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Introduction

Basic theme in 3 and 4-manifold theory:

Constraints on genus of embedded orientable surface

Σg ⊂ M 3 or 4

Thurston norm in dimension 3; adjunction inequalities.

Usually assume M orientable and [Σ] = α 6= 0 ∈ H2(M; Z).

Define
gM(α) = min{g | Σg ⊂ M, [Σg] = α}.



Embeddings of genus h non-orientable surface

Fh = #hRP2 ⊂ M.

Dimension 3: [F ] must be 6= 0 ∈ H2(M; Z2).

Example: All L(2k , q) contain non-orientable surfaces
generating H2(L(2k , q); Z2) ∼= Z2.

◮ RP2 ⊂ RP3 = L(2, 1).
◮ Klein bottle = F2 ⊂ L(4, 1)
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Klein bottle in L(4,1)



Dimension 4:

RP2 ⊂ S4 with normal Euler number ±2.

So we’ll assume [F ] 6= 0 ∈ H2(M; Z2); say F is essential.

For Fh ⊂ M4, let n be its normal Euler number F · F .

Definition: hM(α) = min{h | Fh ⊂ M, [Fh] = α}.

Concentrate on special case: M = Y 3 × I with H2(Y ; Z2) = Z2,
particularly M = L(2k , q) × I.

Remark: For M = Y 3 × I, the Euler number n is even.



Remark:

In orientable case, Gabai showed for α 6= 0 ∈ H2(Y ; Z)

gY (α) = min{g | f : Σg → Y , f∗[Σ] = α}

So gY (α) = gY×I(α).

Proof uses taut foliations; doesn’t work in non-orientable case:

for any k and q there’s an essential map f : RP2 → L(2k , q).

Nevertheless, we conjecture (a precise version of)

hL(2k ,q)×I = hL(2k ,q).



Non-orientable genus bound

Lemma 1 (Cf. B.-H. Li, M. Mahowald)
For essential Fh ⊂ L(2k , q) × I, we have the congruence
n ≡ 2k − 2h + 2 (mod 4).

Remark: Connect sum with RP2 ⊂ S4 gives Fh+1 ⊂ M in same
homology class with Euler number = n ± 2.

Theorem 2 (Levine-R.-Strle 2013)
Let h ≤ 5. If Fh ⊂ L(2k , q) × I is an essential embedding with
normal Euler number n, then there is an i, (1 ≤ i ≤ h) with
|n| ≤ 2h − 2i and an embedding Fi ⊂ L(2k , q).

Conjecture: Theorem 2 holds for all h.



What does this mean? Let’s see for small h.

h = 1. If RP2 ⊂ L(2k , q) × I then i = 1 only choice. So n = 0
and there’s an embedding of RP2 in L(2k , q).

Easy to see this means L(2k , q) = L(2, 1) ∼= RP3.

h = 2. If Klein bottle ⊂ L(2k , q) × I then either
◮ i = 2 and n = 0, and F2 embeds in L(2k , q).

(Bredon-Wood: ⇔ k even, q = k ± 1)
◮ i = 1 and n = ±2 and F1 embeds in L(2k , q). So

L(2k , q) = L(2, 1).

Remark: Theorem 2 for h implies same statement for h − 1. So
it suffices to prove Theorem 2 for h odd (assume from now on).



Surfaces in lens spaces

Work of Bredon-Wood (1969) calculates hL(2k ,q) := N(2k , q)
defined recursively for 1 ≤ q < k :

◮ N(2, 1) = 1
◮ N(2k , q) = N(2(k − q), q′) + 1 where 1 ≤ q′ < k − q

and q′ = ±q (mod 2(k − q)).

Realizing lower bound done by technique for L(4, 1) from
earlier.



Embedding obstructions from d-invariants

If Y is a QHS3, d -invariants for s ∈ Spinc(Y ) defined by

min{gr(x) | 0 6= x ∈ Image(Um), ∀m ≥ 0}

where U acts on the Heegaard-Floer homology HF+(Y , s).

Useful fact: (Ni-Wu; Gessel) For k ∈ H1(L(2k , q)) order 2:

N(2k , q) = 2 max
s∈Spinc(L(2k ,q))

{d(L(2k , q), s + k) − d(L(2k , q), s)}



For torsion Spinc structure s on Y non-QHS3 with standard
HF∞(Y , s), there are two d -invariants dbot(Y , s) and dtop(Y , s)
corresponding to the kernel and cokernel of the action of H1(Y ).

We’re interested in Qh,n = the non-orientable S1 bundle of
Euler class n over Fh.

◮ Recall n even
◮ H1(Qh,n) ∼= Zh−1 ⊕ Z2 ⊕ Z2 so not a QHS3 for h > 1.
◮ Two torsion Spinc structures extend over D2 bundle.
◮ Two torsion Spinc structures don’t extend over D2 bundle.
◮ These are the twisted Spinc structures.



The invariants dbot and dtop yield bounds on hL×I for L oriented
with H1(L) = Z2k .

Lemma 3
Suppose Fh ⊂ L × I with normal Euler number n, and exterior
V = L × I − ν(Fh). For any s ∈ Spinc(L), there is a unique Spinc

structure s̃ on V that restricts to s on L0 and does not extend
over L × I.

Let ts ∈ Spinc(Qh,n) be the restriction of s̃ to Qh,n; this is one of
the twisted Spinc structures. The restriction of s̃ to L1 is s + k .



Main result

Theorem 4 (Levine-R.-Strle 2013)
Suppose Fh ⊂ L × I with normal Euler number n. For each
s ∈ Spinc(L), we have

dtop(Qh,n, ts) −
h − 1

2
≤ d(L, s + k) − d(L, s)

≤ dbot(Qh,n, ts) +
h − 1

2
.

Get the strongest results by varying s ∈ Spinc(L) to maximize or
minimize d(L, s + k) − d(L, s).



Computing d(Qh,n, t)

We’ve verified the following conjecture for h = 1, 3, 5 by one
method, h = 2 by another.

Conjecture 5
For odd genus h there are two twisted spin structures t1 and t2

such that

dbot(Qh,n, t1) = dtop(Qh,n, t1) =
n + 2

4

and

dbot(Qh,n, t2) = dtop(Qh,n, t2) =
n − 2

4
.

Similar statement for even genus.

The d-invariant seems to depend only on the Euler class n (i.e.,
is independent of h).



Surgery picture for Qh,n
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Can’t apply surgery formula to surgery on α since it is of infinite
order in H1(#

2g+1S1 × S2).



Better idea: integer surgery formula, based on the following
surgery diagram for Qh,n.

0 0

0 0

0

0 0

n+2

g copies

β

Q2g+1,n as surgery on rationally null-homologous knot β in
Mg,n+2#Q1,−2.



Second idea: surgery exact sequence, relating Q2g+1,n to the
orientable circle bundles Mg,n±2.

0 0

0 0

n - 2 c

γ

g copies

For n 6= 2, γ rationally null-homologous; surgery produces
◮ Mg,n−2 for coefficient c = ∞;
◮ Q2g+1,n for c = 0;
◮ Mg,n+2 for c = −1.


