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1 Primitive Leavitt path algebras

2 Primitive graph C∗-algebras

Throughout R is associative, but not necessarily with identity.

Assume R at least has “local units”:
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Prime rings

Definition: I , J two-sided ideals of R. The product IJ is the
two-sided ideal

IJ = {
n∑
`=1

i`j` | i` ∈ I , j` ∈ J, n ∈ N}.

R is prime if the product of any two nonzero two-sided ideals of R
is nonzero.

Examples:

1 Commutative domains, e.g. fields, Z, K [x ], K [x , x−1], ...

2 Simple rings

3 EndK (V ) where dimK (V ) is infinite. (∼= RFM(K ))
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Prime rings

Note: Definition makes sense for nonunital rings.

Lemma: R prime. Then R embeds as an ideal in a unital prime
ring R1. (Dorroh extension of R.)

If R is a K -algebra then we can construct R1 a K -algebra for
which dimK (R1/R) = 1.
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Primitive rings

Definition: R is left primitive if R admits a faithful simple
(= “irreducible”) left R-module.

Rephrased: if there exists RM simple for which AnnR(M) = {0}.

Examples:

- Simple rings (note: need local units to build irreducibles)

NON-Examples:

- Z, K [x ], K [x , x−1]

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

Primitive rings

Definition: R is left primitive if R admits a faithful simple
(= “irreducible”) left R-module.

Rephrased: if there exists RM simple for which AnnR(M) = {0}.

Examples:

- Simple rings (note: need local units to build irreducibles)

NON-Examples:

- Z, K [x ], K [x , x−1]

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

Primitive rings

Primitive rings are “natural” generalizations of matrix rings.

Jacobson’s Density Theorem: R is primitive if and only if R is
isomorphic to a dense subring of EndD(V ), for some division ring
D, and some D-vector space V .

Here D = EndR(M) where M is the supposed simple faithful
R-module.

So this gives many more examples of primitive rings, e.g. FM(K ),
RCFM(K ), etc ...

Definition of “primitive” makes sense for non-unital rings.
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Prime and primitive rings

Lemma: Every primitive ring is prime.

Proof. Let M denote a simple faithful left R-module. Suppose
I · J = {0}. We want to show either I = {0} or J = {0}.

So (I · J)M = 0. If JM = {0} then J = {0} as M is faithful. So
suppose JM 6= 0. Then JM = M (as M is simple), so (I · J)M = 0
gives IM = 0, so I = {0} as M is faithful. �

If R is prime, then in previous embedding,

R is primitive ⇔ R1 is primitive.
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Prime and primitive rings

Converse of Lemma is not true (e.g. Z, K [x ], K [x , x−1]).

In fact, the only commutative primitive unital rings are fields.

Remark for later:

From a ring-theoretic point of view, the question of finding prime,
non-primitive rings is uninteresting (since there are so many of
them!)
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Prime and primitive rings

Remark: For RM simple, write M ∼= R/N for N a maximal left
ideal of R. How can AnnR(M) = {0}?

Note n · (r + N) = nr + N need not be 0 in R/N since nr is not
necessarily in N.

Example: K any field, V an infinite dimensional K -vector space.
R = EndK (V ) ∼= RFM(K ) is primitive, not simple.

Here M = Re11 is simple. Easy to show AnnR(M) = {0}, but R
contains a nontrivial ideal (the finite rank transformations).

But we always have AnnR(R/N) ⊆ N, since if r(1 + N) = 0 + N
then r ∈ N.
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Leavitt path algebras

Let K be a field, and let E = (E 0,E 1, s, r) be any directed graph.

The Leavitt path K -algebra LK (E ) of E with coefficients in K

is the K -algebra generated by a set {v | v ∈ E 0}, together with a
set of variables {e, e∗ | e ∈ E 1}, which satisfy the following
relations:

(V) vw = δv ,wv for all v ,w ∈ E 0,

(E1) s(e)e = er(e) = e for all e ∈ E 1,

(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E 1, and

(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for every regular vertex v ∈ E 0.
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Prime Leavitt path algebras

Notation: u ≥ v means either u = v or there exists a path p for
which s(p) = u, r(p) = v . u “connects to” v .

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary.
Then LK (E ) is prime ⇔ for each pair v ,w ∈ E 0 there exists
u ∈ E 0 with v ≥ u and w ≥ u. “Downward Directed” (MT3)

Idea of Proof. (⇒) Let R denote LK (E ). Let v ,w ∈ E 0. But
RvR 6= {0} and RwR 6= {0} ⇒ RvRwR 6= {0} ⇒ vRw 6= {0} ⇒
vαβ∗w 6= 0 for some paths α, β in E . Then u = r(α) works.

(⇐) LK (E ) is graded by Z, so need only check primeness on
nonzero graded ideals I , J. But each nonzero graded ideal contains
a vertex. Let v ∈ I ∩ E 0 and w ∈ J ∩ E 0. By downward
directedness there is u ∈ E 0 with v ≥ u and w ≥ u. But then
u = p∗vp ∈ I and u = q∗wq ∈ J, so that 0 6= u = u2 ∈ IJ.
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The Countable Separation Property

‘ Definition. Let E be any directed graph. E has the Countable
Separation Property (CSP) if there exists a countable set of
vertices S in E for which every vertex of E connects to an element
of S .

E has the “Countable Separation Property” with respect to S .

Same idea for any subset X of E 0: X has CSP (with respect to
SX ) in case SX is countable, and every element of X connects to
an element of SX .

Note for later: If X = ∅, then X vacuously has CSP (with respect
to any countable subset of vertices).

So if X does not have CSP, then X 6= ∅.
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The Countable Separation Property

Observe: If E 0 is countable, then E has CSP.

2) Example: X uncountable, S the set of finite subsets of X .
Define the graph E :

1 vertices indexed by S , and

2 edges induced by proper subset relationship.

Then E does not have CSP.
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Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?

Note: Since LK (E ) ∼= LK (E )op, left primitivity and right primitivity
coincide. So we can just say “primitive” Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to
appear)

LK (E ) is primitive ⇔

1 LK (E ) is prime,

2 every cycle in E has an exit (Condition (L)), and

3 E has the Countable Separation Property.
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LK (E ) primitive ⇔ E has (MT3), (L), and CSP

Strategy of Proof:

1. A unital ring R is left primitive if and only if there is a left ideal
N 6= R of R such that for every nonzero two-sided ideal I of R,
N + I = R.

Idea: (⇐) Embed N in a maximal left ideal T (this is OK since R
is unital). So RR/T is simple.

Then AnnR(R/T ) ⊆ T (noted previously). Thus
N + AnnR(R/T ) ⊆ T . If to the contrary AnnR(R/T ) 6= {0}, the
hypotheses would yield N + AnnR(R/T ) = R, impossible.

(⇒) If M is the supposed simple having AnnR(M) = {0}, write
M ∼= R/T for some maximal left ideal T . (In particular T 6= R.)
So if I 6= {0} then I · R/T = R/T , so that I + T = R.
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LK (E ) primitive ⇔ E has (MT3), (L), and CSP

2. Embed a prime LK (E ) in a unital algebra LK (E )1 in the usual
way; primitivity is preserved.

3. Show that CSP allows us to build a left ideal in LK (E )1 with
the desired properties.

4. Then show that the lack of the CSP implies that no such left
ideal can exist in LK (E )1.

We will use:

“Reduction Theorem”. If E has Condition (L) then every
nonzero two-sided ideal of E contains a vertex.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

(⇐). Suppose E downward directed, E has Condition (L), and E
has CSP.

Suffices to establish primitivity of LK (E )1. Let T denote a set of
vertices w/resp. to which E has CSP.

T is countable: label the elements T = {v1, v2, ...}.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Inductively define a sequence λ1, λ2, ... of paths in E for which, for
each i ∈ N,

1 λi is an initial subpath of λj whenever i ≤ j , and

2 vi ≥ r(λi ).

Define λ1 = v1.

Suppose λ1, ..., λn have the indicated properties. By downward
directedness, there is un+1 in E 0 for which r(λn) ≥ un+1 and
vn+1 ≥ un+1. Let pn+1 : r(λn) un+1.

Define λn+1 = λnpn+1. �
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Since λi is an initial subpath of λt for all i ≤ t, we get that

λiλ
∗
i λtλ

∗
t = λtλ

∗
t for each pair of positive integers i ≤ t.

In particular (1− λiλ∗i )λtλ
∗
t = 0 for i ≤ t.

Define N =
∑∞

i=1 LK (E )1(1− λiλ∗i ).

N 6= LK (E )1: otherwise, 1 =
∑t

i=1 ri (1− λiλ∗i ) for some
ri ∈ LK (E )1, but then

0 6= 1 · λtλ∗t = (
t∑

i=1

ri (1− λiλ∗i )) · λtλ∗t = 0.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of LK (E )1 contains some
λnλ

∗
n.

Idea: E is downward directed, so LK (E ), and therefore LK (E )1, is
prime. Since LK (E ) embeds in LK (E )1 as a two-sided ideal, we get
I ∩ LK (E ) is a nonzero two-sided ideal of LK (E ). So Condition (L)
gives that I contains some vertex w .

Then w ≥ vn for some n by CSP. But vn ≥ r(λn) by construction,
so w ≥ r(λn). So w ∈ I gives r(λn) ∈ I , so λnλ

∗
n ∈ I .

Now we’re done. Show N + I = LK (E )1 for every nonzero
two-sided ideal I of LK (E )1. But 1− λnλ∗n ∈ N (all n ∈ N) and
λnλ

∗
n ∈ I (some n ∈ N) gives 1 ∈ N + I .
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

For the converse:

1) E not downward directed ⇒ LK (E ) not prime ⇒ LK (E ) not
primitive.

2) General ring theory result: If R is primitive and f = f 2 is
nonzero then fRf is primitive.

If E contains a cycle c (based at v) without exit then
vLK (E )v ∼= K [x , x−1], which is not primitive, so LK (E ) is not
primitive.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then LK (E ) is
not primitive.

Lemma. Let N be a left ideal of a unital ring A. If there exist
x , y ∈ A such that 1 + x ∈ N, 1 + y ∈ N, and xy = 0, then N = A.

Proof: Since 1 + y ∈ N then x(1 + y) = x + xy = x ∈ N, so that

1 = (1 + x)− x ∈ N.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist
a left ideal N 6= LK (E )1 for which N + I = LK (E )1 for all
two-sided ideals I of LK (E )1.

To do this: assume N is such an ideal, show N = LK (E )1.

Strategy: If N has this property, then for each v ∈ E 0 we have
N + 〈v〉 = LK (E )1. So for each v ∈ E 0 there exists yv ∈ 〈v〉,
nv ∈ N for which nv + yv = 1. Let xv = −yv . This gives a set
{xv | v ∈ E 0} ⊆ LK (E )1 for which 1 + xv ∈ N for all v ∈ E 0.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Now show that the lack of CSP in E 0 forces the existence of a pair
of vertices v ,w for which xv · xw = 0. (This is the technical part.)

Then use the Lemma.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Key pieces of the technical part:

1 Every element ` of LK (E ) can be written as
∑n

i=1 kiαiβ
∗
i for

some n = n(`), and paths αi , βi . In particular, we can “cover”
all elements of LK (E ) by specifying n and lengths of paths.
This is a countable covering of LK (E ). (Not a partition.)

2 Collect up the xv according to this covering. Since E does not
have CSP, then some specific subset in the cover does not
have CSP.

3 Show that, in this specific subset Z , there exists v ∈ Z for
which the set

{w ∈ Z | xvxw = 0}

does not have CSP. In particular, this set is nonempty. Pick
such v and w . Then we are done by the Lemma. �

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Key pieces of the technical part:

1 Every element ` of LK (E ) can be written as
∑n

i=1 kiαiβ
∗
i for

some n = n(`), and paths αi , βi . In particular, we can “cover”
all elements of LK (E ) by specifying n and lengths of paths.
This is a countable covering of LK (E ). (Not a partition.)

2 Collect up the xv according to this covering. Since E does not
have CSP, then some specific subset in the cover does not
have CSP.

3 Show that, in this specific subset Z , there exists v ∈ Z for
which the set

{w ∈ Z | xvxw = 0}

does not have CSP. In particular, this set is nonempty. Pick
such v and w . Then we are done by the Lemma. �

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Key pieces of the technical part:

1 Every element ` of LK (E ) can be written as
∑n

i=1 kiαiβ
∗
i for

some n = n(`), and paths αi , βi . In particular, we can “cover”
all elements of LK (E ) by specifying n and lengths of paths.
This is a countable covering of LK (E ). (Not a partition.)

2 Collect up the xv according to this covering. Since E does not
have CSP, then some specific subset in the cover does not
have CSP.

3 Show that, in this specific subset Z , there exists v ∈ Z for
which the set

{w ∈ Z | xvxw = 0}

does not have CSP. In particular, this set is nonempty. Pick
such v and w . Then we are done by the Lemma. �

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

∀a ∈ R ∃ x ∈ R with a = axa.

(R is not required to be unital.)

Examples:

1 Division rings

2 Direct sums of matrix rings over division rings

3 Direct limits of von Neumann regular rings

R is regular ⇔ R1 is regular.
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Kaplansky’s Question

“Kaplansky’s Question”:

I. Kaplansky, Algebraic and analytic aspects of operator
algebras, AMS, 1970.

Is every regular prime algebra primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example. (Clever, but very ad hoc.)
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Kaplansky’s Question

Theorem. (A-, K.M. Rangaswamy 2010)

LK (E ) is von Neumann regular ⇔ E is acyclic.

Idea of Proof: (⇐) If E contains a cycle c based at v , can show
that a = v + c has no “regular inverse”.

(⇒) Show that if E is acyclic then every element of LK (E ) can be
trapped in a subring of LK (E ) which is isomorphic to a finite direct
sum of finite matrix rings.
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Application to Kaplansky’s question

It’s not hard to find acyclic graphs E for which LK (E ) is prime but
for which C.S.P. fails.

Example (mentioned previously): X uncountable, S the set of
finite subsets of X . Define the graph E :

- vertices indexed by S , and

- edges induced by proper subset relationship.

Then for this graph E ,

1 LK (E ) is regular (E is acyclic)

2 LK (E ) is prime (E is downward directed)

3 LK (E ) is not primitive (E does not have CSP).
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Application to Kaplansky’s question

Note: Embedding LK (E ) in LK (E )1 in the usual way gives unital,
regular, prime, not primitive algebras.

Remark: These examples are also “Cohn path algebras”.
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Application to Kaplansky’s question

A second construction of such graphs:

Let κ > 0 be any ordinal. Define Eκ as follows:

E 0
κ = {α | α < κ}, E 1

κ = {eα,β | α, β < κ, and α < β},

s(eα,β) = α, and r(eα,β) = β for each eα,β ∈ E 1
κ .

Suppose κ has uncountable cofinality. Then LK (Eκ) is regular,
prime, not primitive.
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1 Primitive Leavitt path algebras

2 Primitive graph C∗-algebras
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Prime graph C∗-algebras

For a ring R with a topology in which multiplication is continuous,
then R is prime as a ring iff R is prime with respect to closed ideals.

So for a C∗-algebra, primeness as a ring and primeness in the usual
C∗ sense mean the same thing.

Proposition. Let E be any graph. Then C ∗(E ) is prime if and
only if

1 E is downward directed, and

2 E satisfies Condition (L).

Proof. This was established by Takeshi Katsura (2006), in the
more general context of topological graphs.
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C ∗(E ) prime ⇐ E has (MT3) and (L)

Idea of Proof:

Suppose E is downward directed and has (L).

If I and J are nonzero ideals in C ∗(E ), then (L) with the Cuntz
Krieger Uniqueness Theorem gives u, v ∈ E 0 such that pu ∈ I and
pv ∈ J.

Then downward directed gives w ∈ E 0 such that u ≥ w and
v ≥ w . So pw ∈ I and pw ∈ J, so 0 6= pw = p2

w ∈ IJ.
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C ∗(E ) prime ⇒ E has (MT3) and (L)

Conversely: Suppose E does not satisfy (L). Then there exists a
cycle α = e1 . . . en in E without exits. If H = α0, then IH = IH is
Morita equivalent to C ∗(T).

But this is impossible, since

1 any ideal of a prime C∗-algebra is itself prime as a C∗-algebra,

2 primeness is preserved under Morita equivalence, and

3 C ∗(T) is easily shown to not be prime.

So E satisfies Condition (L).
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C ∗(E ) prime ⇒ E has (MT3) and (L)

Now show E is downward directed. Let u, v ∈ E 0. For w ∈ E 0

H(w) := {x ∈ E 0 : w ≥ x}.

Let H(w) denote the saturated closure of H(w).

For u, v ∈ E 0, the ideals IH(u) = IH(u) and IH(v) = IH(v) are each
nonzero.

Since C ∗(E ) is prime, IH(u) ∩ IH(v) 6= {0}.

But IH(u)∩H(v) = IH(u) ∩ IH(v), so H(u) ∩ H(v) 6= ∅, which gives

that H(u) ∩ H(v) 6= ∅.

Then w ∈ H(u) ∩ H(v) works.
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Prime graph C∗-algebras

So the “answer” to the primeness question in the graph C∗-algebra
setting differs from that of the Leavitt path algebra setting.

For example:

K [x , x−1] = L( • ee ) is prime,

but
C ∗(T) = C ∗( • ee ) is not prime.
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Primitive C∗-algebras

Definition. The C∗-algebra A is primitive if there exists an
irreducible faithful ∗-representation of A.

Rephrased: A is primitive if there is an irreducible faithful
representation π : A→ B(H) as bounded operators on a Hilbert
space H. �
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Primitive C∗-algebras

This will be useful:

Proposition: Suppose A is a C∗-algebra. Suppose there exists a
modular left ideal N 6= A of A such that N + I = A for every
nonzero closed two-sided ideal I of A. Then A is left primitive.
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Primitive C∗-algebras

Idea of Proof. Suppose u is a modular element for N; so
a− au ∈ N for all a ∈ A.

Standard: u /∈ N (otherwise N = A).
Standard: N embeds in a maximal (necessarily modular) left

ideal T of A.
Standard: T is closed.

Since T is maximal, A/T is irreducible. Using closure of T and
approximate identities for elements of A, standard to show that
AnnA(A/T ) ⊆ T .

Now argue as in the unital ring case.
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Idea of Proof. Suppose u is a modular element for N; so
a− au ∈ N for all a ∈ A.

Standard: u /∈ N (otherwise N = A).
Standard: N embeds in a maximal (necessarily modular) left
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Primitive C∗-algebras

Lemma (well-known): Any primitive C∗-algebra is prime.

Proof. Let π : A→ B(H) be the supposed irreducible faithful
representation of the C∗-algebra A, and let I , J be (closed)
two-sided ideals of A. Suppose IJ = {0}; we show that either
I = {0} or J = {0}. If J 6= {0} then the faithfulness of π gives
π(J)H 6= {0}. But π(J)H is then a nonzero closed
subrepresentation of the irreducible representation π, so
π(J)H = H. Then {0} = IJ gives
{0} = π(IJ)H = π(I )π(J)H = π(I )H, so that, again invoking the
faithfulness of π, we get I = {0}. �
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Primitive C∗-algebras

Theorem (Dixmier, 1960) Every prime separable C∗-algebra is
primitive.

Remark: It’s an existence proof; the faithful irreducible
representation is not explicitly constructed.

Consequence: Suppose E is a graph for which C ∗(E ) is separable.
(So in particular E 0 is countable.)

Then C ∗(E ) is primitive if and only if

E is downward directed, and satisfies Condition (L).

... and, in this case, if and only if LK (E ) is primitive.
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Primitive graph C∗-algebras

Can we identify the primitive graph C∗-algebras for arbitrary
graphs?

Note: “Primeness + Separability” of C ∗(E ) is not the appropriate
pairing of properties to achieve “Primitivity” in general.

For example C ∗(E ) is primitive for E the graph with one vertex
and uncountably many loops, but C ∗(E ) is not separable.
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Primitive graph C∗-algebras

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then C ∗(E ) is primitive if and only if ...

1 E is downward directed,

2 E satisfies Condition (L), and

3 E satisfies the Countable Separation Property.

... if and only if C ∗(E ) is prime and E satisfies the Countable
Separation Property.
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C ∗(E ) primitive ⇐ E has (MT3), (L), and CSP

Proof of sufficiency. A lot of this will look familiar.

Let X be a set of vertices with respect to which E satisfies the
Countable Separation Property. Label the elements of X as
{v1, v2, ...}. We know (previous proof) there is a sequence
λ1, λ2, ... of paths in E having the following properties for each
i ∈ N:

(i) vi ≥ r(λi ), and

(ii) λi+1 = λiµi+1 for some path µi+1 in E .

Note: since by construction λ1 = v , Sλ1S∗λ1
= Pv .
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C ∗(E ) primitive ⇐ E has (MT3), (L), and CSP

By construction, for i < t we have

Sλi S
∗
λi

Sλt S
∗
λt = Sλt S

∗
λt for each pair of positive integers i ≤ t.

Claim: Every nonzero (closed) two-sided ideal J of C ∗(E ) contains
SλnS∗λn for some n ∈ N.

Reason: By Condition (L), the Cuntz-Krieger Uniqueness Theorem
applies to yield that J contains some vertex projection Pw .

By the CSP there exists vn ∈ X for which w ≥ vn. But
vn ≥ r(λn).

So there is a path µ in E for which s(µ) = w and r(µ) = r(λn).
Since Pw ∈ J we get Pr(λn) ∈ J, so SλnS∗λn = SλnPr(λn)S∗λn ∈ J.
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C ∗(E ) primitive ⇐ E has (MT3), (L), and CSP

Let A denote C ∗(E ), and let v denote v1. Consider the left ideal L
of A defined by:

L = {
n∑

i=1

(xi − xiSλi S
∗
λi

) | xi ∈ A, n ∈ N}.

L is modular (with a− aPv ∈ L for all a ∈ A).

Pv /∈ L. (Same proof as for Leavitt path algebras:)
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C ∗(E ) primitive ⇐ E has (MT3), (L), and CSP

We use previous Proposition; need only show that I + L = A for
any nonzero closed two-sided ideal I of A. But any such two-sided
ideal contains SλnS∗λn for some n ∈ N, hence contains aSλnS∗λn for
all a ∈ A, but then

a = aSλnS∗λn + (a− aSλnS∗λn) ∈ I + L.

�
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

Proof of Converse.

Show that if A = C ∗(E ) is primitive, then E has Condition (L), is
downward directed, and has CSP.

Since primitive implies prime we get that E satisfies Condition (L)
and is downward directed.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

So suppose to the contrary that E does not satisfy the Countable
Separation Property. We show that C ∗(E ) admits no faithful
irreducible representations.

We actually show more, that C ∗(E ) admits no faithful cyclic
representations. Suppose ψ : A→ B(H) is a cyclic representation
of A; so there exists ξ ∈ H for which ψ(A)H = ψ(A)ξ.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

We will use this general result:

Lemma. Let ψ be a representation of a C∗-algebra B as bounded
operators on a Hilbert space H, and let ξ ∈ H. Suppose
{Qi | i ∈ I} is a set of nonzero mutually orthogonal projections in
B for which, for each i ∈ I , ψ(Qi )ξ 6= 0. Then I is at most
countable.

Proof. Use the Pythagorean Theorem in B.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

This graph-theoretic definition will also be useful.

Let E be any graph. For w ∈ E 0, let

U(w) = {v ∈ E 0 | v ≥ w}.

Observation: E does not satisfy the Countable Separation
Property in case for every countable subset X of E 0, there exists
some vertex v in E 0 \ ∪x∈XU(x).
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

For every integer n ≥ 0 define

Γn = {µ ∈ Path(E ) | ψ(SµS∗µ)ξ 6= 0, and |µ| = n}.

(We view paths of length 0 as vertices, and in this case interpret
SµS∗µ as Ps(µ).)

Because the paths in Γn are of fixed length, the set
{SµS∗µ | µ ∈ Γn} consists of nonzero orthogonal projections.

So by the Lemma, each Γn is at most countable.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

For every integer n ≥ 0 define

Ωn = {w ∈ E 0 | w ∈ µ0 for some µ ∈ Γn}.

Since each Γn is countable, and any path in E contains finitely
many vertices, we get that each Ωn is countable.

For every integer n ≥ 0 define

Θn = ∪w∈ΩnU(w), and Θ = ∪∞n=0Θn.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

Since Θ = ∪∞n=0(∪w∈ΩnU(w)), and each Ωn is countable, we have
that Θ is the union of a countable number of sets of the form
U(w).

So by the hypothesis that E does not satisfy the Countable
Separation Property, we conclude that there exists some
v ∈ E 0 \Θ.

But v ∈ E 0 \Θ means that for every path γ having s(γ) = v , then
every path ν for which r(γ) ∈ ν0 has ψ(SνS∗ν )ξ = 0.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

Let J denote the (nonzero) closed two-sided ideal of C ∗(E )
generated by Pv . Let H(v) denote the set {w ∈ E 0 | v ≥ w}.

Consider the set

T = spanC{SµS∗ν | µ, ν ∈ Path(E ) with r(µ) = r(ν) ∈ H(v)}.

Then T is dense in J.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

Claim: ψ(t)ξ = 0 for all t ∈ T .

Reason: Suffices to show that ψ(SµS∗ν )ξ = 0 for any
µ, ν ∈ Path(E ) for which r(µ) = r(ν) ∈ H(v). But by the above
description of E 0 \Θ we have ψ(SνS∗ν )ξ = 0, so that

ψ(SµS∗ν )ξ = ψ(SµS∗νSνS∗ν )ξ = ψ(SµS∗ν )ψ(SνS∗ν )ξ = ψ(SµS∗ν )0 = 0.
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C ∗(E ) primitive ⇒ E has (MT3), (L), and CSP

So ψ(T )ξ = 0, so that ψ(T )ξ = 0, and thus ψ(J)ξ = 0, which
gives ψ(J)ξ = 0. But then

ψ(J)H = ψ(J · A)H = ψ(J)ψ(A)H = ψ(J)ψ(A)ξ

⊆ ψ(J · A)ξ = ψ(J)ξ = 0,

so that J ⊆ Ker(ψ). Since J is nonzero, ψ is not faithful. �

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive graph algebras



Primitive Leavitt path algebras Primitive graph C∗-algebras

Primitive C∗-algebras

We actually have shown more.

Definition. Let π be a representation of a C∗-algebra A on a
Hilbert space H. We say π is countably generated in case there
exists a countable subset {hi | i ∈ N} of H for which

H = span{π(A)hi | i ∈ N}.

Proposition. If E does not have CSP, then C ∗(E ) admits no
countably generated faithful representations.
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Primitive C∗-algebras

Proof. Same idea as above. Suppose {hi | i ∈ N} ⊆ H has
H = span{π(A)hi | i ∈ N}. For n ≥ 0, i ∈ N define

Γn = {µ ∈ Path(E ) | ψ(SµS∗µ)ξi 6= 0 for some i , and |µ| = n}.

Now argue as before.
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Prime, non-primitive C∗-algebras

The theorem gives us a machine to build prime, non-primitive
C∗-algebras.

Example: The graph E as considered previously. X an uncountable
set, S the set of finite subsets of X . E is the graph with:

1 vertices indexed by S , and

2 edges induced by proper subset relationship.

Then E is downward directed, has Condition (L), and does not
have CSP.

So C ∗(E ) is a prime, non-primitive C∗-algebra.

Note that C ∗(E ) is an AF algebra.
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Prime, non-primitive C∗-algebras

Modify E by adding a loop at each vertex. Call the new graph E ′.

Then E ′ is still downward directed, has Condition (L), and does
not have CSP.

So C ∗(E ′) is a prime, non-primitive C∗-algebra.

Note C ∗(E ) is not AF. Also, since E ′ does not have Condition (K),
C ∗(E ) does not have real rank 0.
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Prime, non-primitive C∗-algebras

Modify E ′ by adding a second loop at each vertex. Call the new
graph E ′′.

Then E ′′ is downward directed, has Condition (L), and does not
have CSP.

So C ∗(E ′′) is a prime, non-primitive C∗-algebra.

Note that C ∗(E ′′) also has Condition (K), so has real rank 0.
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Summary

Theorem. For an arbitrary graph E , these are equivalent.

1 E is downward directed, has Condition (L), and satisfies the
Countable Separation Property.

2 LK (E ) is primitive for every field K .

3 LC(E ) is primitive.

4 C ∗(E ) is primitive.

Moreover, using this result, we can easily construct infinite classes
of:

1 prime, non-primitive, von Neumann regular algebras, and

2 prime, non-primitive C∗-algebras.
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Summary

Questions?
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