Primitive graph algebras

Gene Abrams

15E \(\begin{aligned} \& University of Colorado
\& Colorado Springs\end{aligned}\)
Colorado Springs

BIRS Workshop: "Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras"

April 2013

Overview

1 Primitive Leavitt path algebras

2 Primitive graph C*-algebras

1 Primitive Leavitt path algebras

2 Primitive graph C*-algebras

Throughout R is associative, but not necessarily with identity. Assume R at least has "local units":

Prime rings

Definition: I, J two-sided ideals of R. The product $I J$ is the two-sided ideal

$$
I J=\left\{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\right\}
$$

R is prime if the product of any two nonzero two-sided ideals of R is nonzero.

Prime rings

Definition: I, J two-sided ideals of R. The product $I J$ is the two-sided ideal

$$
I J=\left\{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\right\}
$$

R is prime if the product of any two nonzero two-sided ideals of R is nonzero.

Examples:

1 Commutative domains, e.g. fields, $\mathbb{Z}, K[x], K\left[x, x^{-1}\right], \ldots$
2 Simple rings
$3 \operatorname{End}_{K}(V)$ where $\operatorname{dim}_{K}(V)$ is infinite. $(\cong \operatorname{RFM}(K))$

Prime rings

Note: Definition makes sense for nonunital rings.

Prime rings

Note: Definition makes sense for nonunital rings.
Lemma: R prime. Then R embeds as an ideal in a unital prime ring R_{1}. (Dorroh extension of R.)
If R is a K-algebra then we can construct R_{1} a K-algebra for which $\operatorname{dim}_{K}\left(R_{1} / R\right)=1$.

Primitive rings

Definition: R is left primitive if R admits a faithful simple (= "irreducible") left R-module.
Rephrased: if there exists ${ }_{R} M$ simple for which $\operatorname{Ann}_{R}(M)=\{0\}$.

Primitive rings

Definition: R is left primitive if R admits a faithful simple (= "irreducible") left R-module.
Rephrased: if there exists ${ }_{R} M$ simple for which $\operatorname{Ann}_{R}(M)=\{0\}$.
Examples:

- Simple rings (note: need local units to build irreducibles)

NON-Examples:

- $\mathbb{Z}, K[x], K\left[x, x^{-1}\right]$

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. $\mathrm{FM}(K)$, RCFM (K), etc ...

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. $\operatorname{FM}(K)$, RCFM (K), etc ...

Definition of "primitive" makes sense for non-unital rings.

Prime and primitive rings

Lemma: Every primitive ring is prime.

Prime and primitive rings

Lemma: Every primitive ring is prime.
Proof. Let M denote a simple faithful left R-module. Suppose $I \cdot J=\{0\}$. We want to show either $I=\{0\}$ or $J=\{0\}$.

Prime and primitive rings

Lemma: Every primitive ring is prime.
Proof. Let M denote a simple faithful left R-module. Suppose $I \cdot J=\{0\}$. We want to show either $I=\{0\}$ or $J=\{0\}$.
So $(I \cdot J) M=0$. If $J M=\{0\}$ then $J=\{0\}$ as M is faithful. So suppose $J M \neq 0$. Then $J M=M$ (as M is simple), so $(I \cdot J) M=0$ gives $I M=0$, so $I=\{0\}$ as M is faithful.

Prime and primitive rings

Lemma: Every primitive ring is prime.
Proof. Let M denote a simple faithful left R-module. Suppose $I \cdot J=\{0\}$. We want to show either $I=\{0\}$ or $J=\{0\}$.
So $(I \cdot J) M=0$. If $J M=\{0\}$ then $J=\{0\}$ as M is faithful. So suppose $J M \neq 0$. Then $J M=M$ (as M is simple), so $(I \cdot J) M=0$ gives $I M=0$, so $I=\{0\}$ as M is faithful.

If R is prime, then in previous embedding, R is primitive $\Leftrightarrow R_{1}$ is primitive.

Prime and primitive rings

Converse of Lemma is not true (e.g. $\mathbb{Z}, K[x], K\left[x, x^{-1}\right]$).
In fact, the only commutative primitive unital rings are fields.

Prime and primitive rings

Converse of Lemma is not true (e.g. $\mathbb{Z}, K[x], K\left[x, x^{-1}\right]$).
In fact, the only commutative primitive unital rings are fields.

Remark for later:
From a ring-theoretic point of view, the question of finding prime, non-primitive rings is uninteresting (since there are so many of them!)

Prime and primitive rings

Remark: For ${ }_{R} M$ simple, write $M \cong R / N$ for N a maximal left ideal of R. How can $\operatorname{Ann}_{R}(M)=\{0\}$?

Prime and primitive rings

Remark: For ${ }_{R} M$ simple, write $M \cong R / N$ for N a maximal left ideal of R. How can $\operatorname{Ann}_{R}(M)=\{0\}$?

Note $n \cdot(r+N)=n r+N$ need not be $\overline{0}$ in R / N since $n r$ is not necessarily in N.

Example: K any field, V an infinite dimensional K-vector space. $R=\operatorname{End}_{K}(V) \cong \operatorname{RFM}(K)$ is primitive, not simple.

Here $M=R e_{11}$ is simple. Easy to show $\operatorname{Ann}_{R}(M)=\{0\}$, but R contains a nontrivial ideal (the finite rank transformations).

Prime and primitive rings

Remark: For ${ }_{R} M$ simple, write $M \cong R / N$ for N a maximal left ideal of R. How can $\operatorname{Ann}_{R}(M)=\{0\}$?

Note $n \cdot(r+N)=n r+N$ need not be $\overline{0}$ in R / N since $n r$ is not necessarily in N.

Example: K any field, V an infinite dimensional K-vector space. $R=\operatorname{End}_{K}(V) \cong \operatorname{RFM}(K)$ is primitive, not simple.

Here $M=R e_{11}$ is simple. Easy to show $\operatorname{Ann}_{R}(M)=\{0\}$, but R contains a nontrivial ideal (the finite rank transformations).

But we always have $\operatorname{Ann}_{R}(R / N) \subseteq N$, since if $r(1+N)=0+N$ then $r \in N$.

Leavitt path algebras

Let K be a field, and let $E=\left(E^{0}, E^{1}, s, r\right)$ be any directed graph.
The Leavitt path K-algebra $L_{K}(E)$ of E with coefficients in K is the K-algebra generated by a set $\left\{v \mid v \in E^{0}\right\}$, together with a set of variables $\left\{e, e^{*} \mid e \in E^{1}\right\}$, which satisfy the following relations:
(V) $\quad v w=\delta_{v, w} v$ for all $v, w \in E^{0}$,
(E1) $\quad s(e) e=e r(e)=e$ for all $e \in E^{1}$,
(E2) $\quad r(e) e^{*}=e^{*} s(e)=e^{*}$ for all $e \in E^{1}$, and
(CK1) $e^{*} e^{\prime}=\delta_{e, e^{\prime}} r(e)$ for all $e, e^{\prime} \in E^{1}$.
(CK2) $v=\sum_{\left\{e \in E^{1} \mid s(e)=v\right\}} e e^{*}$ for every regular vertex $v \in E^{0}$.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3)

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3) Idea of Proof. (\Rightarrow) Let R denote $L_{K}(E)$. Let $v, w \in E^{0}$. But $R v R \neq\{0\}$ and $R w R \neq\{0\} \Rightarrow R v R w R \neq\{0\} \Rightarrow v R w \neq\{0\} \Rightarrow$ $v \alpha \beta^{*} w \neq 0$ for some paths α, β in E. Then $u=r(\alpha)$ works.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3) Idea of Proof. (\Rightarrow) Let R denote $L_{K}(E)$. Let $v, w \in E^{0}$. But $R v R \neq\{0\}$ and $R w R \neq\{0\} \Rightarrow R v R w R \neq\{0\} \Rightarrow v R w \neq\{0\} \Rightarrow$ $v \alpha \beta^{*} w \neq 0$ for some paths α, β in E. Then $u=r(\alpha)$ works.
$(\Leftarrow) L_{K}(E)$ is graded by \mathbb{Z}, so need only check primeness on nonzero graded ideals I, J. But each nonzero graded ideal contains a vertex. Let $v \in I \cap E^{0}$ and $w \in J \cap E^{0}$. By downward directedness there is $u \in E^{0}$ with $v \geq u$ and $w \geq u$. But then $u=p^{*} v p \in I$ and $u=q^{*} w q \in J$, so that $0 \neq \underline{u}=u^{2} \in I J$.

The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable Separation Property (CSP) if there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.
E has the "Countable Separation Property" with respect to S.

The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable Separation Property (CSP) if there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.
E has the "Countable Separation Property" with respect to S.
Same idea for any subset X of $E^{0}: X$ has CSP (with respect to S_{X}) in case S_{X} is countable, and every element of X connects to an element of S_{X}.

The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable Separation Property (CSP) if there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.
E has the "Countable Separation Property" with respect to S.
Same idea for any subset X of $E^{0}: X$ has CSP (with respect to S_{X}) in case S_{X} is countable, and every element of X connects to an element of S_{X}.

Note for later: If $X=\emptyset$, then X vacuously has CSP (with respect to any countable subset of vertices).
So if X does not have CSP, then $X \neq \emptyset$.

The Countable Separation Property

Observe: If E^{0} is countable, then E has CSP.

The Countable Separation Property

Observe: If E^{0} is countable, then E has CSP.
2) Example: X uncountable, S the set of finite subsets of X.

Define the graph E :
1 vertices indexed by S, and
2 edges induced by proper subset relationship.
Then E does not have CSP.

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$1 L_{K}(E)$ is prime,

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$1 L_{K}(E)$ is prime,
2 every cycle in E has an exit (Condition (L)),

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$1 L_{K}(E)$ is prime,
2 every cycle in E has an exit (Condition (L)), and
$3 E$ has the Countable Separation Property.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, $N+I=R$.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, $N+I=R$.
Idea: (\Leftarrow) Embed N in a maximal left ideal T (this is OK since R is unital). So ${ }_{R} R / T$ is simple.

Then $\operatorname{Ann}_{R}(R / T) \subseteq T$ (noted previously). Thus $N+\operatorname{Ann}_{R}(R / T) \subseteq T$. If to the contrary $\operatorname{Ann}_{R}(R / T) \neq\{0\}$, the hypotheses would yield $N+\operatorname{Ann}_{R}(R / T)=R$, impossible.
(\Rightarrow) If M is the supposed simple having $\operatorname{Ann}_{R}(M)=\{0\}$, write $M \cong R / T$ for some maximal left ideal T. (In particular $T \neq R$.) So if $I \neq\{0\}$ then $I \cdot R / T=R / T$, so that $I+T=R$.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.
3. Show that CSP allows us to build a left ideal in $L_{K}(E)_{1}$ with the desired properties.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.
3. Show that CSP allows us to build a left ideal in $L_{K}(E)_{1}$ with the desired properties.
4. Then show that the lack of the CSP implies that no such left ideal can exist in $L_{K}(E)_{1}$.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.
3. Show that CSP allows us to build a left ideal in $L_{K}(E)_{1}$ with the desired properties.
4. Then show that the lack of the CSP implies that no such left ideal can exist in $L_{K}(E)_{1}$.

We will use:
"Reduction Theorem". If E has Condition (L) then every nonzero two-sided ideal of E contains a vertex.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

(\Leftarrow). Suppose E downward directed, E has Condition (L), and E has CSP.

Suffices to establish primitivity of $L_{K}(E)_{1}$. Let T denote a set of vertices w/resp. to which E has CSP.
T is countable: label the elements $T=\left\{v_{1}, v_{2}, \ldots\right\}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Inductively define a sequence $\lambda_{1}, \lambda_{2}, \ldots$ of paths in E for which, for each $i \in \mathbb{N}$,
$1 \lambda_{i}$ is an initial subpath of λ_{j} whenever $i \leq j$, and
$2 v_{i} \geq r\left(\lambda_{i}\right)$.
Define $\lambda_{1}=v_{1}$.
Suppose $\lambda_{1}, \ldots, \lambda_{n}$ have the indicated properties. By downward directedness, there is u_{n+1} in E^{0} for which $r\left(\lambda_{n}\right) \geq u_{n+1}$ and $v_{n+1} \geq u_{n+1}$. Let $p_{n+1}: r\left(\lambda_{n}\right) \rightsquigarrow u_{n+1}$.

Define $\lambda_{n+1}=\lambda_{n} p_{n+1}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Since λ_{i} is an initial subpath of λ_{t} for all $i \leq t$, we get that

$$
\lambda_{i} \lambda_{i}^{*} \lambda_{t} \lambda_{t}^{*}=\lambda_{t} \lambda_{t}^{*} \text { for each pair of positive integers } i \leq t .
$$

In particular $\left(1-\lambda_{i} \lambda_{i}^{*}\right) \lambda_{t} \lambda_{t}^{*}=0$ for $i \leq t$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Since λ_{i} is an initial subpath of λ_{t} for all $i \leq t$, we get that

$$
\lambda_{i} \lambda_{i}^{*} \lambda_{t} \lambda_{t}^{*}=\lambda_{t} \lambda_{t}^{*} \text { for each pair of positive integers } i \leq t .
$$

In particular $\left(1-\lambda_{i} \lambda_{i}^{*}\right) \lambda_{t} \lambda_{t}^{*}=0$ for $i \leq t$.

Define $N=\sum_{i=1}^{\infty} L_{K}(E)_{1}\left(1-\lambda_{i} \lambda_{i}^{*}\right)$.
$N \neq L_{K}(E)_{1}$: otherwise, $1=\sum_{i=1}^{t} r_{i}\left(1-\lambda_{i} \lambda_{i}^{*}\right)$ for some $r_{i} \in L_{K}(E)_{1}$, but then

$$
0 \neq 1 \cdot \lambda_{t} \lambda_{t}^{*}=\left(\sum_{i=1}^{t} r_{i}\left(1-\lambda_{i} \lambda_{i}^{*}\right)\right) \cdot \lambda_{t} \lambda_{t}^{*}=0
$$

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.

Idea: E is downward directed, so $L_{K}(E)$, and therefore $L_{K}(E)_{1}$, is prime. Since $L_{K}(E)$ embeds in $L_{K}(E)_{1}$ as a two-sided ideal, we get $I \cap L_{K}(E)$ is a nonzero two-sided ideal of $L_{K}(E)$. So Condition (L) gives that $/$ contains some vertex w.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.
Idea: E is downward directed, so $L_{K}(E)$, and therefore $L_{K}(E)_{1}$, is prime. Since $L_{K}(E)$ embeds in $L_{K}(E)_{1}$ as a two-sided ideal, we get $I \cap L_{K}(E)$ is a nonzero two-sided ideal of $L_{K}(E)$. So Condition (L) gives that I contains some vertex w.

Then $w \geq v_{n}$ for some n by CSP. But $v_{n} \geq r\left(\lambda_{n}\right)$ by construction, so $w \geq r\left(\lambda_{n}\right)$. So $w \in I$ gives $r\left(\lambda_{n}\right) \in I$, so $\lambda_{n} \lambda_{n}^{*} \in I$.

Now we're done. Show $N+I=L_{K}(E)_{1}$ for every nonzero two-sided ideal $/$ of $L_{K}(E)_{1}$. But $1-\lambda_{n} \lambda_{n}^{*} \in N$ (all $n \in \mathbb{N}$) and $\lambda_{n} \lambda_{n}^{*} \in I$ (some $n \in \mathbb{N}$) gives $1 \in N+I$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

1) E not downward directed $\Rightarrow L_{K}(E)$ not prime $\Rightarrow L_{K}(E)$ not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

1) E not downward directed $\Rightarrow L_{K}(E)$ not prime $\Rightarrow L_{K}(E)$ not primitive.
2) General ring theory result: If R is primitive and $f=f^{2}$ is nonzero then $f R f$ is primitive.

If E contains a cycle c (based at v) without exit then $v L_{K}(E) v \cong K\left[x, x^{-1}\right]$, which is not primitive, so $L_{K}(E)$ is not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then $L_{K}(E)$ is not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then $L_{K}(E)$ is not primitive.

Lemma. Let N be a left ideal of a unital ring A. If there exist $x, y \in A$ such that $1+x \in N, 1+y \in N$, and $x y=0$, then $N=A$.

Proof: Since $1+y \in N$ then $x(1+y)=x+x y=x \in N$, so that

$$
1=(1+x)-x \in N .
$$

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist a left ideal $N \neq L_{K}(E)_{1}$ for which $N+I=L_{K}(E)_{1}$ for all two-sided ideals I of $L_{K}(E)_{1}$.

To do this: assume N is such an ideal, show $N=L_{K}(E)_{1}$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist a left ideal $N \neq L_{K}(E)_{1}$ for which $N+I=L_{K}(E)_{1}$ for all two-sided ideals I of $L_{K}(E)_{1}$.

To do this: assume N is such an ideal, show $N=L_{K}(E)_{1}$.
Strategy: If N has this property, then for each $v \in E^{0}$ we have $N+\langle v\rangle=L_{K}(E)_{1}$. So for each $v \in E^{0}$ there exists $y_{v} \in\langle v\rangle$, $n_{v} \in N$ for which $n_{v}+y_{v}=1$. Let $x_{v}=-y_{v}$. This gives a set $\left\{x_{v} \mid v \in E^{0}\right\} \subseteq L_{K}(E)_{1}$ for which $1+x_{v} \in N$ for all $v \in E^{0}$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Now show that the lack of CSP in E^{0} forces the existence of a pair of vertices v, w for which $x_{v} \cdot x_{w}=0$. (This is the technical part.)

Then use the Lemma.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)
2 Collect up the x_{v} according to this covering. Since E does not have CSP, then some specific subset in the cover does not have CSP.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)
2 Collect up the x_{v} according to this covering. Since E does not have CSP, then some specific subset in the cover does not have CSP.
3 Show that, in this specific subset Z, there exists $v \in Z$ for which the set

$$
\left\{w \in Z \mid x_{v} x_{w}=0\right\}
$$

does not have CSP. In particular, this set is nonempty. Pick such v and w. Then we are done by the Lemma.

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

$$
\forall a \in R \exists x \in R \text { with } a=a x a .
$$

(R is not required to be unital.)

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

$$
\forall a \in R \exists x \in R \text { with } a=a x a .
$$

(R is not required to be unital.)
Examples:
1 Division rings
2 Direct sums of matrix rings over division rings
3 Direct limits of von Neumann regular rings
R is regular $\Leftrightarrow R_{1}$ is regular.

Kaplansky's Question

"Kaplansky's Question":
I. Kaplansky, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?

Kaplansky's Question

"Kaplansky's Question":
I. Kaplansky, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?
Answered in the negative (Domanov, 1977), a group-algebra example. (Clever, but very ad hoc.)

Kaplansky's Question

Theorem. (A-, K.M. Rangaswamy 2010) $L_{K}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.

Kaplansky's Question

Theorem. (A-, K.M. Rangaswamy 2010)
$L_{K}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.
Idea of Proof: (\Leftarrow) If E contains a cycle c based at v, can show that $a=v+c$ has no "regular inverse".
(\Rightarrow) Show that if E is acyclic then every element of $L_{K}(E)$ can be trapped in a subring of $L_{K}(E)$ which is isomorphic to a finite direct sum of finite matrix rings.

Application to Kaplansky's question

It's not hard to find acyclic graphs E for which $L_{K}(E)$ is prime but for which C.S.P. fails.

Example (mentioned previously): X uncountable, S the set of finite subsets of X. Define the graph E :

- vertices indexed by S, and
- edges induced by proper subset relationship.

Then for this graph E,
$1 L_{K}(E)$ is regular (E is acyclic)
$2 L_{K}(E)$ is prime (E is downward directed)
$3 L_{K}(E)$ is not primitive (E does not have CSP).

Application to Kaplansky's question

Note: Embedding $L_{K}(E)$ in $L_{K}(E)_{1}$ in the usual way gives unital, regular, prime, not primitive algebras.

Remark: These examples are also "Cohn path algebras".

Application to Kaplansky's question

A second construction of such graphs:
Let $\kappa>0$ be any ordinal. Define E_{κ} as follows:

$$
\begin{aligned}
E_{\kappa}^{0} & =\{\alpha \mid \alpha<\kappa\}, \quad E_{\kappa}^{1}=\left\{e_{\alpha, \beta} \mid \alpha, \beta<\kappa, \text { and } \alpha<\beta\right\}, \\
s\left(e_{\alpha, \beta}\right) & =\alpha, \text { and } r\left(e_{\alpha, \beta}\right)=\beta \text { for each } e_{\alpha, \beta} \in E_{\kappa}^{1} .
\end{aligned}
$$

Application to Kaplansky's question

A second construction of such graphs:
Let $\kappa>0$ be any ordinal. Define E_{κ} as follows:

$$
E_{\kappa}^{0}=\{\alpha \mid \alpha<\kappa\}, \quad E_{\kappa}^{1}=\left\{e_{\alpha, \beta} \mid \alpha, \beta<\kappa, \text { and } \alpha<\beta\right\}
$$

$s\left(e_{\alpha, \beta}\right)=\alpha$, and $r\left(e_{\alpha, \beta}\right)=\beta$ for each $e_{\alpha, \beta} \in E_{\kappa}^{1}$.
Suppose κ has uncountable cofinality. Then $L_{K}\left(E_{\kappa}\right)$ is regular, prime, not primitive.

1 Primitive Leavitt path algebras

2 Primitive graph C*-algebras

Prime graph C*-algebras

For a ring R with a topology in which multiplication is continuous, then R is prime as a ring iff R is prime with respect to closed ideals. So for a C^{*}-algebra, primeness as a ring and primeness in the usual C^{*} sense mean the same thing.

Prime graph C*-algebras

For a ring R with a topology in which multiplication is continuous, then R is prime as a ring iff R is prime with respect to closed ideals.
So for a C^{*}-algebra, primeness as a ring and primeness in the usual C^{*} sense mean the same thing.

Proposition. Let E be any graph. Then $C^{*}(E)$ is prime if and only if
$1 E$ is downward directed, and
$2 E$ satisfies Condition (L).

Proof. This was established by Takeshi Katsura (2006), in the more general context of topological graphs.

$C^{*}(E)$ prime $\Leftarrow E$ has (MT3) and (L)

Idea of Proof:

Suppose E is downward directed and has (L).
If I and J are nonzero ideals in $C^{*}(E)$, then (L) with the Cuntz Krieger Uniqueness Theorem gives $u, v \in E^{0}$ such that $p_{u} \in I$ and $p_{v} \in J$.

Then downward directed gives $w \in E^{0}$ such that $u \geq w$ and $v \geq w$. So $p_{w} \in I$ and $p_{w} \in J$, so $0 \neq p_{w}=p_{w}^{2} \in I J$.

$C^{*}(E)$ prime $\Rightarrow E$ has (MT3) and (L)

Conversely: Suppose E does not satisfy (L). Then there exists a cycle $\alpha=e_{1} \ldots e_{n}$ in E without exits. If $H=\alpha^{0}$, then $I_{H}=I_{H}$ is Morita equivalent to $C^{*}(\mathbb{T})$.

But this is impossible, since
1 any ideal of a prime C^{*}-algebra is itself prime as a C^{*}-algebra,
2 primeness is preserved under Morita equivalence, and
$3 C^{*}(\mathbb{T})$ is easily shown to not be prime.

So E satisfies Condition (L).

$C^{*}(E)$ prime $\Rightarrow E$ has (MT3) and (L)

Now show E is downward directed. Let $u, v \in E^{0}$. For $w \in E^{0}$

$$
H(w):=\left\{x \in E^{0}: w \geq x\right\} .
$$

Let $\overline{H(w)}$ denote the saturated closure of $H(w)$.
For $u, v \in E^{0}$, the ideals $I_{H(u)}=I_{H(u)}$ and $I_{H(v)}=I_{H(v)}$ are each nonzero.

Since $C^{*}(E)$ is prime, $I_{H(u)} \cap I_{H(v)} \neq\{0\}$.
But $I_{\overline{H(u)} \cap \overline{H(v)}}=I_{\overline{H(u)}} \cap I_{\overline{H(v)}}$, so $\overline{H(u)} \cap \overline{H(v)} \neq \emptyset$, which gives that $H(u) \cap H(v) \neq \emptyset$.

Then $w \in H(u) \cap H(v)$ works.

Prime graph C*-algebras

So the "answer" to the primeness question in the graph C*-algebra setting differs from that of the Leavitt path algebra setting.

For example:

$$
K\left[x, x^{-1}\right]=L(\bullet \bigcirc) \text { is prime }
$$

but

$$
C^{*}(\mathbb{T})=C^{*}(\bullet \bigcirc) \text { is not prime. }
$$

Primitive C*-algebras

Definition. The C*-algebra A is primitive if there exists an irreducible faithful $*$-representation of A.

Rephrased: A is primitive if there is an irreducible faithful representation $\pi: A \rightarrow B(\mathcal{H})$ as bounded operators on a Hilbert space \mathcal{H}.

Primitive C*-algebras

This will be useful:

Proposition: Suppose A is a C^{*}-algebra. Suppose there exists a modular left ideal $N \neq A$ of A such that $N+I=A$ for every nonzero closed two-sided ideal I of A. Then A is left primitive.

Primitive C*-algebras

Idea of Proof. Suppose u is a modular element for N; so $a-a u \in N$ for all $a \in A$.

Standard: $u \notin N$ (otherwise $N=A$).
Standard: N embeds in a maximal (necessarily modular) left ideal T of A.

Standard: T is closed.

Primitive C*-algebras

Idea of Proof. Suppose u is a modular element for N; so $a-a u \in N$ for all $a \in A$.

Standard: $u \notin N$ (otherwise $N=A$).
Standard: N embeds in a maximal (necessarily modular) left ideal T of A.

Standard: T is closed.
Since T is maximal, A / T is irreducible. Using closure of T and approximate identities for elements of A, standard to show that $A n_{A}(A / T) \subseteq T$.

Now argue as in the unital ring case.

Primitive C*-algebras

Lemma (well-known): Any primitive C^{*}-algebra is prime.

Primitive C*-algebras

Lemma (well-known): Any primitive C^{*}-algebra is prime.
Proof. Let $\pi: A \rightarrow B(\mathcal{H})$ be the supposed irreducible faithful representation of the C^{*}-algebra A, and let I, J be (closed) two-sided ideals of A. Suppose $I J=\{0\}$; we show that either $I=\{0\}$ or $J=\{0\}$. If $J \neq\{0\}$ then the faithfulness of π gives $\pi(J) \mathcal{H} \neq\{0\}$. But $\pi(J) \mathcal{H}$ is then a nonzero closed subrepresentation of the irreducible representation π, so $\pi(J) \mathcal{H}=\mathcal{H}$. Then $\{0\}=I J$ gives
$\{0\}=\pi(I J) \mathcal{H}=\pi(I) \pi(J) \mathcal{H}=\pi(I) \mathcal{H}$, so that, again invoking the faithfulness of π, we get $I=\{0\}$.

Primitive C*-algebras

Theorem (Dixmier, 1960) Every prime separable C*-algebra is primitive.

Remark: It's an existence proof; the faithful irreducible representation is not explicitly constructed.

Primitive C*-algebras

Theorem (Dixmier, 1960) Every prime separable C*-algebra is primitive.

Remark: It's an existence proof; the faithful irreducible representation is not explicitly constructed.

Consequence: Suppose E is a graph for which $C^{*}(E)$ is separable. (So in particular E^{0} is countable.)
Then $C^{*}(E)$ is primitive if and only if

Primitive C*-algebras

Theorem (Dixmier, 1960) Every prime separable C*-algebra is primitive.

Remark: It's an existence proof; the faithful irreducible representation is not explicitly constructed.

Consequence: Suppose E is a graph for which $C^{*}(E)$ is separable. (So in particular E^{0} is countable.)
Then $C^{*}(E)$ is primitive if and only if
E is downward directed, and satisfies Condition (L).

Primitive C*-algebras

Theorem (Dixmier, 1960) Every prime separable C*-algebra is primitive.

Remark: It's an existence proof; the faithful irreducible representation is not explicitly constructed.

Consequence: Suppose E is a graph for which $C^{*}(E)$ is separable. (So in particular E^{0} is countable.)
Then $C^{*}(E)$ is primitive if and only if
E is downward directed, and satisfies Condition (L).
... and, in this case, if and only if $L_{K}(E)$ is primitive.

Primitive graph C^{*}-algebras

Can we identify the primitive graph C^{*}-algebras for arbitrary graphs?

Note: "Primeness + Separability" of $C^{*}(E)$ is not the appropriate pairing of properties to achieve "Primitivity" in general.

For example $C^{*}(E)$ is primitive for E the graph with one vertex and uncountably many loops, but $C^{*}(E)$ is not separable.

Primitive graph C^{*}-algebras

Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if ...
$1 E$ is downward directed,
2 E satisfies Condition (L), and

Primitive graph C^{*}-algebras

Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if ...
$1 E$ is downward directed,
2 E satisfies Condition (L), and
$3 E$ satisfies the Countable Separation Property.

Primitive graph C*-algebras

Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if ...
$1 E$ is downward directed,
2 E satisfies Condition (L), and
3 E satisfies the Countable Separation Property.
... if and only if $C^{*}(E)$ is prime and E satisfies the Countable
Separation Property.

$C^{*}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Proof of sufficiency. A lot of this will look familiar.
Let X be a set of vertices with respect to which E satisfies the Countable Separation Property. Label the elements of X as $\left\{v_{1}, v_{2}, \ldots\right\}$. We know (previous proof) there is a sequence $\lambda_{1}, \lambda_{2}, \ldots$ of paths in E having the following properties for each $i \in \mathbb{N}$:
(i) $v_{i} \geq r\left(\lambda_{i}\right)$, and
(ii) $\lambda_{i+1}=\lambda_{i} \mu_{i+1}$ for some path μ_{i+1} in E.

$C^{*}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Proof of sufficiency. A lot of this will look familiar.
Let X be a set of vertices with respect to which E satisfies the Countable Separation Property. Label the elements of X as $\left\{v_{1}, v_{2}, \ldots\right\}$. We know (previous proof) there is a sequence $\lambda_{1}, \lambda_{2}, \ldots$ of paths in E having the following properties for each $i \in \mathbb{N}$:
(i) $v_{i} \geq r\left(\lambda_{i}\right)$, and
(ii) $\lambda_{i+1}=\lambda_{i} \mu_{i+1}$ for some path μ_{i+1} in E.

Note: since by construction $\lambda_{1}=v, S_{\lambda_{1}} S_{\lambda_{1}}^{*}=P_{v}$.

$C^{*}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

By construction, for $i<t$ we have
$S_{\lambda_{i}} S_{\lambda_{i}}^{*} S_{\lambda_{t}} S_{\lambda_{t}}^{*}=S_{\lambda_{t}} S_{\lambda_{t}}^{*}$ for each pair of positive integers $i \leq t$.
Claim: Every nonzero (closed) two-sided ideal J of $C^{*}(E)$ contains $S_{\lambda_{n}} S_{\lambda_{n}}^{*}$ for some $n \in \mathbb{N}$.

Reason: By Condition (L), the Cuntz-Krieger Uniqueness Theorem applies to yield that J contains some vertex projection P_{w}.

By the CSP there exists $v_{n} \in X$ for which $w \geq v_{n}$. But $v_{n} \geq r\left(\lambda_{n}\right)$.

So there is a path μ in E for which $s(\mu)=w$ and $r(\mu)=r\left(\lambda_{n}\right)$.
Since $P_{w} \in J$ we get $P_{r\left(\lambda_{n}\right)} \in J$, so $S_{\lambda_{n}} S_{\lambda_{n}}^{*}=S_{\lambda_{n}} P_{r\left(\lambda_{n}\right)} S_{\lambda_{n}}^{*} \in J$.

$C^{*}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Let A denote $C^{*}(E)$, and let v denote v_{1}. Consider the left ideal L of A defined by:

$$
L=\left\{\sum_{i=1}^{n}\left(x_{i}-x_{i} S_{\lambda_{i}} S_{\lambda_{i}}^{*}\right) \mid x_{i} \in A, n \in \mathbb{N}\right\} .
$$

L is modular (with $a-a P_{v} \in L$ for all $a \in A$).
$P_{v} \notin L$. (Same proof as for Leavitt path algebras:)

$C^{*}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

We use previous Proposition; need only show that $I+L=A$ for any nonzero closed two-sided ideal I of A. But any such two-sided ideal contains $S_{\lambda_{n}} S_{\lambda_{n}}^{*}$ for some $n \in \mathbb{N}$, hence contains $a S_{\lambda_{n}} S_{\lambda_{n}}^{*}$ for all $a \in A$, but then

$$
a=a S_{\lambda_{n}} S_{\lambda_{n}}^{*}+\left(a-a S_{\lambda_{n}} S_{\lambda_{n}}^{*}\right) \in I+L .
$$

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Proof of Converse.

Show that if $A=C^{*}(E)$ is primitive, then E has Condition (L), is downward directed, and has CSP.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Proof of Converse.
Show that if $A=C^{*}(E)$ is primitive, then E has Condition (L), is downward directed, and has CSP.

Since primitive implies prime we get that E satisfies Condition (L) and is downward directed.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

So suppose to the contrary that E does not satisfy the Countable Separation Property. We show that $C^{*}(E)$ admits no faithful irreducible representations.

We actually show more, that $C^{*}(E)$ admits no faithful cyclic representations. Suppose $\psi: A \rightarrow B(\mathcal{H})$ is a cyclic representation of A; so there exists $\xi \in \mathcal{H}$ for which $\psi(A) \mathcal{H}=\overline{\psi(A) \xi}$.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

We will use this general result:
Lemma. Let ψ be a representation of a C^{*}-algebra B as bounded operators on a Hilbert space \mathcal{H}, and let $\xi \in \mathcal{H}$. Suppose $\left\{Q_{i} \mid i \in I\right\}$ is a set of nonzero mutually orthogonal projections in B for which, for each $i \in I, \psi\left(Q_{i}\right) \xi \neq 0$. Then I is at most countable.

Proof. Use the Pythagorean Theorem in B.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

This graph-theoretic definition will also be useful.
Let E be any graph. For $w \in E^{0}$, let

$$
U(w)=\left\{v \in E^{0} \mid v \geq w\right\} .
$$

Observation: E does not satisfy the Countable Separation Property in case for every countable subset X of E^{0}, there exists some vertex v in $E^{0} \backslash \cup_{x \in X} U(x)$.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For every integer $n \geq 0$ define

$$
\Gamma_{n}=\left\{\mu \in \operatorname{Path}(E) \mid \psi\left(S_{\mu} S_{\mu}^{*}\right) \xi \neq 0, \text { and }|\mu|=n\right\} .
$$

(We view paths of length 0 as vertices, and in this case interpret $S_{\mu} S_{\mu}^{*}$ as $P_{s(\mu) .}$)

Because the paths in Γ_{n} are of fixed length, the set $\left\{S_{\mu} S_{\mu}^{*} \mid \mu \in \Gamma_{n}\right\}$ consists of nonzero orthogonal projections.

So by the Lemma, each Γ_{n} is at most countable.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For every integer $n \geq 0$ define

$$
\Omega_{n}=\left\{w \in E^{0} \mid w \in \mu^{0} \text { for some } \mu \in \Gamma_{n}\right\} .
$$

Since each Γ_{n} is countable, and any path in E contains finitely many vertices, we get that each Ω_{n} is countable.

For every integer $n \geq 0$ define

$$
\Theta_{n}=\cup_{w \in \Omega_{n}} U(w), \quad \text { and } \quad \Theta=\cup_{n=0}^{\infty} \Theta_{n} .
$$

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Since $\Theta=\cup_{n=0}^{\infty}\left(\cup_{w \in \Omega_{n}} U(w)\right)$, and each Ω_{n} is countable, we have that Θ is the union of a countable number of sets of the form $U(w)$.

So by the hypothesis that E does not satisfy the Countable Separation Property, we conclude that there exists some $v \in E^{0} \backslash \Theta$.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Since $\Theta=\cup_{n=0}^{\infty}\left(\cup_{w \in \Omega_{n}} U(w)\right)$, and each Ω_{n} is countable, we have that Θ is the union of a countable number of sets of the form $U(w)$.

So by the hypothesis that E does not satisfy the Countable Separation Property, we conclude that there exists some $v \in E^{0} \backslash \Theta$.

But $v \in E^{0} \backslash \Theta$ means that for every path γ having $s(\gamma)=v$, then every path ν for which $r(\gamma) \in \nu^{0}$ has $\psi\left(S_{\nu} S_{\nu}^{*}\right) \xi=0$.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Let J denote the (nonzero) closed two-sided ideal of $C^{*}(E)$ generated by P_{v}. Let $H(v)$ denote the set $\left\{w \in E^{0} \mid v \geq w\right\}$.

Consider the set

$$
T=\operatorname{span}_{\mathbb{C}}\left\{S_{\mu} S_{\nu}^{*} \mid \mu, \nu \in \operatorname{Path}(E) \text { with } r(\mu)=r(\nu) \in H(v)\right\}
$$

Then T is dense in J.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Claim: $\psi(t) \xi=0$ for all $t \in T$.
Reason: Suffices to show that $\psi\left(S_{\mu} S_{\nu}^{*}\right) \xi=0$ for any $\mu, \nu \in \operatorname{Path}(E)$ for which $r(\mu)=r(\nu) \in H(v)$. But by the above description of $E^{0} \backslash \Theta$ we have $\psi\left(S_{\nu} S_{\nu}^{*}\right) \xi=0$, so that $\psi\left(S_{\mu} S_{\nu}^{*}\right) \xi=\psi\left(S_{\mu} S_{\nu}^{*} S_{\nu} S_{\nu}^{*}\right) \xi=\psi\left(S_{\mu} S_{\nu}^{*}\right) \psi\left(S_{\nu} S_{\nu}^{*}\right) \xi=\psi\left(S_{\mu} S_{\nu}^{*}\right) 0=0$.

$C^{*}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

So $\psi(T) \xi=0$, so that $\psi(\bar{T}) \xi=0$, and thus $\psi(J) \xi=0$, which gives $\overline{\psi(J) \xi}=0$. But then

$$
\begin{gathered}
\psi(J) \mathcal{H}=\psi(J \cdot A) \mathcal{H}=\psi(J) \psi(A) \mathcal{H}=\psi(J) \overline{\psi(A) \xi} \\
\subseteq \overline{\psi(J \cdot A) \xi}=\overline{\psi(J) \xi}=0,
\end{gathered}
$$

so that $J \subseteq \operatorname{Ker}(\psi)$. Since J is nonzero, ψ is not faithful.

Primitive C*-algebras

We actually have shown more.
Definition. Let π be a representation of a C^{*}-algebra A on a Hilbert space \mathcal{H}. We say π is countably generated in case there exists a countable subset $\left\{h_{i} \mid i \in \mathbb{N}\right\}$ of \mathcal{H} for which

$$
\mathcal{H}=\overline{\operatorname{span}}\left\{\pi(A) h_{i} \mid i \in \mathbb{N}\right\} .
$$

Primitive C^{*}-algebras

We actually have shown more.
Definition. Let π be a representation of a C^{*}-algebra A on a Hilbert space \mathcal{H}. We say π is countably generated in case there exists a countable subset $\left\{h_{i} \mid i \in \mathbb{N}\right\}$ of \mathcal{H} for which

$$
\mathcal{H}=\overline{\operatorname{span}}\left\{\pi(A) h_{i} \mid i \in \mathbb{N}\right\} .
$$

Proposition. If E does not have CSP, then $C^{*}(E)$ admits no countably generated faithful representations.

Primitive C*-algebras

Proof. Same idea as above. Suppose $\left\{h_{i} \mid i \in \mathbb{N}\right\} \subseteq \mathcal{H}$ has $\mathcal{H}=\overline{\operatorname{span}}\left\{\pi(A) h_{i} \mid i \in \mathbb{N}\right\}$. For $n \geq 0, i \in \mathbb{N}$ define

$$
\Gamma_{n}=\left\{\mu \in \operatorname{Path}(E) \mid \psi\left(S_{\mu} S_{\mu}^{*}\right) \xi_{i} \neq 0 \text { for some } i, \text { and }|\mu|=n\right\} .
$$

Now argue as before.

Prime, non-primitive C^{*}-algebras

The theorem gives us a machine to build prime, non-primitive C*-algebras.

Example: The graph E as considered previously. X an uncountable set, S the set of finite subsets of X. E is the graph with:
1 vertices indexed by S, and
2 edges induced by proper subset relationship.
Then E is downward directed, has Condition (L), and does not have CSP.

So $C^{*}(E)$ is a prime, non-primitive C^{*}-algebra.
Note that $C^{*}(E)$ is an AF algebra.

Prime, non-primitive C^{*}-algebras

Modify E by adding a loop at each vertex. Call the new graph E^{\prime}.
Then E^{\prime} is still downward directed, has Condition (L), and does not have CSP.

So $C^{*}\left(E^{\prime}\right)$ is a prime, non-primitive C^{*}-algebra.
Note $C^{*}(E)$ is not AF. Also, since E^{\prime} does not have Condition (K), $C^{*}(E)$ does not have real rank 0 .

Prime, non-primitive C^{*}-algebras

Modify E^{\prime} by adding a second loop at each vertex. Call the new graph $E^{\prime \prime}$.

Then $E^{\prime \prime}$ is downward directed, has Condition (L), and does not have CSP.

So $C^{*}\left(E^{\prime \prime}\right)$ is a prime, non-primitive C^{*}-algebra.
Note that $C^{*}\left(E^{\prime \prime}\right)$ also has Condition (K), so has real rank 0 .

Summary

Theorem. For an arbitrary graph E, these are equivalent.
$1 E$ is downward directed, has Condition (L), and satisfies the Countable Separation Property.
$2 L_{K}(E)$ is primitive for every field K.
$3 L_{\mathbb{C}}(E)$ is primitive.
$4 C^{*}(E)$ is primitive.

Summary

Theorem. For an arbitrary graph E, these are equivalent.
$1 E$ is downward directed, has Condition (L), and satisfies the Countable Separation Property.
$2 L_{K}(E)$ is primitive for every field K.
$3 L_{\mathbb{C}}(E)$ is primitive.
$4 C^{*}(E)$ is primitive.
Moreover, using this result, we can easily construct infinite classes of:

1 prime, non-primitive, von Neumann regular algebras, and
2 prime, non-primitive C^{*}-algebras.

Summary

Questions?

