Generically n-transitive permutation groups

Josh Wiscons

Universität Münster

Workshop on Permutation Groups BIRS - 2013

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

$$
\operatorname{Sym}(\omega)
$$

$\mathbb{Z}^{\mathbb{Z}}$
Groups of fMr

$\mathrm{GL}_{n}\left(K_{1}\right) \times \mathrm{GL}_{n}\left(K_{2}\right)$

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

Groups of finite Morley rank (fMr)

Groups

Algebraicity Conjecture:

Groups of finite Morley rank (fMr)

Groups

Algebraicity Conjecture: the gap, \uparrow, does not exist.

Properties of groups of fMr

Let G be a group of fMr .

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

Properties of groups of fMr

Let G be a group of fMr.
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

Properties of groups of fMr

Let G be a group of fMr.
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
- $\operatorname{rk}(X) \geq n+1 \Longleftrightarrow$

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
- $\operatorname{rk}(X) \geq n+1 \Longleftrightarrow$

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
- $\operatorname{rk}(X) \geq n+1 \Longleftrightarrow$

- If $\operatorname{rk}(X)=n$, the degree of X is the maximum $d \in \mathbb{N}$ s.t.

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
- $\operatorname{rk}(X) \geq n+1 \Longleftrightarrow$

- If $\operatorname{rk}(X)=n$, the degree of X is the maximum $d \in \mathbb{N}$ s.t.

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree - $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.

- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups
(3) \exists a minimal definable subgroup of finite index $G^{\circ}\left(\right.$ and $\left.\operatorname{deg} G^{\circ}=1\right)$

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups
(3) \exists a minimal definable subgroup of finite index G° (and $\operatorname{deg} G^{\circ}=1$)
($-[G, G], F(G)$, and $\sigma(G)$ are definable!

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups
(3) \exists a minimal definable subgroup of finite index G° (and $\operatorname{deg} G^{\circ}=1$)
(- $[G, G], F(G)$, and $\sigma(G)$ are definable!
(0) Rank and degree also apply to every interpretable set Y

Properties of groups of fMr

Let G be a group of fMr .
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups
(3) \exists a minimal definable subgroup of finite index G° (and $\operatorname{deg} G^{\circ}=1$)
(- $[G, G], F(G)$, and $\sigma(G)$ are definable!
(0) Rank and degree also apply to every interpretable set Y
- Y is a definable set modulo a definable equiv. relation; e.g.

Properties of groups of fMr

Let G be a group of fMr.
(1) Every definable set X has a finite (Morley) rank and (Morley) degree

- $X=\varphi\left(G^{m}\right)$ for some formula φ with m free variables; e.g.
- $\varphi(x): \forall y(x y=y x)$ defines $Z(G)$
- $\varphi(x): \exists y\left(x=y^{-1} h y\right)$ defines h^{G}
(2) G satisfies DCC on definable subgroups
(3) \exists a minimal definable subgroup of finite index G° (and $\operatorname{deg} G^{\circ}=1$)
- $[G, G], F(G)$, and $\sigma(G)$ are definable!
(0) Rank and degree also apply to every interpretable set Y
- Y is a definable set modulo a definable equiv. relation; e.g.
- $Y=G / H$ whenever H is definable

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} :

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. $(n+1)$-transitive

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$:

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Generic t-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr. The action is generically t-transitive if there is an orbit $\mathcal{O} \subset X^{t}$ with $\operatorname{rk}\left(X^{t}-\mathcal{O}\right)<\operatorname{rk}\left(X^{t}\right)$.

- I.e. G has a single orbit on X^{t} after removing a subset of smaller rank.
- If $\operatorname{deg}(X)=1$, this is the same as $\operatorname{rk}(\mathcal{O})=\operatorname{rk}\left(X^{t}\right)$.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

(1) (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0 . Then $\operatorname{gtd}(G)$ is given by

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

(1) (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0 . Then $\operatorname{gtd}(G)$ is given by

\boldsymbol{A}_{n}	$\boldsymbol{B}_{n}, n \geq 3$	$\boldsymbol{C}_{n}, n \geq 2$	$\boldsymbol{D}_{n}, n \geq 4$	\boldsymbol{E}_{6}	\boldsymbol{E}_{7}	\boldsymbol{E}_{8}	\boldsymbol{F}_{4}	\boldsymbol{G}_{2}
$n+2$	3	3	3	4	3	2	2	2

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

(1) (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0 . Then $\operatorname{gtd}(G)$ is given by

\boldsymbol{A}_{n}	$\boldsymbol{B}_{n}, n \geq 3$	$\boldsymbol{C}_{n}, n \geq 2$	$\boldsymbol{D}_{n}, n \geq 4$	\boldsymbol{E}_{6}	\boldsymbol{E}_{7}	\boldsymbol{E}_{8}	\boldsymbol{F}_{4}	\boldsymbol{G}_{2}
$n+2$	3	3	3	4	3	2	2	2

(2) Let G be an infinite solvable group off f r. Then $\operatorname{gtd}(G) \leq 2$.

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

(1) (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0 . Then $\operatorname{gtd}(G)$ is given by

\boldsymbol{A}_{n}	$\boldsymbol{B}_{n}, n \geq 3$	$\boldsymbol{C}_{n}, n \geq 2$	$\boldsymbol{D}_{n}, n \geq 4$	\boldsymbol{E}_{6}	\boldsymbol{E}_{7}	\boldsymbol{E}_{8}	\boldsymbol{F}_{4}	\boldsymbol{G}_{2}
$n+2$	3	3	3	4	3	2	2	2

(2) Let G be an infinite solvable group of $f M r$. Then $\operatorname{gtd}(G) \leq 2$.
(3) Let G be an infinite nilpotent group of fMr. Then $\operatorname{gtd}(G)=1$.

Generic t-transitivity

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically sharply n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- gen. sharply $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Theorem

(1) (Popov '07) Let G be an infinite simple algebraic group over an alg. closed field of characteristic 0 . Then $\operatorname{gtd}(G)$ is given by

\boldsymbol{A}_{n}	$\boldsymbol{B}_{n}, n \geq 3$	$\boldsymbol{C}_{n}, n \geq 2$	$\boldsymbol{D}_{n}, n \geq 4$	\boldsymbol{E}_{6}	\boldsymbol{E}_{7}	\boldsymbol{E}_{8}	\boldsymbol{F}_{4}	\boldsymbol{G}_{2}
$n+2$	3	3	3	4	3	2	2	2

(2) Let G be an infinite solvable group of $f M r$. Then $\operatorname{gtd}(G) \leq 2$.
(3) Let G be an infinite nilpotent group of $f M r$. Then $\operatorname{gtd}(G)=1$.

Problem (BC '08)

Show that the above table is valid in arbitrary characteristic.

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

Show that $t \geq n+2 \Longrightarrow$

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

Show that $t \geq n+2 \Longrightarrow G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

Show that $t \geq n+2 \Longrightarrow G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$

$G \curvearrowright X$ is generically t-transitive

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.

The Rank Two Problem

Rank Two ProblemLet $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with$\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

The Rank Two Problem

Rank Two Problem

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X)=2$. Show that $t \geq 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

The Rank Two Problem

Rank Two Problem

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X)=2$. Show that $t \geq 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Really, we have two things to show.

The Rank Two Problem

Rank Two Problem

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X)=2$. Show that $t \geq 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Really, we have two things to show.
(ㄷ) $t \geq 4 \Longrightarrow t=4$

The Rank Two Problem

Rank Two Problem

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X)=2$. Show that $t \geq 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Really, we have two things to show.
(ㅇ) $t \geq 4 \Longrightarrow t=4$
(2) $t=4 \Longrightarrow \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$

The Rank Two Problem

Rank Two Problem

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically 4-transitive with $\operatorname{rk}(X)=2$. Show $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply t-transitive with $\operatorname{rk}(X)=2$. Show that $t \geq 4$ implies $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Really, we have two things to show.
(1) $t \geq 4 \Longrightarrow t=4$
(2) $t=4 \Longrightarrow \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane.

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$.

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G X
G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G X
G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?
$G \longrightarrow X$
G_{x}

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$
$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$
$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=$?

G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$

G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$ Assume: 2-transitivity

G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$ Assume: 2-transitivity

G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$ Assume: 2-transitivity
- $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

G
X
G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$ Assume: 2-transitivity
- $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$ Assume: NOT 3-transitivity

G
X
G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: building $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

Want to build a projective plane. Set $\mathcal{P}:=X$. How should we define \mathcal{L} ?

- $\ell_{x y}:=\left\{a: \operatorname{rk}\left(G_{x, y} a\right)<2\right\}$ Assume: 2-transitivity
- $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$ Assume: NOT 3-transitivity (want rk $\left(\ell_{x y}\right)=1$)

G X
G_{x}
$G_{x, y}$

$G_{x, y, z}$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a line

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a line
- There are 4 points no 3 of which are collinear

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- There are 4 points no 3 of which are collinear

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and
- There are 4 points no 3 of which are collinear

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,
$G_{x, y}$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

- G is generically transitive on 4 -gons

$$
G_{x, y}
$$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\operatorname{rk}(X)=2$. Show that $G \curvearrowright X \cong \mathrm{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: 2-transitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

- G is generically transitive on 4-gons

Problem is solved*
$G_{x, y}$

The Rank Two Problem: properties of $(\mathcal{P}, \mathcal{L})$

Rank Two Problem (Sharp version)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically sharply 4-transitive with $\mathrm{rk}(X)=2$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{3}(K) \curvearrowright \mathrm{P}^{2}(K)$.
Also assume: Z-tansitivity; \approx NOT 3-transitivity; $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$
The geometry: $\mathcal{P}:=X$ and $\mathcal{L}:=\left\{\ell_{x y}: x \neq y\right\}$

- Every 2 points lie on a unique line
- Every 2 lines intersect in at most one point and generically lines intersect
- There are 4 points no 3 of which are collinear

Also,

- G is generically transitive on 4 -gons

Problem is solved*
$G_{x, y}$

Summary

Summary

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.

Summary

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.

Summary

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4-transitive, and

The Problem (BC ’08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4 -transitive, and
$\bullet \operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$ for all x, y, z in "general position"

The Problem (BC ’08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4-transitive, and
$\bullet \operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$ for all x, y, z in "general position"

The plan

The Problem (BC ’08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4 -transitive, and
$\bullet \operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$ for all x, y, z in "general position"

The plan

(1) Remove the fixed-point criterion

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4-transitive, and
- $\operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$ for all x, y, z in "general position"

The plan

(1) Remove the fixed-point criterion
(2) Try to recognize higher dimensional projective spaces in a similar way, with perhaps an analogous fixed-point criterion.

The Problem (BC '08)

Let $G=G^{\circ}$. Suppose $G \curvearrowright X$ is transitive and generically $(n+2)$-transitive with $\operatorname{rk}(X)=n$. Show that $G \curvearrowright X \cong \operatorname{PGL}_{n+1}(K) \curvearrowright \mathrm{P}^{n}(K)$.
(1) Rank one is solved.
(2) Rank two is solved when

- the action is generically sharply 4 -transitive, and
$\bullet \operatorname{Fix}\left(G_{x, y, z}\right)=\{x, y, z\}$ for all x, y, z in "general position"

The plan

(1) Remove the fixed-point criterion
(2) Try to recognize higher dimensional projective spaces in a similar way, with perhaps an analogous fixed-point criterion.
© Deal with the non-sharp case.

Thank You

