph \cdots

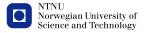
- Let *E* be the graph and let *F* be the graph \checkmark Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.
- 2 Let E be the graph •

and let *F* be the graph $\cdots \blacksquare \blacksquare$ Then $E^{\infty} = \mathbb{N} = F^{\infty}$,



- Let *E* be the graph and let *F* be the graph Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.

and let *F* be the graph $\cdots = \bullet = \bullet = \bullet = \bullet = \bullet$ Then $E^{\infty} = \mathbb{N} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent,



- Let *E* be the graph and let *F* be the graph Then $E^{\infty} = \{\star\} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.

and let *F* be the graph $\cdots \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Then $E^{\infty} = \mathbb{N} = F^{\infty}$, so E^{∞} and F^{∞} are continuously orbit equivalent, but $C^*(E) \cong \mathcal{K} \ncong \mathcal{K} \otimes C(\mathbb{T}) \cong C^*(F)$.

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry.

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. We denote by $S(E^{\infty})$ the set of all partial homeomorphisms of E^{∞} whose domain and range are compact – open sets, and such that there exist continuous functions $k_{\tau}, l_{\tau} : \text{Dom}(\tau) \to \mathbb{N}$ satisfying

$$\sigma_E^{k_\tau(x)}(\tau(x)) = \sigma_E^{l_\tau(x)}(x).$$

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. We denote by $S(E^{\infty})$ the set of all partial homeomorphisms of E^{∞} whose domain and range are compact – open sets, and such that there exist continuous functions $k_{\tau}, l_{\tau} : \text{Dom}(\tau) \to \mathbb{N}$ satisfying

$$\sigma_E^{k_\tau(x)}(\tau(x)) = \sigma_E^{l_\tau(x)}(x).$$

If $h: E^{\infty} \to F^{\infty}$ is a homeomorphism, we denote by $h \circ S(E^{\infty}) \circ h^{-1}$ the set

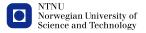
$$\{h \circ \tau \circ h^{-1}|_{h(\mathsf{Dom}(\tau))} : \tau \in \mathcal{S}(E^{\infty})\}.$$



Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:

- There is an isomorphism $\psi : C^*(E) \to C^*(F)$ such that $\psi(\mathcal{D}(E)) = \mathcal{D}(F)$;
- 2 E^{∞} and F^{∞} are continuously orbit equivalent;
- **③** there is a homeomorphism $h : E^{\infty} \to F^{\infty}$ such that $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$.

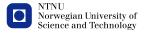


Carlsen, Orbit equivalence and graph C*-algebras, page 15

 When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let G_{S(E[∞])} be the groupoid

$$\{(\mathbf{x}, \tau) \mid \tau \in \mathcal{S}(\mathbf{E}^{\infty}), \ \mathbf{x} \in \mathsf{Dom}(\tau)\}/\sim$$

where $(x_1, \tau_1) \sim (x_2, \tau_2)$ if $x_1 = x_2$ and there is a a compact open neighbourhood $U \subseteq \text{Dom}(\tau_1) \cap \text{Dom}(\tau_2)$ of x_1 such that τ_1 and τ_2 are equal on U.



 When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let G_{S(E∞)} be the groupoid

$$\{(\mathbf{x}, \tau) \mid \tau \in \mathcal{S}(\mathbf{E}^{\infty}), \ \mathbf{x} \in \mathsf{Dom}(\tau)\}/\sim$$

where $(x_1, \tau_1) \sim (x_2, \tau_2)$ if $x_1 = x_2$ and there is a a compact open neighbourhood $U \subseteq \text{Dom}(\tau_1) \cap \text{Dom}(\tau_2)$ of x_1 such that τ_1 and τ_2 are equal on U.

•
$$[x, \tau]^{-1} = [\tau(x), \tau^{-1}].$$

 When E is a row-finite directed graph with no sinks in which every cycle has an entry, then we let G_{S(E∞)} be the groupoid

$$\{(\mathbf{x}, \tau) \mid \tau \in \mathcal{S}(\mathbf{E}^{\infty}), \ \mathbf{x} \in \mathsf{Dom}(\tau)\}/\sim$$

where $(x_1, \tau_1) \sim (x_2, \tau_2)$ if $x_1 = x_2$ and there is a a compact open neighbourhood $U \subseteq \text{Dom}(\tau_1) \cap \text{Dom}(\tau_2)$ of x_1 such that τ_1 and τ_2 are equal on U.

•
$$[x, \tau]^{-1} = [\tau(x), \tau^{-1}].$$

• $[x_1, \tau_1]$ and $[x_2, \tau_2]$ are composable if $x_1 = \tau_2(x_2)$ in which case $[x_1, \tau_1][x_2, \tau_2] = [x_2, \tau_1 \circ \tau_2]$.

NTNU Norwegian University of Science and Technology

• When $\tau \in \mathcal{S}(E^{\infty})$ and U is an open subset of Dom (τ) , then we let $Z(U, \tau) = \{[x, \tau] \mid x \in U\}$.

- When $\tau \in \mathcal{S}(E^{\infty})$ and *U* is an open subset of Dom (τ) , then we let $Z(U, \tau) = \{[x, \tau] \mid x \in U\}$.
- We equip G_{S(E[∞])} with the topology generated by
 {Z(U, τ) | τ ∈ S(E[∞]), U is an open subset of Dom(τ)}.

- When $\tau \in \mathcal{S}(E^{\infty})$ and *U* is an open subset of Dom (τ) , then we let $Z(U, \tau) = \{[x, \tau] \mid x \in U\}$.
- We equip G_{S(E[∞])} with the topology generated by {Z(U, τ) | τ ∈ S(E[∞]), U is an open subset of Dom(τ)}.
- Then G_{S(E[∞])} becomes a locally compact, Hausdorff, étale topological groupoid and G⁰_{S(E[∞])} is homeomorphic to E[∞].

The Cuntz-Krieger uniqueness theorem

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry.

The Cuntz-Krieger uniqueness theorem

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Let ϕ be a *-homomorphism defined on $C^*(E)$.

The Cuntz-Krieger uniqueness theorem

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Let ϕ be a *-homomorphism defined on $C^*(E)$. Then ϕ is injective if and only if $\phi(p_v) \neq 0$ for all $v \in E^0$...

Carlsen, Orbit equivalence and graph C^* -algebras, page 18

www.ntnu.no

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry.

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^*(E) \to C^*(\mathcal{G}_E)$ such that

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^*(E) \to C^*(\mathcal{G}_E)$ such that

•
$$\phi(p_v) = \chi_{Z(Z(v), \mathsf{Id}_{Z(v)})}$$
 for $v \in E^0$,

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^*(E) \to C^*(\mathcal{G}_E)$ such that

•
$$\phi(p_v) = \chi_{Z(Z(v), \operatorname{Id}_{Z(v)})}$$
 for $v \in E^0$,

2
$$\phi(s_e) = \chi_{Z(Z(e),(\sigma_E)|_{Z(e)})}$$
 for $e \in E^1$,

Let *E* be a row-finite directed graph with no sources and in which every cycle has an entry. Then there exists a *-isomorphism $\phi: C^*(E) \to C^*(\mathcal{G}_E)$ such that

•
$$\phi(p_v) = \chi_{Z(Z(v), \mathsf{Id}_{Z(v)})}$$
 for $v \in E^0$,

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), Id_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)|_{Z(e)})$.

www.ntnu.no

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), Id_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)_{|Z(e)})$. It is not difficult to check that $(t_e, q_v)_{e \in E^1, v \in E^0}$ is a family consisting of partial isometries $(t_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(q_v)_{v \in E^0}$ satisfying

•
$$t_e^* t_e = q_{s(e)}$$
 for all $e \in E^1$,

$$\ \, {\it @} \ \, q_{\it v} = \textstyle \sum_{e \in {\it v} E^1} t_e t_e^* \ \, {\it for \ all} \ \, {\it v} \in E^0.$$

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), \operatorname{Id}_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)_{|Z(e)})$. It is not difficult to check that $(t_e, q_v)_{e \in E^1, v \in E^0}$ is a family consisting of partial isometries $(t_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(q_v)_{v \in E^0}$ satisfying

$$\ \, \bullet t_e^*t_e=q_{s(e)} \ \, {\rm for \ all} \ \, e\in E^1,$$

2 $q_v = \sum_{e \in vE^1} t_e t_e^*$ for all $v \in E^0$.

It then follows from the universal property of $C^*(E)$ that there exists a *-homomorphism $\phi : C^*(E) \to C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ such that $\phi(p_v) = q_v$ and $\phi(s_e) = t_e$.

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), \operatorname{Id}_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)_{|Z(e)})$. It is not difficult to check that $(t_e, q_v)_{e \in E^1, v \in E^0}$ is a family consisting of partial isometries $(t_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(q_v)_{v \in E^0}$ satisfying

$$\ \, \bullet t_e^*t_e=q_{s(e)} \ \, \hbox{for all} \ \, e\in E^1,$$

2 $q_v = \sum_{e \in vE^1} t_e t_e^*$ for all $v \in E^0$.

It then follows from the universal property of $C^*(E)$ that there exists a *-homomorphism $\phi : C^*(E) \to C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ such that $\phi(p_v) = q_v$ and $\phi(s_e) = t_e$. ϕ is surjective since $C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ is generated by $(t_e, q_v)_{e \in E^1, v \in E^0}$.

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), \operatorname{Id}_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)_{|Z(e)})$. It is not difficult to check that $(t_e, q_v)_{e \in E^1, v \in E^0}$ is a family consisting of partial isometries $(t_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(q_v)_{v \in E^0}$ satisfying

$$\ \, \bullet \ \, t_e^*t_e=q_{s(e)} \ \, {\rm for \ all} \ \, e\in E^1,$$

2 $q_v = \sum_{e \in vE^1} t_e t_e^*$ for all $v \in E^0$.

It then follows from the universal property of $C^*(E)$ that there exists a *-homomorphism $\phi : C^*(E) \to C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ such that $\phi(p_v) = q_v$ and $\phi(s_e) = t_e$. ϕ is surjective since $C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ is generated by $(t_e, q_v)_{e \in E^1, v \in E^0}$. It is easy to check that $\phi(\mathcal{D}(E)) = C_0(\mathcal{G}^0_{\mathcal{S}(E^\infty)})$ and that ϕ restricted to $\mathcal{D}(E)$ is injective.

NTNU Norwegian University of Science and Technology

For $v \in E^0$ let q_v denote the characteristic function of $Z(Z(v), \operatorname{Id}_{Z(v)})$, and for $e \in E^1$ let t_e denote the characteristic function of $Z(Z(e), (\sigma_E)_{|Z(e)})$. It is not difficult to check that $(t_e, q_v)_{e \in E^1, v \in E^0}$ is a family consisting of partial isometries $(t_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(q_v)_{v \in E^0}$ satisfying

$$\ \, \bullet \ \, t_e^*t_e=q_{s(e)} \ \, {\rm for \ all} \ \, e\in E^1,$$

2 $q_v = \sum_{e \in vE^1} t_e t_e^*$ for all $v \in E^0$.

It then follows from the universal property of $C^*(E)$ that there exists a *-homomorphism $\phi : C^*(E) \to C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ such that $\phi(p_v) = q_v$ and $\phi(s_e) = t_e$. ϕ is surjective since $C^*(\mathcal{G}_{\mathcal{S}(E^\infty)})$ is generated by $(t_e, q_v)_{e \in E^1, v \in E^0}$. It is easy to check that $\phi(\mathcal{D}(E)) = C_0(\mathcal{G}^0_{\mathcal{S}(E^\infty)})$ and that ϕ restricted to $\mathcal{D}(E)$ is injective. It then follows from the Cuntz-Krieger uniqueness theorem that ϕ is injective.

Norwegian University of Science and Technology

The main theorem

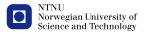
Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:

- There is an isomorphism $\psi : C^*(E) \to C^*(F)$ such that $\psi(\mathcal{D}(E)) = \mathcal{D}(F)$;
- 2 E^{∞} and F^{∞} are continuously orbit equivalent;
- there is a homeomorphism $h : E^{\infty} \to F^{\infty}$ such that $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$;
- the groupoids G_{S(E[∞])} and G_{S(F[∞])} are isomorphic (as topological groupoids with Haar systems).

Remark



Carlsen, Orbit equivalence and graph C^* -algebras, page 21

Remark

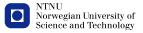
The main theorem, and its proof, is inspired by the results in Kengo Matsumoto's two papers

- Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras,
- Orbit equivalence of one-sided subshifts and the associated C*-algebras.

The main theorem

Suppose E and F are row-finite directed graphs with no sources and in which every cycle has an entry. Then the following are equivalent:

- There is an isomorphism $\psi : C^*(E) \to C^*(F)$ such that $\psi(\mathcal{D}(E)) = \mathcal{D}(F)$;
- 2 E^{∞} and F^{∞} are continuously orbit equivalent;
- there is a homeomorphism $h : E^{\infty} \to F^{\infty}$ such that $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$;
- the groupoids G_{S(E[∞])} and G_{S(F[∞])} are isomorphic (as topological groupoids with Haar systems).



2 \iff **3**: Let $h: E^{\infty} \to F^{\infty}$ be a homeomorphism.

② ⇐⇒ ③: Let $h: E^{\infty} \to F^{\infty}$ be a homeomorphism. It is straight forward to check that there exist continuous functions $k_1, l_1: E^{\infty} \to \mathbb{N}$ and $k_2, l_2: F^{\infty} \to \mathbb{N}$ such that

$$\sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x) = \sigma_{F}^{l_{1}(x)} \circ h(x) \text{ and}$$

$$\sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y) = \sigma_{E}^{l_{2}(y)} \circ h^{-1}(y),$$

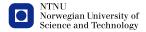
for all $x \in E^{\infty}$, $y \in F^{\infty}$,

② ⇐⇒ ③: Let $h: E^{\infty} \to F^{\infty}$ be a homeomorphism. It is straight forward to check that there exist continuous functions $k_1, l_1: E^{\infty} \to \mathbb{N}$ and $k_2, l_2: F^{\infty} \to \mathbb{N}$ such that

$$\sigma_{F}^{k_{1}(x)} \circ h \circ \sigma_{E}(x) = \sigma_{F}^{l_{1}(x)} \circ h(x) \text{ and}$$

$$\sigma_{E}^{k_{2}(y)} \circ h^{-1} \circ \sigma_{F}(y) = \sigma_{E}^{l_{2}(y)} \circ h^{-1}(y),$$

for all $x \in E^{\infty}$, $y \in F^{\infty}$, if and only if $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$.



③ ⇒ ④: It is also easy to check that if $h : E^{\infty} \to F^{\infty}$ is a homeomorphism such that $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$,

^③ ⇒ ^④: It is also easy to check that if $h : E^{\infty} \to F^{\infty}$ is a homeomorphism such that $h \circ S(E^{\infty}) \circ h^{-1} = S(F^{\infty})$, then $[x, \tau] \mapsto [h(x), h \circ \tau \circ h^{-1}]$ is an isomorphism between $\mathcal{G}_{S(E^{\infty})}$ and $\mathcal{G}_{S(F^{\infty})}$.

(4) \Longrightarrow (1): If $\mathcal{G}_{\mathcal{S}(E^{\infty})}$ and $\mathcal{G}_{\mathcal{S}(F^{\infty})}$ are isomorphic,

(a) \Longrightarrow (c): If $\mathcal{G}_{\mathcal{S}(E^{\infty})}$ and $\mathcal{G}_{\mathcal{S}(F^{\infty})}$ are isomorphic, then there is an isomorphism between $C^*(\mathcal{G}_{\mathcal{S}(E^{\infty})})$ and $C^*(\mathcal{G}_{\mathcal{S}(F^{\infty})})$ which maps $C_0(\mathcal{G}_{\mathcal{S}(E^{\infty})}^0)$ onto $C_0(\mathcal{G}_{\mathcal{S}(F^{\infty})}^0)$, and since there is an isomorphism between $C^*(E)$ and $C^*(\mathcal{G}_{\mathcal{S}(E^{\infty})})$ which maps $\mathcal{D}(E)$ onto $C_0(\mathcal{G}_{\mathcal{S}(E^{\infty})}^0)$, and an isomorphism between $C^*(F)$ and $C^*(\mathcal{G}_{\mathcal{S}(F^{\infty})})$ which maps $\mathcal{D}(F)$ onto $C_0(\mathcal{G}_{\mathcal{S}(F^{\infty})}^0)$, it follows that there is an isomorphism between $C^*(E)$ and $C^*(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$.

$\textcircled{1} \Longrightarrow \textcircled{3}: Let$

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \\ u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E) \}.$

$\mathbf{1} \Longrightarrow \mathbf{3}$: Let

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \}$

 $u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E)\}.$

If $u \in N_E$, then uu^* and u^*u belong to $\mathcal{D}(E)$ which we will identify with $C_0(E^{\infty})$.

$\mathbf{1} \Longrightarrow \mathbf{3}$: Let

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \\ u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E) \}.$

If $u \in N_E$, then uu^* and u^*u belong to $\mathcal{D}(E)$ which we will identify with $C_0(E^\infty)$. There is for each $u \in N_E$ a unique $\tau_u \in \mathcal{S}(E^\infty)$ satisfying $ufu^* = f \circ \tau_u$ and $u^*fu = f \circ \tau_u^{-1}$ for all $f \in C_0(E^\infty)$.

$\mathbf{1} \Longrightarrow \mathbf{3}$: Let

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \\ u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E) \}.$ $u \in N_E \text{ then } uu^* \text{ and } u^*u \text{ belong to } \mathcal{D}(E) \text{ which we will identify}.$

If $u \in N_E$, then uu^* and u^*u belong to $\mathcal{D}(E)$ which we will identify with $C_0(E^{\infty})$. There is for each $u \in N_E$ a unique $\tau_u \in \mathcal{S}(E^{\infty})$ satisfying $ufu^* = f \circ \tau_u$ and $u^*fu = f \circ \tau_u^{-1}$ for all $f \in C_0(E^{\infty})$. The map $u \mapsto \tau_u$ is a surjective map from N_E to $\mathcal{S}(E^{\infty})$,

$\mathbf{1} \Longrightarrow \mathbf{3}$: Let

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \\ u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E) \}.$

If $u \in N_E$, then uu^* and u^*u belong to $\mathcal{D}(E)$ which we will identify with $C_0(E^{\infty})$. There is for each $u \in N_E$ a unique $\tau_u \in \mathcal{S}(E^{\infty})$ satisfying $ufu^* = f \circ \tau_u$ and $u^*fu = f \circ \tau_u^{-1}$ for all $f \in C_0(E^{\infty})$. The map $u \mapsto \tau_u$ is a surjective map from N_E to $\mathcal{S}(E^{\infty})$, and $\tau_{u_1} = \tau_{u_2}$ iff $u_1u_1^* = u_2u_2^*$, $u_1^*u_1 = u_2^*u_2$, and $u_1u_2^*$ and $u_1^*u_2$ both belong to $\mathcal{D}(E)$.

$\mathbf{1} \Longrightarrow \mathbf{3}$: Let

 $N_E = \{ u \in C^*(E) : u \text{ is a partial isometry}, \}$

 $u\mathcal{D}(E)u^* \subseteq \mathcal{D}(E), u^*\mathcal{D}(E)u \subseteq \mathcal{D}(E)\}.$

If $u \in N_E$, then uu^* and u^*u belong to $\mathcal{D}(E)$ which we will identify with $C_0(E^{\infty})$. There is for each $u \in N_E$ a unique $\tau_u \in \mathcal{S}(E^{\infty})$ satisfying $ufu^* = f \circ \tau_u$ and $u^*fu = f \circ \tau_u^{-1}$ for all $f \in C_0(E^{\infty})$. The map $u \mapsto \tau_u$ is a surjective map from N_E to $\mathcal{S}(E^{\infty})$, and $\tau_{u_1} = \tau_{u_2}$ iff $u_1u_1^* = u_2u_2^*$, $u_1^*u_1 = u_2^*u_2$, and $u_1u_2^*$ and $u_1^*u_2$ both belong to $\mathcal{D}(E)$. It follows that if there is an isomorphism between $C^*(E)$ and $C^*(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$, then there is a homeomorphism $h : E^{\infty} \to F^{\infty}$ such that $h \circ \mathcal{S}(E^{\infty}) \circ h^{-1} = \mathcal{S}(F^{\infty})$.

NTNU Norwegian University of Science and Technology

Some remarks about the main theorem

Some remarks about the main theorem

We believe that the assumptions that *E* and *F* are row-finite with no sources can be dropped without too much problems.

Some remarks about the main theorem

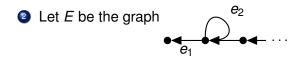
- We believe that the assumptions that E and F are row-finite with no sources can be dropped without too much problems.
- We also believe that the theorem (and the proof) holds if E and F are replaced by higher rank graphs.

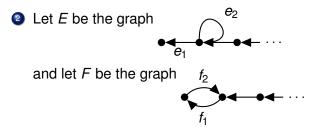
Carlsen, Orbit equivalence and graph C*-algebras, page 28

www.ntnu.no

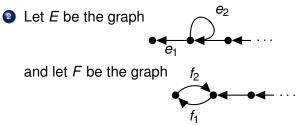
• If (E^{∞}, σ_E) and (F^{∞}, σ_F) are conjugate, then E^{∞} and F^{∞} are continuously orbit equivalent.

If (E[∞], σ_E) and (F[∞], σ_F) are conjugate, then E[∞] and F[∞] are continuously orbit equivalent. It follows that if F is an in-split of E, then there is an isomorphism between C^{*}(E) and C^{*}(F) which maps D(E) onto D(F) (this is a small improvement of a result by Bates and Pask).

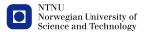


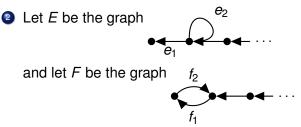






Then $e_1e_2^n x \mapsto f_1(f_2f_1)^n x$, $e_2^n x \mapsto (f_2f_1)^n x$, $x \mapsto x$ give raise to a continuously orbit equivalence between E^{∞} and F^{∞} .





Then $e_1e_2^n x \mapsto f_1(f_2f_1)^n x$, $e_2^n x \mapsto (f_2f_1)^n x$, $x \mapsto x$ give raise to a continuously orbit equivalence between E^{∞} and F^{∞} . So there is an isomorphism between $C^*(E)$ and $C^*(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$.

NTNU Norwegian University of Science and Technology

Let E be the graph

Let E be the graph

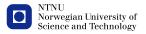
and let F be the graph

Carlsen, Orbit equivalence and graph C^* -algebras, page 30

Let E be the graph

and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set,



Let E be the graph

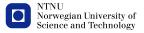
and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set, but $C^*(E) \cong \mathcal{O}_2 \ncong \mathcal{O}_3 \cong C^*(F)$,

Let E be the graph

and let F be the graph

Then E^{∞} and F^{∞} are both homeomorphic to the Cantor set, but $C^*(E) \cong \mathcal{O}_2 \not\cong \mathcal{O}_3 \cong C^*(F)$, so E^{∞} and F^{∞} are not continuously orbit equivalent.



Carlsen, Orbit equivalence and graph C^* -algebras, page 31

• Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, and E^{∞} is not homeomorphic to F^{∞} ?

- Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, and E^{∞} is not homeomorphic to F^{∞} ?
- Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, E^{∞} is homeomorphic to F^{∞} , but E^{∞} and F^{∞} are not continuously orbit equivalent?

- Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, and E^{∞} is not homeomorphic to F^{∞} ?
- Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, E^{∞} is homeomorphic to F^{∞} , but E^{∞} and F^{∞} are not continuously orbit equivalent?
- So Can any of you find graphs *E* and *F* such that $C^*(E) \cong C^*(F)$, E^{∞} is homeomorphic to F^{∞} , the diagram

commutes, but E^{∞} and F^{∞} are not continuously orbit equivalent?

Science and Technology

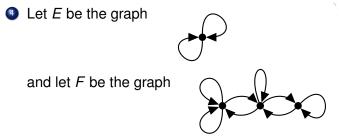
Let E be the graph

Let E be the graph

and let F be the graph



Carlsen, Orbit equivalence and graph C*-algebras, page 32



Are E^{∞} and F^{∞} continuously orbit equivalent?

