Generically *n*-transitive permutation groups

Josh Wiscons

Universität Münster

Workshop on Permutation Groups BIRS - 2013

Algebraicity Conjecture:

Algebraicity Conjecture: the gap, \uparrow , does not exist.

Let G be a group of fMr.

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

• $X = \varphi(G^m)$ for some formula φ with *m* free variables; e.g.

• $\varphi(x)$: $\forall y(xy = yx)$ defines Z(G)

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^G

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{c}

•
$$\operatorname{rk}(X) \ge n+1 \iff$$

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

• $X = \varphi(G^m)$ for some formula φ with *m* free variables; e.g.

• If $\operatorname{rk}(X) = n$, the degree of X is the maximum $d \in \mathbb{N}$ s.t.

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\operatorname{rk}(X) \ge n+1 \iff$$

• If $\operatorname{rk}(X) = n$, the degree of X is the maximum $d \in \mathbb{N}$ s.t.

X	X_1	X ₂	X _d
	$\mathbf{rk} = n$	$\mathbf{r}\mathbf{k}=n$	rk = n

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

• $X = \varphi(G^m)$ for some formula φ with *m* free variables; e.g.

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{C}

G satisfies DCC on definable subgroups

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{C}

- **9** *G* satisfies DCC on definable subgroups
- **③** ∃ a minimal definable subgroup of finite index G° (and deg $G^{\circ} = 1$)

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{C}

- **9** *G* satisfies DCC on definable subgroups
- ⓐ ∃ a minimal definable subgroup of finite index G° (and deg $G^{\circ} = 1$)
- $[G, G], F(G), \text{ and } \sigma(G) \text{ are definable}!$

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{G}

- **G** satisfies DCC on definable subgroups
- ⓐ ∃ a minimal definable subgroup of finite index G° (and deg $G^{\circ} = 1$)
- **(**G, G], F(G), and $\sigma(G)$ are definable!
- Rank and degree also apply to every interpretable set Y

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{G}

- **9** *G* satisfies DCC on definable subgroups
- ⓐ ∃ a minimal definable subgroup of finite index G° (and deg $G^{\circ} = 1$)
- **(**G, G], F(G), and $\sigma(G)$ are definable!
- So Rank and degree also apply to every interpretable set *Y*
 - *Y* is a definable set modulo a definable equiv. relation; e.g.

Let G be a group of fMr.

• Every definable set *X* has a finite (Morley) rank and (Morley) degree

• $X = \varphi(G^m)$ for some formula φ with *m* free variables; e.g.

•
$$\varphi(x)$$
: $\forall y(xy = yx)$ defines $Z(G)$

•
$$\varphi(x)$$
: $\exists y(x = y^{-1}hy)$ defines h^{C}

- **9** *G* satisfies DCC on definable subgroups
- ⓐ ∃ a minimal definable subgroup of finite index G° (and deg $G^{\circ} = 1$)

(G, G], F(G), and $\sigma(G)$ are definable!

- Solution Rank and degree also apply to every interpretable set *Y*
 - *Y* is a definable set modulo a definable equiv. relation; e.g.

• Y = G/H whenever *H* is definable

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

• I.e. G has a single orbit on X^t after removing a subset of smaller rank.

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If $\deg(X) = 1$, this is the same as $\operatorname{rk}(\mathcal{O}) = \operatorname{rk}(X^t)$.

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

• generically *n*-transitive

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$

- generically *n*-transitive
- \mathcal{O} is the set of bases of K^n :

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$	Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$	
• generically sharply <i>n</i> -transitive		
• \mathcal{O} is the set of bases of K^n :		
orbit of (e_1,\ldots,e_n)		

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$	Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$
• generically sharply <i>n</i> -transitive	• gen. $(n+1)$ -transitive
• \mathcal{O} is the set of bases of K^n :	
orbit of (e_1,\ldots,e_n)	

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$	Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$
 generically sharply <i>n</i>-transitive O is the set of bases of Kⁿ: orbit of (e₁,, e_n) 	 gen. (n + 1)-transitive O is the set bases of P^{n−1}(K):

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$ Example: $PGL_n(K) \curvearrowright P^{n-1}(K)$ • generically sharply *n*-transitive• gen. (n+1)-transitive• \mathcal{O} is the set of bases of K^n :
orbit of (e_1, \ldots, e_n) • \mathcal{O} is the set bases of $P^{n-1}(K)$:
orbit of $(\langle e_1 \rangle, \ldots, \langle e_n \rangle, \langle \sum e_i \rangle)$

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$ Example: $PGL_n(K) \curvearrowright P^{n-1}(K)$ • generically sharply *n*-transitive• gen. sharply (n + 1)-transitive• \mathcal{O} is the set of bases of K^n :
orbit of (e_1, \ldots, e_n) • \mathcal{O} is the set bases of $P^{n-1}(K)$:
orbit of $(\langle e_1 \rangle, \ldots, \langle e_n \rangle, \langle \sum e_i \rangle)$

Let $G \curvearrowright X$ be a permutation group of fMr. The action is <u>generically</u> <u>*t*-transitive</u> if there is an orbit $\mathcal{O} \subset X^t$ with $\operatorname{rk}(X^t - \mathcal{O}) < \operatorname{rk}(X^t)$.

- I.e. G has a single orbit on X^t after removing a subset of smaller rank.
- If deg(X) = 1, this is the same as $rk(\mathcal{O}) = rk(X^t)$.

Example: $GL_n(K) \curvearrowright K^n$ Example: $PGL_n(K) \curvearrowright P^{n-1}(K)$ • generically sharply *n*-transitive• gen. sharply (n + 1)-transitive• \mathcal{O} is the set of bases of K^n :
orbit of (e_1, \ldots, e_n) • \mathcal{O} is the set bases of $P^{n-1}(K)$:
orbit of $(\langle e_1 \rangle, \ldots, \langle e_n \rangle, \langle \sum e_i \rangle)$

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- \mathcal{O} is the set bases of $\mathbb{P}^{n-1}(K)$: orbit of $(\langle e_1 \rangle, \dots, \langle e_n \rangle, \langle \sum e_i \rangle)$

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

 (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0. Then gtd(G) is given by

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

 (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0. Then gtd(G) is given by

A_n	$\boldsymbol{B}_n, n \geq 3$	$C_n, n \geq 2$	$D_n, n \geq 4$					
n+2	3	3	3	4	3	2	2	2

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

 (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0. Then gtd(G) is given by

A_n	$\boldsymbol{B}_n, n \geq 3$	$C_n, n \geq 2$	$\boldsymbol{D}_n, n \geq 4$					
n+2	3	3	3	4	3	2	2	2

2 Let G be an infinite solvable group of fMr. Then $gtd(G) \le 2$.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

 (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0. Then gtd(G) is given by

A_n	$\boldsymbol{B}_n, n \geq 3$	$C_n, n \geq 2$	$D_n, n \geq 4$	E_6	$ E_7 $	E_8	F_4	G_2
n+2	3	3	3	4	3	2	2	2

- **2** Let G be an infinite solvable group of fMr. Then $gtd(G) \leq 2$.
- Solution Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.

Example: $\operatorname{GL}_n(K) \curvearrowright K^n$

- generically sharply *n*-transitive
- \mathcal{O} is the set of bases of K^n : orbit of (e_1, \ldots, e_n)

Example: $\operatorname{PGL}_n(K) \curvearrowright \operatorname{P}^{n-1}(K)$

- gen. sharply (n + 1)-transitive
- *O* is the set bases of P^{n−1}(K):

 orbit of (⟨e₁⟩,...,⟨e_n⟩, ⟨∑e_i⟩)

Theorem

 (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0. Then gtd(G) is given by

A_n	$\boldsymbol{B}_n, n \geq 3$	$C_n, n \geq 2$	$D_n, n \ge 4$	E_6	E_7	E_8	F_4	G_2
n+2	3	3	3	4	3	2	2	2

- **2** Let G be an infinite solvable group of fMr. Then $gtd(G) \leq 2$.
- Solution Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.

Problem (BC '08)

Show that the above table is valid in arbitrary characteristic.

Extra Assumptions • $G \curvearrowright X$ is transitive

Extra Assumptions • $G \curvearrowright X$ is transitive

Show that $t \ge n+2 \implies$

The Problem (BC '08)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

Rank Two Problem

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X) = 2$. Show that $t \ge 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X) = 2$. Show that $t \ge 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X) = 2$. Show that $t \ge 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

$$\bullet t \ge 4 \implies t = 4$$

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X) = 2$. Show that $t \ge 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

$$\bullet t \ge 4 \implies t = 4$$

$$t = 4 \implies \mathrm{PGL}_3(K) \curvearrowright \mathrm{P}^2(K)$$

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X) = 2$. Show $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X) = 2$. Show that $t \ge 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

$$\sqrt{2}$$
 $t \ge 4 \implies t = 4$

$$I = 4 \implies \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$$

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

• $\ell_{xy} := ?$

 G_x

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

•
$$\ell_{xy} := \{a : \operatorname{rk}(G_{x,y}a) < 2\}$$

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

• $\ell_{xy} := \{a : \operatorname{rk}(G_{x,y}a) < 2\}$ Assume: 2-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Want to build a projective plane. Set $\mathcal{P} := X$. How should we define \mathcal{L} ?

• $\ell_{xy} := \{a : \operatorname{rk}(G_{x,y}a) < 2\}$ Assume: 2-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

- $\ell_{xy} := \{a : \operatorname{rk}(G_{x,y}a) < 2\}$ Assume: 2-transitivity
- $\mathcal{L} := \{\ell_{xy} : x \neq y\}$ Assume: NOT 3-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

- $\ell_{xy} := \{a : \operatorname{rk}(G_{x,y}a) < 2\}$ Assume: 2-transitivity
- $\mathcal{L} := \{\ell_{xy} : x \neq y\}$ Assume: NOT 3-transitivity (want $\operatorname{rk}(\ell_{xy}) = 1$)

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$.

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity

The geometry: $\mathcal{P} := X$ and $\mathcal{L} := \{\ell_{xy} : x \neq y\}$

• Every 2 points lie on a line

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

- Every 2 points lie on a unique line
- There are 4 points no 3 of which are collinear

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and
- There are 4 points no 3 of which are collinear

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

The geometry: $\mathcal{P} := X$ and $\mathcal{L} := \{\ell_{xy} : x \neq y\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

The geometry: $\mathcal{P} := X$ and $\mathcal{L} := \{\ell_{xy} : x \neq y\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

• G is generically transitive on 4-gons

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

The geometry: $\mathcal{P} := X$ and $\mathcal{L} := \{\ell_{xy} : x \neq y\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

• G is generically transitive on 4-gons

Problem is solved*

Rank Two Problem (Sharp version)

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X) = 2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_3(K) \curvearrowright \operatorname{P}^2(K)$. Also assume: 2-transitivity; $\approx NOT$ 3-transitivity; $\operatorname{Fix}(G_{x,y,z}) = \{x, y, z\}$

The geometry: $\mathcal{P} := X$ and $\mathcal{L} := \{\ell_{xy} : x \neq y\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

• *G* is generically transitive on 4-gons

Problem is solved*

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

Rank one is solved.

- Rank one is solved.
- Rank two is solved when

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and
 - Fix $(G_{x,y,z}) = \{x, y, z\}$ for all x, y, z in "general position"

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and
 - Fix $(G_{x,y,z}) = \{x, y, z\}$ for all x, y, z in "general position"

The plan

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and
 - Fix $(G_{x,y,z}) = \{x, y, z\}$ for all x, y, z in "general position"

The plan

Remove the fixed-point criterion

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and
 - Fix $(G_{x,y,z}) = \{x, y, z\}$ for all x, y, z in "general position"

The plan

- Remove the fixed-point criterion
- Try to recognize higher dimensional projective spaces in a similar way, with perhaps an analogous fixed-point criterion.

Let $G = G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically (n + 2)-transitive with $\operatorname{rk}(X) = n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \operatorname{P}^n(K)$.

- Rank one is solved.
- 2 Rank two is solved when
 - the action is generically sharply 4-transitive, and
 - Fix $(G_{x,y,z}) = \{x, y, z\}$ for all x, y, z in "general position"

The plan

- Remove the fixed-point criterion
- Try to recognize higher dimensional projective spaces in a similar way, with perhaps an analogous fixed-point criterion.
- Oeal with the non-sharp case.

Thank You