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A natural question

Fact: Every finite simple group can be generated by two elements.

G0: a finite (simple) group, (a,b, c) ∈ N3.

Question: Can we find X ,Y ∈ G0 s.t. 〈X ,Y 〉 = G0 and
X a = Y b = (XY )c = 1?
In other words, is G0 an (a,b, c)-group?

i.e. Is there a surjective homomorphism from T = Ta,b,c to G0, where

T = 〈x , y , z : xa = yb = zc = xyz = 1〉?

If µ := 1/a + 1/b + 1/c ≥ 1 then T is either soluble or T ≤ Sym5.

WLOG µ < 1 and a ≤ b ≤ c.

T : hyperbolic triangle group.
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A general problem

Problem: Find the finite simple quotients of a given hyperbolic triangle
group T .

Everitt 2000: every hyperbolic triangle group surjects onto all but
finitely many alternating groups.

Focus on finding finite simple images of T of Lie type.

Setting:

T = Ta,b,c : a hyperbolic triangle group.

G0 = G(pr ) = G(q): a finite quasisimple group of Lie type.

G: corresponding algebraic group over K = K , char K = p.
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Hurwitz generation

Many results in the literature on (2,3,7)-generation of finite groups
(Hurwitz generation).

Motivation: If S is a compact Riemann surface of genus h ≥ 2 then
|Aut S| ≤ 84(h − 1) and bound is attained iff Aut S is Hurwitz.

Examples:

1 Macbeath 1969: PSL2(pr ) is Hurwitz⇔ r = 1 and p ≡ 0,±1 mod 7
or r = 3 and p ≡ ±2,±3 mod 7.

2 Lucchini-Tamburini-Wilson 2000: Many classical groups of large
rank are Hurwitz.
e.g. if n > 267 then SLn(q) is Hurwitz for every q.

3 Di Martino-Tamburini-Zalesski 2000: If G is classical of low rank,
given p there are very few G(pr ) (possibly 0) which are Hurwitz.

If (a,b, c) 6= (2,3,7): less results in the literature.
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Some groups of low rank

Fix (a,b, c) with a,b, c primes

G0 = PSL2(pr )

Theorem (M 2009)

Given p, ∃! r such that PSL2(pr ) is an (a,b, c)-group.

G0 = PSL3(pr )

I There is a dichotomy between the case a = 2 and a 6= 2.

Theorem (M 2013)
1 Given p, there are at most four r such that PSL3(pr ) is a (2, b, c)-group.
2 If a 6= 2 then a randomly chosen homomorphism in Hom(T ,G0) is surjective with

probability tending to 1 as |G0| → ∞
i.e. ∃ ∞ many r such that PSL3(pr ) is an (a, b, c)-group.

‘
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Rigidity

Notation:
G: a simple algebraic group defined over K = K , char K = p.

ja: dimension of the subvariety of G of elements of order dividing a
i.e. ja: max. dim. of a conj. class of G of elements of order dividing a.

e.g. if G = SL2(K ) where p 6= 2, then j2 = 0 and ja = 2 for a 6= 2.

Proposition (M 2010)

If ja + jb + jc < 2 dim G then G0 = G(pr ) is not an (a,b, c)-group.

e.g. Let G0 = Sp6(p
r ) with p odd, and (a,b, c) = (2,5,5). Then j2 = 8,

j5 = 16 but dim G = 21. Hence G0 is not a (2,5,5)-group.
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A conjecture
Definition

1 If ja + jb + jc < 2 dim G then (a,b, c) is reducible for G.

2 If ja + jb + jc = 2 dim G then (a,b, c) is rigid for G.

3 If ja + jb + jc > 2 dim G then (a,b, c) is nonrigid for G.

e.g. (a,b, c) is always rigid for PSL2(K ).
e.g. for PSL3(K ), (a,b, c) is rigid⇔ a = 2. It is nonrigid otherwise.

Conjecture (M 2010)
Fix p. If (a,b, c) is rigid for G, a,b, c primes, then ∃ only finitely r such that
G(pr ) is an (a,b, c)-group.

The conjecture holds for PSL2(pr ) (exactly one r ) and PSL3(pr ) (at most four
r ).
It agrees with the known results in the literature on Hurwitz groups.
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The conjecture holds in many cases

(M 2010) The conjecture holds in many cases.

Proof by a case by case study:

I First classify rigid triples of primes for simple algebraic groups.
I Use the concept of linear rigidity.

Remark
The converse of the conjecture is false. e.g. (2,3,7) is nonrigid for SL7(K )
but SL7(q) is never a Hurwitz group.
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Reducible triples when a,b, c primes

G p (a,b, c)
SL2(K ) p 6= 2 a = 2
Sp4(K ) p 6= 2 a = 2, b = 3
Sp6(K ) p 6= 2 a = 2, b = 3

or a = 2, b = c = 5
Sp2m(K ), m ∈ {4,5,6,7,8,9,11} p 6= 2 a = 2, b = 3, c = 7

Lemma
Table gives quasisimple groups of Lie type that are not (a,b, c)-groups.
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Rigid triples when a,b, c primes

s.c p (a, b, c) s.c p (a, b, c)
SL2(K ) 2 any Sp2m(K ) 6= 2 (2, 3, 7)

6= 2 a > 2 m = 10, 12, 13
SL3(K ) any a = 2 Spin11(K ) 6= 2 (2, 3, 7)
SL4(K ) any a = 2, b = 3 Spin12(K ) 6= 2 (2, 3, 7)
SL5(K ) any a = 2, b = 3
SL6(K ) 6= 2 a = 2, b = 3
SL10(K ) 6= 2 (2, 3, 7) ad . p (a, b, c)
Sp4(K ) 2 b = 3 PSL2(K ) any any

6= 2 a = b = 3 PSL3(K ) any a = 2
or a = 2, b > 3 PSL4(K ) any a = 2, b = 3

Sp6(K ) 6= 2 a = 2, b = 5 c ≥ 7 PSL5(K ) any a = 2, b = 3
Sp8(K ) 6= 2 a = 2, b = 3, c > 7 PSp4(K ) any b = 3

or (2, 5, 5) G2(K ) any (2, 5, 5)
Sp10(K ) 6= 2 a = 2, b = 3, c > 7
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Another approach through deformation theory
Let ρ ∈ Hom(T ,G) and s = Ad ◦ ρ so that T acts on V = L(G) through s.

φ : T → V is a 1-cocycle if φ(t1t2) = φ(t1) + s(t1)φ(t2) ∀ t1, t2 ∈ T .

φ : T → V is a 1-coboundary if ∃v ∈ V s.t. ∀ t ∈ T : φ(t) = v − s(t)v .

Set Z 1(T , s): space of cocycles, B1(T , s): space of coboundaries and

H1(T , s) = Z 1(T , s)/B1(T , s).

Theorem (Weil 1964)

Z 1(T , s) is the tangent space to Hom(T ,G) at ρ.

If p - abc then

dim H1(T , s) = dim V + i + i∗ − dim V x − dim V y − dim V z

= −2 dim V + i + i∗ + codimV x + codimV y + codimV z

≤ −2 dim G + i + i∗ + ja + jb + jc .

where i, i∗ are the dimensions of the space of invariants of s and s∗.

If dim H1(T , s) = 0 then ρ is locally rigid. i.e. ∃ a neighborhood of ρ in which
every element of it is obtained from ρ by conjugation by an element of G.
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Proof of the conjecture
Here we no longer assume a, b, c primes.
Let d be the determinant of the Cartan matrix of L(G).

Theorem (Larsen - Lubotzky - M 2013)
If p - abcd and (a,b, c) is rigid for G, then there are only finitely many r such
that G(pr ) is an (a,b, c)-group.

Proof (by contradiction).

Let ρ : T → G(pr ) be an epimorphism and consider ρ as an element of
Hom(T ,G).

Since p - abc and (a,b, c) is rigid for G, get dim H1(T ,Ad ◦ ρ) ≤ i + i∗.
Because p - d , a result of Hiss implies i = i∗ = 0 for r >> 0.

So WLOG ρ is locally rigid.

The orbit of ρ under the action of G by conjugation is open

As in a variety one can have only finitely many open orbits, the result
follows.
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Positive results

X : simple Dynkin diagram
G = X (C): simple Chevalley group of type X over C
X (pr ): finite untwisted simple group of Lie type X .

Definition
T is saturated with finite quotients of type X if: ∃ p0,e ∈ N s. t. ∀ prime
p > p0, X (pe`) is a quotient of T for all ` ∈ N.

Main point: T is satured with finite quotients of type X
⇔ ∃ ρ ∈ Hom(T ,X (C)) with Zariski dense image and
dim H1(T ,Ad ◦ ρ) > 0.

From now on - no finite fields or finite groups!
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Criterion for Zariski-dense representation

G = X (C)

Theorem (Larsen-Lubotzky 2012)
Let ρ0 : T → G and H: Zariski closure of ρ0(T ). Assume:

1 H is semisimple and connected.
2 H is a maximal subgroup of G.
3 dim Epi(T ,H)− dim H < dim H1(T ,Ad |L(G) ◦ρ0).

Then
ρ0 is nonsingular in Hom(T ,G).
∃ nonsingular Zariski dense ρ : T → G in the same component of
Hom(T ,G) containing ρ0.
dim H1(T ,Ad |L(G) ◦ρ) = dim H1(T ,Ad |L(G) ◦ρ0).
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The principal homomorphism

G = X (C) simple of adjoint type.

∃! pG
0 : SL2(C)→ G sending every nontrivial unipotent to a regular

unipotent, called the principal homomorphism.

It factors through PSL2(C).

Let σG
0 : T ↪→ PSL2(C)→ G induced from pG

0 .

Ad ◦ σG
0 has no invariants on L(G).

dim H1(T ,Ad ◦ σG
0 ) is easy to calculate and depends only on the

exponents of W (G) and a,b, c.

dim Epi(T ,G)− dim G ≤ dim H1(T ,Ad ◦ σG
0 ).

If G = PSL2(C) then dim H1(T ,Ad ◦ σG
0 ) = 0.

More generally: dim H1(T ,Ad ◦ σG
0 ) = 0⇔ (a,b, c) is rigid for G.
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A one-step ladder

Let G of type X = A2, Bn (n ≥ 4), Cn (n ≥ 2), G2, F4, E7, E8.

Dynkin: the image of pG
0 : PSL2(C)→ G is maximal in G.

Get Zariski dense ρ : T → G provided dim H1(T ,Ad |L(G) ◦σ
G
0 ) > 0.

Computation: T is saturated with finite quotients of type X unless
X = A2 and a = 2, X = C2 and b = 3, X = G2 and a = 2, c = 5. (i.e.
unless (a,b, c) is rigid for G.)
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Two and three-step ladders
For other types X need two steps, unless X = A6 or D4 in which we
need three steps.

Two steps:
Can choose H = Y (C) maximal in G = X (C) with pH

0 = pG
0 and H of

type Y treated in 1-step ladder.
X Y X Y X Y
Ar Br/2 (r even) B3 G2 Dr Br−1

C(r+1)/2 (r odd) E6 F4

So start with σH
0 : T → PSL2(C)→ H and apply [LL].

If [LL (3)] is satisfied, get Zariski dense ρ1 : T → H.

Continue with ρ1 : T → H ↪→ G and apply [LL] a second time.
If [LL (3)] is satisfied, get Zariski dense ρ2 : T → G.

Same philosophy for the three-step ladders:
G2(C) < B3(C) < A6(C).
G2(C) < B3(C) < D4(C).
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A few remarks

If [LL (3)] is not satisfied, we cannot proceed any further with the
principal homomorphism.

Sometimes, we can proceed with some other embeddings.
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Main result

Theorem (Larsen - Lubotzky - M 2013)
T is saturated with finite quotients of type X, except possibly if (X ,T )
is in the following table.
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X (a, b, c) r
An (2, 3, 7) 5 ≤ n ≤ 19

(2, 3, 8) 5 ≤ n ≤ 13
(2, 3, c), c ≥ 9 5 ≤ n ≤ 7
(2, 4, 5) 3 ≤ n ≤ 13
(2, 4, 6) 3 ≤ n ≤ 9
(2, 4, c), c ≥ 7 3 ≤ n ≤ 5
(2, 5, 5) n = 6
(2, b, c), b ≥ 5 n = 3
(3, 3, c), c ≥ 4 n ∈ {3, 4, 6}
(2, 3, c), c ≥ 7 n ∈ {3, 4}
(2, b, c), b = 3, c ≥ 7; b = 4, c ≥ 5; b, c ≥ 5 n = 2
any n = 1

B3 (2, 3, c), c ≥ 7; (3, 3, c), c ≥ 4
(2, 4, 5), (2,5,5)

C2 (2, 3, c), c ≥ 7; (3, 3, c), c ≥ 4
Dn (2, 3, 7) n ∈ {4, 5, 9}

(2, 3, c), c ≥ 8 n ∈ {4, 5}
(2, 4, 5) n = 5
(3, 3, 4) n ∈ {4, 5}
(3, 3, c), c ≥ 5 n = 4

G2 (2, 4, 5), (2, 5, 5)
E6 (2, 3, c), c ∈ {7, 8}; (2, 4, c), 4 < c < 9
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Corollary
(i) If 1/a + 1/b + 1/c ≤ 1/2 then T is saturated with finite quotients of type X
for every X 6= A1.
(ii) Every T is saturated with finite quotients of type X, except possibly if

X ∈ Y = {An : 1 ≤ n ≤ 19} ∪ {B3} ∪ {C2} ∪ {Dn : n = 4,5,9} ∪ {G2} ∪ {E6}.

Corollary
If X 6∈ {An : 1 ≤ r ≤ 7} ∪ {B3} ∪ {C2} ∪ {Dn : n = 4,5}. Then almost every T
is saturated with finite quotients of type X.

Corollary
T2,3,7 is saturated with finite quotients of type X,
∀ X 6∈ {An : 1 ≤ n ≤ 19} ∪ {B3} ∪ {C2} ∪ {Dn : n = 4,5,9} ∪ {E6}.

Corollary (Guralnick problem)
Every T is saturated with finite quotients of type E7 and E8.
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Thank you.
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