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Separated graphs: the initial motivation

Leavitt (1962) defined algebras LK (m, n) for 1 ≤ m ≤ n in the
following way:
LK (m, n) is the K -algebra with generators

{Xji ,X
∗
ji : 1 ≤ j ≤ m, 1 ≤ i ≤ n}

and defining relations:

XX ∗ = Im, X ∗X = In,

where X = (Xji ).
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Separated graphs

Definition

A separated graph is a pair (E ,C ) where E is a graph,
C =

⊔
v∈E0 Cv , and Cv is a partition of s−1(v) (into pairwise

disjoint nonempty subsets) for every vertex v :

s−1(v) =
⊔

X∈Cv

X .

(In case v is a sink, we take Cv to be the empty family of subsets
of s−1(v).)
The constructions we introduce revert to existing ones in case
Cv = {s−1(v)} for each v ∈ E 0. We refer to a non-separated
graph in that situation.
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The Leavitt path algebra of a separated graph

Definition

The Leavitt path algebra of the separated graph (E ,C ) with
coefficients in the field K , is the K -algebra LK (E ,C ) with
generators {v , e, e∗ | v ∈ E 0, e ∈ E 1}, subject to the following
relations:

(V) vv ′ = δv ,v ′v for all v , v ′ ∈ E 0 ,

(E1) s(e)e = er(e) = e for all e ∈ E 1 ,

(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E 1 ,

(SCK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ X , X ∈ C , and

(SCK2) v =
∑

e∈X ee∗ for every finite set X ∈ Cv , v ∈ E 0.
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Example

Let 1 ≤ m ≤ n. Let us consider the separated graph
(E (m, n),C (m, n)), where E (m, n) is the graph consisting of two
vertices v , w and with

E (m, n)1 = {α1, . . . , αn, β1, . . . , βm},

with s(αi ) = s(βj) = v and r(αi ) = r(βj) = w for all i , j , and
C (m, n) consists of two elements X = {α1, . . . , αn} and
Y = {β1, . . . , βm}.
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v

w

Figure: The separated graph (E (2, 3),C (2, 3))
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Lemma (E. Pardo)

There is a natural isomorphism

γ : LK (m, n)→ wLK (E (m, n),C (m, n))w

given by
γ(Xji ) = β∗j αi , γ(X ∗ji ) = α∗i βj .

This induces an isomorphism

LK (E (m, n),C (m, n)) ∼= Mn+1(LK (m, n)) ∼= Mm+1(LK (m, n)).

Note that

γ(
n∑

i=1

XjiX
∗
ki ) =

n∑
i=1

β∗j αiα
∗
i βk = β∗j βk = δjkw

and similarly γ(
∑m

j=1 X ∗ji Xjk) = δikw so γ is a well-defined
homomorphism, which is shown to be an isomorphism.
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Definition

(E ,C ) is finitely separated in case |X | <∞ for all X ∈ C .

Definition

Let (E ,C ) be a finitely separated graph. The monoid of (E ,C ) is
the abelian monoid M(E ,C ) with generators {av | v ∈ E 0} and
relations

av =
∑
e∈X

ar(e), ∀X ∈ Cv ,∀v ∈ E 0.

Theorem (Goodearl-A)

If (E ,C ) is a finitely separated graph then the natural map

M(E ,C )→ V(LK (E ,C ))

is an isomorphism.
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Example

For (E ,C ) = (E (m, n),C (m, n)), we have

V(L(E ,C )) ∼= M(E ,C ) ∼= 〈a | ma = na〉.

a result originally due to Bergman.
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Proposition

If M is any conical abelian monoid, then there exists a bipartite,
finitely separated graph (E ,C ) such that

M ∼= M(E ,C ) ∼= V(LK (E ,C )).

E can be taken finite if M is finitely generated.
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Example

In the example M = 〈a, b | 2a = a + 2b〉, we have two generators
a, b and one relation R : 2a = a + 2b.

R

a b

Figure: M(E ,C ) = 〈R, a, b | R = 2a,R = a + 2b〉 ∼= M.

Pere Ara Universitat Autònoma de Barcelona
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We remark that, in contrast, the monoids ME
∼= V(LK (E )) of a

Leavitt path algebra have very special properties:

• ME is conical x + y = 0 =⇒ x = y = 0 (this is a general
property of V(R) for any ring R)

• ME has the Riesz refinement property: If a + b = c + d then
∃x , y , z , t such that a = x + y , b = z + t, c = x + z and d = y + t:

c d
a x y
b z t
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• ME is a separative monoid: If a + c = b + c and c ≤ na,
c ≤ mb for some n,m ∈ N, then a = b.

where, for x , y in an abelian monoid M, we write x ≤ y in case
y = x + z for some z ∈ M.

• ME is unperforated: na ≤ nb =⇒ a ≤ b.

This was proved by A-Moreno-Pardo.

Even amongst the abelian monoids satisfying all these conditions, the
ones of the form ME are special! (by work of A-Perera-Wehrung)

Pere Ara Universitat Autònoma de Barcelona
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Computation of K0

Let (E ,C ) be a finitely separated graph. We denote by
1C : Z(C) → Z(E0) and At

(E ,C) : Z(C) → Z(E0) the homomorphisms
defined by

1C (δX ) = δv if X ∈ Cv

and

At
(E ,C)(δX ) =

∑
w∈E0

aX (v ,w)δw (v ∈ E 0, X ∈ Cv ),

where (δX )X∈C denotes the canonical basis of Z(C), (δw ) the
canonical basis of Z(E0) and, for X ∈ Cv , aX (v ,w) is the number
of arrows in X from v to w .
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The next theorem follows from the computation of V(LK (E ,C )).

Theorem

Let (E ,C ) be a finitely separated graph. Then

K0(LK (E ,C )) ∼= coker
(
1C − At

(E ,C) : Z(C) −→ Z(E0)
)
.
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Definition

For any separated graph (E ,C ), the (full) graph C*-algebra of the
separated graph (E ,C ) is the universal C*-algebra with generators
{v , e | v ∈ E 0, e ∈ E 1}, subject to the following relations:

(V) vw = δv ,wv and v = v∗ for all v ,w ∈ E 0 ,

(E) s(e)e = er(e) = e for all e ∈ E 1 ,

(SCK1) e∗f = δe,f r(e) for all e, f ∈ X , X ∈ C , and

(SCK2) v =
∑

e∈X ee∗ for every finite set X ∈ Cv , v ∈ E 0.

In case (E ,C ) is trivially separated, C ∗(E ,C ) is just the classical
graph C*-algebra C ∗(E ).
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Graph C*-algebras and dynamics

It is well-known that graph C*-algebras (of ordinary graphs) are
closely related to dynamics. This was first discovered by Cuntz and
Krieger for On and related C*-algebras OA, nowadays known as
Cuntz-Krieger C*-algebras.

In particular On is related to the shift on X = {1, . . . , n}N.

Note that X =
⊔n

i=1 Hi , with X ∼= Hi for all i .
(Hi = {(i , x2, x3, . . . , )}.)
We extend this to the case (m, n), as follows:
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Dynamical systems of type (m,n)

We study pairs of compact Hausdorff topological spaces (X ,Y )
such that

X =
n⋃

i=1

Hi =
m⋃
j=1

Vj ,

where the Hi are pairwise disjoint clopen subsets of X , each of
which is homeomorphic to Y via given homeomorphisms
hi : Y → Hi . Likewise we will assume that the Vi are pairwise
disjoint clopen subsets of X , each of which is homeomorphic to Y
via given homeomorphisms vi : Y → Vi .

Definition

We will refer to the quadruple
(
X ,Y , {hi}ni=1, {vj}mj=1

)
as an

(m, n)-dynamical system.
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Definition

An (m, n)-dynamical system
(
X u,Y u, {hu

i }ni=1, {vu
j }mj=1

)
is

universal if it satisfies the following condition: given any
(m, n)-dynamical system(

X ,Y , {hi}ni=1, {vj}mj=1

)
,

there exists a unique continuous map

γ : Ω = X
⊔

Y → Ωu = X u
⊔

Y u,

such that

1 γ(Y ) ⊆ Y u,

2 γ(X ) ⊆ X u,

3 γ ◦ hi = hu
i ◦ γ,

4 γ ◦ vj = vu
j ◦ γ.
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Leavitt path algebras of separated graphs and paradoxical decompositions



Leavitt path algebras of separated graphs Graph C*-algebras and dynamics Paradoxical decompositions

Example

When m = 1, the universal (1, n) dynamical system consists of
X u = {1, . . . , n}N, Y u = {1′, . . . , n′}N, a disjoint copy of X u,
X u =

⋃n
i=1 Hi , where

Hi = {(i , x2, x3, . . . , ) : xn ∈ {1, . . . , n}},

hi : Y u → X u sends (x ′1, x
′
2, . . . ) to (i , x1, x2, . . . ), and

v : Y u → X u sends (x ′1, x
′
2, . . . ) to (x1, x2, . . . ).
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In general, the universal (m, n) dynamical system is related to the
graph C*-algebra Am,n := C ∗(E (m, n),C (m, n)), as follows:

Definition

Let U be the subset of partial isometries in Am,n given by

U = {α1, . . . , αn, β1, . . . , βm}.

We will let Om,n be the quotient of Am,n by the closed two-sided
ideal generated by all elements of the form

xx∗x − x ,

as x runs in 〈U ∪ U∗〉.

It is worth to mention that A1,n = O1,n
∼= M2(On), because

α1, . . . , αn, β1 is a tame set of partial isometries when m = 1.
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Note that there is a partial action θ of Fn+m, the free group on
{a1, . . . , an, b1, . . . , bm} on Ωu = X u

⊔
Y u, obtained by sending ai

to hi and bj to vj .

Theorem

There is a natural isomorphism

Om,n
∼= C (Ωu)oθ∗ Fn+m,

where C (Ωu)oθ∗ Fn+m denotes the crossed product of the
C*-algebra C (Ωu) by the induced partial action θ∗ of Fn+m.

All the above can be generalized to any finite bipartite separated
graph (E ,C ), obtaining C*-algebras O(E ,C ) which are suitable
full crossed products of commutative C*-algebras by partial actions
of free groups.
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The algebra Lab
K (E ,C )

The theory is very similar in the purely algebraic case. Let (E ,C )
be as before. We look at the construction in some detail:

Set U = 〈E 1 ∪ (E 1)∗〉, the multiplicative semigroup of LK (E ,C )
generated by E 1 ∪ (E 1)∗. For u ∈ U set e(u) = uu∗ (not an

idempotent in general). Write

Lab
K (E ,C ) = LK (E ,C )/〈[e(u), e(u′)] : u, u′ ∈ U〉.

It can be shown that {e(u) : u ∈ U} is a family of commuting
idempotents in Lab

K (E ,C ).
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Let B be the commutative subalgebra of Lab
K (E ,C ) generated by

the idempotents e(u), for u ∈ U.

There exists a totally disconnected, metrizable, compact space
Ω(E ,C ) such that

B = CK (Ω(E ,C )),

where CK (Ω) denotes the algebra of locally constant functions Ω→ K .

Moreover there is a partial action α of F = F〈E 1〉 on B (given
essentially by conjugation) which induces a partial action α∗ by
homeomorphisms of F on Ω(E ,C ). Moreover, we show:

Theorem

Lab
K (E ,C ) ∼= CK (Ω(E ,C ))oα F.
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We can compute precisely the structure of the monoid
V(Lab(E ,C )) thanks to the following approximation result:

Theorem (A-Exel)

There exists a sequence of separated graphs {(En,C
n)} canonically

associated to (E ,C ) such that (E0,C
0) = (E ,C ) and

Lab
K (E ,C ) ∼= lim−→ LK (En,C

n) .

Moreover all the connecting maps LK (En,C
n)→ LK (En+1,C

n+1)
are surjective.

Theorem

V(Lab
K (E ,C )) ∼= lim−→M(En,C

n).

Moreover the map M(E ,C ) = V(LK (E ,C ))→ V(Lab
K (E ,C )) is an

order-embedding.
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Paradoxical decompositions

Let G be a group acting on a set X .

E ,E ′ ⊆ X are equidecomposable if

E = A1 t A2 t · · · t An, E ′ = B1 t B2 t · · · t Bn

and there exist g1, g2, . . . , gn ∈ G such that Bi = giAi for all
i = 1, . . . , n.

The type semigroup S(X ,G ) is defined by using this relation.
Elements of S(X ,G ) are finite sums of equidecomposability classes
[E ], for E ⊆ X .
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A subset E ⊆ X is called paradoxical if E1 t E2 ⊆ E with
E1 ∼G E and E2 ∼G E .

Note that E ⊆ X is paradoxical ⇐⇒ 2[E ] ≤ [E ] in S(X ,G ).

The Banach-Tarski Theorem (or Paradox) asserts that the unit ball
B1 is G-paradoxical, where G is the group of all the isometries of
R3.

The study of this concept led to the notion of amenable group: A
discrete group Γ is amenable if ΓΓ is not paradoxical.
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Tarski’s Theorem

Theorem (Tarski)

Let G be a group acting on a set X . Then the following conditions
are equivalent:

1 E is not G -paradoxical, i.e. 2[E ] � [E ]

2 There exists a finitely additive G-invariant measure
µ : P(X )→ [0,+∞] such that µ(E ) = 1.

This result gives the transition from the paradoxical
decompositions characterization of amenable groups to other
characterizations, notably the one involving invariant means.
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About the proof

The proof of Tarski’s Theorem is based on the purely semigroup
theoretic result:

Theorem

Let (S ,+) be an abelian semigroup and e ∈ S. Then the following
are equivalent:

(a) There exists a semigroup homomorphism µ : S → [0,∞] such
that µ(e) = 1.

(b) For all n ∈ N, we have (n + 1)e � ne.

and the following properties of S(X ,G ):

Schröder-Bernstein axiom: a ≤ b and b ≤ a =⇒ a = b.
Cancellation law: ∀n ∈ N, na = nb =⇒ a = b.
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In fact, with these conditions at hand we can easily show that
condition (b) in the Theorem is equivalent to 2e � e, or
equivalently

2e ≤ e ⇐⇒ (n + 1)e ≤ ne for some n.

If (n + 1)e ≤ ne then (n + 1)e = ne by Schröder-Bernstein, and then

(n + 1)e = ne =⇒ n(2e) = ne =⇒ 2e = e by the cancellation law.
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There has been recent interest in trying to extend Tarski’s theorem
to a more general context:

Assume that G acts on a set X and let D be a G -invariant
subalgebra of sets of X . Then one can restrict the
G -equidecomposability relation to elements of D, and obtain a
type semigroup S(X ,G ,D).
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In recent papers by Rørdam–Sierakowski and Kerr–Nowak, the
following particular case has been considered:

G acts by homeomorphisms on a totally disconnected compact
Hausdorff space X (e.g. the Cantor set) and D is the subalgebra K
of clopen subsets of X .

These authors have raised the question of whether the analogue of
Tarski’s Theorem holds in this context. More precisely:

Is it true that, for E ∈ K, one has that the following are
equivalent?

(1) 2[E ] � [E ] in S(X ,G ,K),
(2) There exists a semigroup homomorphism
µ : S(X ,G ,K)→ [0,∞] such that µ([E ]) = 1.
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One may ask:

What are the general properties of S(X ,G ,K)? It is easy to show
that S(X ,G ,K) has the following properties:
• It is conical x + y = 0 =⇒ x = y = 0
• It has the Riesz refinement property: If a + b = c + d then
∃x , y , z , t such that a = x + y , b = z + t, c = x + z and d = y + t:

c d
a x y
b z t
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We prove that these are the only general properties of S(X ,G ,K):

Theorem

Let M be an arbitrary f.g. conical abelian monoid. Then there
exists a totally disconnected, metrizable compact space X and an
action of a finitely generated free group F on it such that there is
an order-embedding M ↪→ S(X ,F,K).

For instance, taking M = 〈a | na = ma〉 for 1 < m < n one obtains
that there is a clopen subset E ⊆ X such that 2[E ] � [E ] in
S(X ,F,K), but there is no µ : S(X ,F,K)→ [0,∞] such that
µ([E ]) = 1.
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In the general setting of a partial action θ of a group Γ on a totally
disconnected compact space X , we always have a monoid
homomorphism:

S(X , Γ,K) −→ V(CK (X )oθ∗ Γ)

[Y ] 7→ χY · δe

If X = Ω(E ,C ) for a finite bipartite separated graph (E ,C ), we
are able to show:

Theorem

The natural homomorphism

S(Ω(E ,C ),F,K) −→ V(CK (Ω(E ,C ))oα F)

is an isomorphism
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Now, starting with a finitely generated conical abelian monoid M,
we choose a finite bipartite separated graph (E ,C ) such that
M ∼= M(E ,C ), and so we get a totally disconnected metrizable
compact space Ω(E ,C ) with a partial action α∗ of F = F〈E 1〉 such
that there is an order-embedding

M ↪→ V(Lab(E ,C )) ∼= S(Ω(E ,C ),F,K).
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Finally, using globalization techniques due to Abadie, we can reach
the same conclusion, but with total actions instead of partial
actions, obtaining:

Theorem

Let M be an arbitrary f.g. conical abelian monoid. Then there
exist a totally disconnected, metrizable compact space X and an
action of a finitely generated free group F on it such that there is
an order-embedding M ↪→ S(X ,F,K).

Corollary

There exist a global action of a finitely generated free group F on a
totally disconnected metrizable compact space Z , and a
non-F-paradoxical (with respect to K) clopen subset A of Z such
that µ(A) =∞ for every finitely additive F-invariant measure
µ : K→ [0,∞] such that µ(A) > 0.
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