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Properties of groups of fMr

Let G be a group of fMr.

1 Every definable set X has a finite (Morley) rank and (Morley) degree

X = ϕ(Gm) for some formula ϕ with m free variables; e.g.

ϕ(x): ∀y(xy = yx) defines Z(G)
ϕ(x): ∃y(x = y−1hy) defines hG
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X = ϕ(Gm) for some formula ϕ with m free variables; e.g.
ϕ(x): ∀y(xy = yx) defines Z(G)
ϕ(x): ∃y(x = y−1hy) defines hG

2 G satisfies DCC on definable subgroups

3 ∃ a minimal definable subgroup of finite index G◦ (and deg G◦ = 1)
4 [G,G], F(G), and σ(G) are definable!
5 Rank and degree also apply to every interpretable set Y

Y is a definable set modulo a definable equiv. relation; e.g.

Y = G/H whenever H is definable
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Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if

there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Example: GLn(K) y Kn

generically n-transitive

O is the set of bases of Kn:

orbit of (e1, . . . , en)

Example: PGLn(K) y Pn−1(K)

gen. (n + 1)-transitive

O is the set bases of Pn−1(K):

orbit of (〈e1〉, . . . , 〈en〉, 〈
∑

ei〉)
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Theorem

1 (Popov ’07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by

An Bn, n ≥ 3 Cn, n ≥ 2 Dn, n ≥ 4 E6 E7 E8 F4 G2

n + 2 3 3 3 4 3 2 2 2

2 Let G be an infinite solvable group of fMr. Then gtd(G) ≤ 2.
3 Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.

Problem (BC ’08)
Show that the above table is valid in arbitrary characteristic.
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G y X is generically t-transitive
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1 2 3 n := rk(X)

t

PGL2(K)

PGL3(K)

PGL4(K)

AGL1(K)

AGL2(K)

AGL3(K)

GL1(K)

GL2(K)

GL3(K)

PGL2(K)× PGL2(L) y P1(K)× P1(L)PGL2(L) y P1(L) with rk(L) = 2!

PGLn+1(K) y Pn(K)

AGLn(K) y Kn

GLn(K) y Kn − {0}

Extra Assumptions
• G y X is transitive
Extra Assumptions
• G y X is transitive
• G is connected

The Problem (BC ’08)
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• G is connected

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).
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The Rank Two Problem

Rank Two Problem
Let G = G◦. Suppose G y X is transitive and generically 4-transitive with
rk(X) = 2. Show G y X ∼= PGL3(K) y P2(K).

Rank Two Problem (Sharp version)
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The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z
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The Rank Two Problem: properties of (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

2-transitivity; ≈
NOT 3-transitivity; Fix(Gx,y,z) = {x, y, z}

The geometry: P := X and L := {`xy : x 6= y}
Every 2 points lie on a line

Every 2 lines intersect in at most one point and

There are 4 points no 3 of which are collinear

Also,

G is generically transitive on 4-gons

Problem is solved∗

Gx,y X
`xy

`xy
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Summary

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved.
2 Rank two is solved when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion.
3 Deal with the non-sharp case.
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Thank You
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