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Outline

Recent trends in my own reserach, which has become (even more)
application driven and now focuses on scattering problems
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Helmholtz equation

Exterior Dirichlet planar problem

∆u(r) + k2u(r) = 0 , r ∈ E

u(r) = g(r) , r ∈ γ

lim
|r |→∞

√
|r |
(

∂

∂|r |
− ik

)
u(r) = 0

Interior Neumann axisymmetric problem

∆u(r) + k2u(r) = 0 , r ∈ V

ν · ∇u(r) = f (r) , r ∈ Γ

Fourier methods will be used in the azimuthal direction.
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Planar problem: geometry

Planar Exterior Helmholtz Dirichlet problem
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Real{u(r)} at k=280
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Figure: Setup from Hao, Barnett, Martinsson, and Young, Adv. Comput.
Math., (2013, in press).
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Axisymmetric problem: geometry

Coordinates for body of revolution

A
γ

 z

r
c

r

τ

ν

(c)

Figure: An axially symmetric surface Γ generated by a curve γ. (a) Unit
normal ν and tangent vector τ . (b) r has radial distance rc, azimuthal
angle θ, and height z . The planar domain A is bounded by γ and the
z-axis. (c) Coordinate axes and vectors in the half-plane θ = 0.
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Planar problem: integral equation

Planar Exterior Helmholtz Dirichlet problem

ρ(r)+

∫
γ
K (r , r ′)ρ(r ′)dγ′−ik

2

∫
γ
S(r , r ′)ρ(r ′) dγ′ = 2g(r) , r ∈ γ

where K and S depend on k . Note the coupling parameter.

Splits:

S(r , r ′) = G̃1(r , r ′)− 2

π
log |r − r ′|=

{
S(r , r ′)

}
K (r , r ′) = G̃2(r , r ′)− 2

π
log |r − r ′|=

{
K (r , r ′)

}
where G̃1, G̃2, ={S}, and ={K} are smooth functions. Similar for
post-processor.
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Axisymmetric problem: integral equation

Axisymmetric interior Helmholtz Neumann problem. Modal
equations:

ρn(r) + 2
√

2π

∫
γ
K t
n(r , r ′)ρn(r ′)r ′c dγ

′ = 2fn(r) , n = 0, . . .

K t
n(r , r ′) = K̃ t

n(r , r ′) +
1√
2π

∑
m

Dt
m(r , r ′)G̃3,n−m(r , r ′)

Dt
n(r , r ′) = G̃4(r , r ′)Qn− 1

2
(χ) + G̃5(r , r ′)Qn− 3

2
(χ)

χ = 1 +
|r − r ′|2

2rcr ′c

Split:

Qn− 1
2
(χ) = −1

2
log (χ− 1) 2F̃1

(
1

2
− n,

1

2
+ n; 1;

1− χ
2

)
+G̃6 (χ, n)
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Philosophy

Automatization

Computing on-the-fly

Optimal accuracy

Discretization economy

Solutions available everywhere in domain

Exploitation of known analytical information
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Numerical tools

Nyström scheme with panelwise Gauss–Legendre quadrature

Fast product integration for (near) singular logarithmic- and
Cauchy-type kernels

Matrix splittings M = M? + M◦

Multilevel discretization – coarse and fine grids

Panelwise interpolation operators P, Q, and PW .

Hankel functions H
(1)
n (z) and toroidal harmonics Qn− 1

2
(z)
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Product integration

Given a parameterization γ(t), a quadrature ti , wi and

Ip(r) =

∫
γp

G (r , r ′)ρ(r ′)dγ′

G (r , r ′) = G̃0(r , r ′) + log |r − r ′|G̃L(r , r ′) +
(r ′ − r) · ν ′

|r ′ − r |2
G̃C(r , r ′)

it holds, on the fly and in practice, to order npt ≤ 32

Ip(r) =

npt∑
j=1

G (r , rj)ρjsjwj +

npt∑
j=1

G̃L(r , rj)ρjsjwjw
corr
Lj (r)

+

npt∑
j=1

G̃C(r , rj)ρjw
cmp
Cj (r)
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Variants of schemes

General form of discretized integral equation(
I + M?

γ + M◦γ
)
ρ = 2g

Post-processor
u = (M?

E + M◦E )ρ

Abbreviations in what follows

(1) coarse grid on γ

(2) fine grid on γ

(3) field points in the exterior E
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Variants of schemes

Scheme A: everything on the coarse grid(
I(11) + M?(11)

γ + M◦(11)γ

)
ρ(1) = 2g(1)

u(3) =
(
M
?(31)
E + M

◦(31)
E

)
ρ(1)

Scheme B: close interaction on the fine grid(
I(11) + QM?(22)

γ P + M◦(11)γ

)
ρ(1) = 2g(1)

u(3) =
(
M
?(32)
E P + M

?◦(32)
E P + M

◦(31)
E

)
ρ(1)

Scheme C: same as scheme B, but with equal arc length panels
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Variants of schemes

Scheme D: more uknknowns, but same work for main
matrix-vector multiplications(

I(22) + M?(22)
γ + PM◦(11)γ PT

W

)
ρ(2) = 2g(2)

u(3) =
(
M
?(32)
E + M

?◦(32)
E + M

◦(31)
E PT

W

)
ρ(2)

Scheme E: even more dominant role for fine grid in integral
equation (

I(22) + M?(22)
γ + M◦(21)γ PT

W

)
ρ(2) = 2g(2)

u(3) =
(
M
?(32)
E + M

?◦(32)
E + M

◦(31)
E PT

W

)
ρ(2)



Planar problem: results
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Figure: log10 of pointwise error in u(r), normalized with max |u(r)|, at
347,650 near-field points. Scheme E is used with 140 panels on γ. The
sources that generate the boundary conditions appear as green stars.
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Planar problem: results

1000 1500 2000 2500
10

−15

10
−10

10
−5

10
0

number of nodes (on coarse mesh)

re
la

ti
v
e

 e
rr

o
r 

a
t 

d
is

ta
n

t 
te

s
ti
n

g
 l
o

c
a

ti
o

n
s

Exterior Helmholtz Dirichlet problem at k=280
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Figure: Far field tests.
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Planar problem: results
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Exterior Helmholtz Dirichlet problem at k=280
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16th order
32nd order

Figure: Near field tests.
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Axisymmetric problem: results
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16th order
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(b)

u1,49 in A

16th order

Figure: Convergence of the Laplace Neumann eigenpair u1,49(r) and
k1,49 ≈ 19.22942004015467. (a) Reciprocal condition number and error
in k1,49. (b) Estimated average pointwise error in u1,49(r).
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Axisymmetric problem: results
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Figure: Normalized Neumann Laplace eigenfunction u1,49(r). (c) The
field u1,49(r)eiθ for θ = 0 and θ = π with 608 points on γ. (d) log10 of
pointwise error in u1,49(r)eiθ for θ = 0 and θ = π.
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Axisymmetric problem: results
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16th order
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(b)

u2,43 in A

16th order

Figure: Convergence of the Laplace Neumann eigenpair u2,43(r) and
k2,43 ≈ 19.21873987061249. (a) Reciprocal condition number and error
in k2,43. (b) Estimated average pointwise error in u2,43(r).
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Axisymmetric problem: results
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Figure: Normalized Neumann Laplace eigenfunction u2,43(r). (c) The
field u2,43(r)eiθ for θ = 0 and θ = π with 608 points on γ. (d) log10 of
pointwise error in u2,43(r)eiθ for θ = 0 and θ = π.



Conclusions

Explicit kernel-split panel-based Nyström discretization
schemes with quadratures computed on the fly seem
competitive for planar and axisymmetric BVP.

Log and Cauchy kernels suffice most of the time.

Comparing schemes is difficult.

Fast methods for non-linear eigenvalue problems needed in
applications to accelerator design.

Incorporation of fast direct solvers?
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