Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems

Johan Helsing
Lund University

Talk at "Integral equation methods: fast algorithms and applications", Banff, December 9, 2013

Acknowledgement

The work presented has in part been carried out in cooperation with or been supported by:

- Michael Benedicks
- Björn Dahlberg
- Jonas Englund
- Leslie Greengard
- Bertil Gustafsson
- Anders Karlsson
- Robert V. Kohn
- Graeme Milton
- Gunnar Peters
- Rikard Ojala
- Karl-Mikael Perfekt
- the Swedish Research Council

Outline

Recent trends in my own reserach, which has become (even more) application driven and now focuses on scattering problems

- Helmholtz equation
- Geometries
- Integral equations with split kernels
- Philosophy
- Overview of numerical tools
- Product integration
- Multilevel discretization
- Numerical examples
- Relevance for particle accelerator design

Helmholtz equation

Exterior Dirichlet planar problem

$$
\begin{gathered}
\Delta u(r)+k^{2} u(r)=0, \quad r \in E \\
u(r)=g(r), \quad r \in \gamma \\
\lim _{|r| \rightarrow \infty} \sqrt{|r|}\left(\frac{\partial}{\partial|r|}-\mathrm{i} k\right) u(r)=0
\end{gathered}
$$

Interior Neumann axisymmetric problem

$$
\begin{gathered}
\Delta u(\mathbf{r})+k^{2} u(\mathbf{r})=0, \quad \mathbf{r} \in V \\
\boldsymbol{\nu} \cdot \nabla u(\mathbf{r})=f(\mathbf{r}), \quad \mathbf{r} \in \Gamma
\end{gathered}
$$

Fourier methods will be used in the azimuthal direction.

Planar problem: geometry

Planar Exterior Helmholtz Dirichlet problem

Figure: Setup from Hao, Barnett, Martinsson, and Young, Adv. Comput. Math., (2013, in press).

Axisymmetric problem: geometry

Coordinates for body of revolution

Figure: An axially symmetric surface 「 generated by a curve γ. (a) Unit normal $\boldsymbol{\nu}$ and tangent vector $\boldsymbol{\tau}$. (b) \mathbf{r} has radial distance r_{c}, azimuthal angle θ, and height z. The planar domain A is bounded by γ and the z-axis. (c) Coordinate axes and vectors in the half-plane $\theta=0$.

Planar problem: integral equation

Planar Exterior Helmholtz Dirichlet problem

$$
\rho(r)+\int_{\gamma} K\left(r, r^{\prime}\right) \rho\left(r^{\prime}\right) \mathrm{d} \gamma^{\prime}-\mathrm{i} \frac{k}{2} \int_{\gamma} S\left(r, r^{\prime}\right) \rho\left(r^{\prime}\right) \mathrm{d} \gamma^{\prime}=2 g(r), \quad r \in \gamma
$$

where K and S depend on k. Note the coupling parameter.
Splits:

$$
\begin{aligned}
& S\left(r, r^{\prime}\right)=\tilde{G}_{1}\left(r, r^{\prime}\right)-\frac{2}{\pi} \log \left|r-r^{\prime}\right| \Im\left\{S\left(r, r^{\prime}\right)\right\} \\
& K\left(r, r^{\prime}\right)=\tilde{G}_{2}\left(r, r^{\prime}\right)-\frac{2}{\pi} \log \left|r-r^{\prime}\right| \Im\left\{K\left(r, r^{\prime}\right)\right\}
\end{aligned}
$$

where $\tilde{G}_{1}, \tilde{G}_{2}, \Im\{S\}$, and $\Im\{K\}$ are smooth functions. Similar for post-processor.

Axisymmetric problem: integral equation

Axisymmetric interior Helmholtz Neumann problem. Modal equations:

$$
\begin{gathered}
\rho_{n}(r)+2 \sqrt{2 \pi} \int_{\gamma} K_{n}^{t}\left(r, r^{\prime}\right) \rho_{n}\left(r^{\prime}\right) r_{\mathrm{c}}^{\prime} \mathrm{d} \gamma^{\prime}=2 f_{n}(r), \quad n=0, \ldots \\
K_{n}^{t}\left(r, r^{\prime}\right)=\tilde{K}_{n}^{t}\left(r, r^{\prime}\right)+\frac{1}{\sqrt{2 \pi}} \sum_{m} D_{m}^{t}\left(r, r^{\prime}\right) \tilde{G}_{3, n-m}\left(r, r^{\prime}\right) \\
D_{n}^{t}\left(r, r^{\prime}\right)=\tilde{G}_{4}\left(r, r^{\prime}\right) \mathfrak{Q}_{n-\frac{1}{2}}(\chi)+\tilde{G}_{5}\left(r, r^{\prime}\right) \mathfrak{Q}_{n-\frac{3}{2}}(\chi) \\
\chi=1+\frac{\left|r-r^{\prime}\right|^{2}}{2 r_{\mathrm{c}}^{\prime} r_{\mathrm{c}}^{\prime}}
\end{gathered}
$$

Split:
$\mathfrak{Q}_{n-\frac{1}{2}}(\chi)=-\frac{1}{2} \log (\chi-1){ }_{2} \tilde{F}_{1}\left(\frac{1}{2}-n, \frac{1}{2}+n ; 1 ; \frac{1-\chi}{2}\right)+\tilde{G}_{6}(\chi, n)$

Philosophy

- Automatization
- Computing on-the-fly
- Optimal accuracy
- Discretization economy
- Solutions available everywhere in domain
- Exploitation of known analytical information

Numerical tools

- Nyström scheme with panelwise Gauss-Legendre quadrature
- Fast product integration for (near) singular logarithmic- and Cauchy-type kernels
- Matrix splittings $\mathbf{M}=\mathbf{M}^{\star}+\mathbf{M}^{\circ}$
- Multilevel discretization - coarse and fine grids
- Panelwise interpolation operators \mathbf{P}, \mathbf{Q}, and \mathbf{P}_{W}.
- Hankel functions $H_{n}^{(1)}(z)$ and toroidal harmonics $\mathfrak{Q}_{n-\frac{1}{2}}(z)$

Product integration

Given a parameterization $\gamma(t)$, a quadrature t_{i}, w_{i} and

$$
\begin{gathered}
I_{p}(r)=\int_{\gamma_{p}} G\left(r, r^{\prime}\right) \rho\left(r^{\prime}\right) \mathrm{d} \gamma^{\prime} \\
G\left(r, r^{\prime}\right)=\tilde{G}_{0}\left(r, r^{\prime}\right)+\log \left|r-r^{\prime}\right| \tilde{G}_{\mathrm{L}}\left(r, r^{\prime}\right)+\frac{\left(r^{\prime}-r\right) \cdot \nu^{\prime}}{\left|r^{\prime}-r\right|^{2}} \tilde{G}_{\mathrm{C}}\left(r, r^{\prime}\right)
\end{gathered}
$$

it holds, on the fly and in practice, to order $n_{\mathrm{pt}} \leq 32$

$$
\begin{aligned}
I_{p}(r)=\sum_{j=1}^{n_{\mathrm{pt}}} G\left(r, r_{j}\right) \rho_{j} s_{j} w_{j} & +\sum_{j=1}^{n_{\mathrm{pt}}} \tilde{G}_{\mathrm{L}}\left(r, r_{j}\right) \rho_{j} s_{j} w_{j} w_{\mathrm{L} j}^{\mathrm{corr}}(r) \\
& +\sum_{j=1}^{n_{\mathrm{pt}}} \tilde{G}_{\mathrm{C}}\left(r, r_{j}\right) \rho_{j} w_{\mathrm{C} j}^{\mathrm{cmp}}(r)
\end{aligned}
$$

Variants of schemes

General form of discretized integral equation

$$
\left(\mathbf{I}+\mathbf{M}_{\gamma}^{\star}+\mathbf{M}_{\gamma}^{\circ}\right) \boldsymbol{\rho}=2 \mathbf{g}
$$

Post-processor

$$
\mathbf{u}=\left(\mathbf{M}_{E}^{\star}+\mathbf{M}_{E}^{\circ}\right) \boldsymbol{\rho}
$$

Abbreviations in what follows
(1) coarse grid on γ
(2) fine grid on γ
(3) field points in the exterior E

Variants of schemes

Scheme A: everything on the coarse grid

$$
\begin{gathered}
\left(\mathbf{I}^{(11)}+\mathbf{M}_{\gamma}^{\star(11)}+\mathbf{M}_{\gamma}^{\circ(11)}\right) \boldsymbol{\rho}^{(1)}=2 \mathbf{g}^{(1)} \\
\mathbf{u}^{(3)}=\left(\mathbf{M}_{E}^{\star(31)}+\mathbf{M}_{E}^{\circ(31)}\right) \boldsymbol{\rho}^{(1)}
\end{gathered}
$$

Scheme B: close interaction on the fine grid

$$
\begin{gathered}
\left(\mathbf{I}^{(11)}+\mathbf{Q} \mathbf{M}_{\gamma}^{\star(22)} \mathbf{P}+\mathbf{M}_{\gamma}^{\circ(11)}\right) \boldsymbol{\rho}^{(1)}=2 \mathbf{g}^{(1)} \\
\mathbf{u}^{(3)}=\left(\mathbf{M}_{E}^{\star(32)} \mathbf{P}+\mathbf{M}_{E}^{\star \circ(32)} \mathbf{P}+\mathbf{M}_{E}^{\circ(31)}\right) \boldsymbol{\rho}^{(1)}
\end{gathered}
$$

Scheme C: same as scheme B, but with equal arc length panels

Variants of schemes

Scheme D: more uknknowns, but same work for main matrix-vector multiplications

$$
\begin{aligned}
& \left(\mathbf{I}^{(22)}+\mathbf{M}_{\gamma}^{\star(22)}+\mathbf{P} \mathbf{M}_{\gamma}^{\circ(11)} \mathbf{P}_{W}^{T}\right) \boldsymbol{\rho}^{(2)}=2 \mathbf{g}^{(2)} \\
& \mathbf{u}^{(3)}=\left(\mathbf{M}_{E}^{\star(32)}+\mathbf{M}_{E}^{\star \circ(32)}+\mathbf{M}_{E}^{\circ(31)} \mathbf{P}_{W}^{T}\right) \boldsymbol{\rho}^{(2)}
\end{aligned}
$$

Scheme E: even more dominant role for fine grid in integral equation

$$
\begin{gathered}
\left(\mathbf{I}^{(22)}+\mathbf{M}_{\gamma}^{\star(22)}+\mathbf{M}_{\gamma}^{\circ(21)} \mathbf{P}_{W}^{T}\right) \boldsymbol{\rho}^{(2)}=2 \mathbf{g}^{(2)} \\
\mathbf{u}^{(3)}=\left(\mathbf{M}_{E}^{\star(32)}+\mathbf{M}_{E}^{\star \circ(32)}+\mathbf{M}_{E}^{\circ(31)} \mathbf{P}_{W}^{T}\right) \boldsymbol{\rho}^{(2)}
\end{gathered}
$$

Figure: $\log _{10}$ of pointwise error in $u(r)$, normalized with $\max |u(r)|$, at 347,650 near-field points. Scheme E is used with 140 panels on γ. The sources that generate the boundary conditions appear as green stars.

Planar problem: results

Figure: Far field tests.

Planar problem: results

Exterior Helmholtz Dirichlet problem at $k=280$

Figure: Near field tests.

Axisymmetric problem: results

Figure: Convergence of the Laplace Neumann eigenpair $u_{1,49}(r)$ and $k_{1,49} \approx 19.22942004015467$. (a) Reciprocal condition number and error in $k_{1,49}$. (b) Estimated average pointwise error in $u_{1,49}(r)$.

Axisymmetric problem: results

Figure: Normalized Neumann Laplace eigenfunction $u_{1,49}(r)$. (c) The field $u_{1,49}(r) e^{\mathrm{i} \theta}$ for $\theta=0$ and $\theta=\pi$ with 608 points on γ. (d) $\log _{10}$ of pointwise error in $u_{1,49}(r) e^{\mathrm{i} \theta}$ for $\theta=0$ and $\theta=\pi$.

Axisymmetric problem: results

Figure: Convergence of the Laplace Neumann eigenpair $u_{2,43}(r)$ and $k_{2,43} \approx 19.21873987061249$. (a) Reciprocal condition number and error in $k_{2,43}$. (b) Estimated average pointwise error in $u_{2,43}(r)$.

Axisymmetric problem: results

Figure: Normalized Neumann Laplace eigenfunction $u_{2,43}(r)$. (c) The field $u_{2,43}(r) e^{\mathrm{i} \theta}$ for $\theta=0$ and $\theta=\pi$ with 608 points on γ. (d) $\log _{10}$ of pointwise error in $u_{2,43}(r) e^{\mathrm{i} \theta}$ for $\theta=0$ and $\theta=\pi$.

- Explicit kernel-split panel-based Nyström discretization schemes with quadratures computed on the fly seem competitive for planar and axisymmetric BVP.
- Log and Cauchy kernels suffice most of the time.
- Comparing schemes is difficult.
- Fast methods for non-linear eigenvalue problems needed in applications to accelerator design.
- Incorporation of fast direct solvers?
- J. Helsing, "Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial", Abstr. Appl. Anal., 2013, Article ID 938167 (2013).
- J. Helsing and A. Holst, "Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems", arXiv:1311. 6258 [math.NA] (2013).
- J. Helsing and A. Karlsson, "An accurate solver for boundary value problems applied to the scattering of electromagnetic waves from two-dimensional objects with corners", IEEE Trans. Antennas Propag., 61, 3693-3700 (2013).
- J. Helsing, "Integral equation methods for elliptic problems with boundary conditions of mixed type", J. Comput. Phys., 228(23), 8892-8907 (2009).

