Deformation theory and finite simple quotients of triangle groups

Claude Marion
Joint with Michael Larsen and Alexander Lubotzky

University of Fribourg

July 22, 2013

A natural question

Fact: Every finite simple group can be generated by two elements.

A natural question

Fact: Every finite simple group can be generated by two elements.
$G_{0}:$ a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and

In other words, is G_{0} an (a, b, c)-group?

A natural question

Fact: Every finite simple group can be generated by two elements.
G_{0} : a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and $X^{a}=Y^{b}=(X Y)^{c}=1$?
In other words, is G_{0} an (a, b, c)-group?

A natural question

Fact: Every finite simple group can be generated by two elements.
G_{0} : a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and $X^{a}=Y^{b}=(X Y)^{c}=1$?
In other words, is G_{0} an (a, b, c)-group?
i.e. Is there a surjective homomorphism from $T=T_{a, b, c}$ to G_{0}, where

$$
T=\left\langle x, y, z: x^{a}=y^{b}=z^{c}=x y z=1\right\rangle ?
$$

A natural question

Fact: Every finite simple group can be generated by two elements.
G_{0} : a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and $X^{a}=Y^{b}=(X Y)^{c}=1$?
In other words, is G_{0} an (a, b, c)-group?
i.e. Is there a surjective homomorphism from $T=T_{a, b, c}$ to G_{0}, where

$$
T=\left\langle x, y, z: x^{a}=y^{b}=z^{c}=x y z=1\right\rangle ?
$$

If $\mu:=1 / a+1 / b+1 / c \geq 1$ then T is either soluble or $T \leq \operatorname{Sym}_{5}$.

A natural question

Fact: Every finite simple group can be generated by two elements.
G_{0} : a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and $X^{a}=Y^{b}=(X Y)^{c}=1$?
In other words, is G_{0} an (a, b, c)-group?
i.e. Is there a surjective homomorphism from $T=T_{a, b, c}$ to G_{0}, where

$$
T=\left\langle x, y, z: x^{a}=y^{b}=z^{c}=x y z=1\right\rangle ?
$$

If $\mu:=1 / a+1 / b+1 / c \geq 1$ then T is either soluble or $T \leq \operatorname{Sym}_{5}$. WLOG $\mu<1$ and $a \leq b \leq c$.

A natural question

Fact: Every finite simple group can be generated by two elements.
G_{0} : a finite (simple) group, $(a, b, c) \in \mathbb{N}^{3}$.
Question: Can we find $X, Y \in G_{0}$ s.t. $\langle X, Y\rangle=G_{0}$ and $X^{a}=Y^{b}=(X Y)^{c}=1$?
In other words, is G_{0} an (a, b, c)-group?
i.e. Is there a surjective homomorphism from $T=T_{a, b, c}$ to G_{0}, where

$$
T=\left\langle x, y, z: x^{a}=y^{b}=z^{c}=x y z=1\right\rangle ?
$$

If $\mu:=1 / a+1 / b+1 / c \geq 1$ then T is either soluble or $T \leq \operatorname{Sym}_{5}$.
WLOG $\mu<1$ and $a \leq b \leq c$.
T : hyperbolic triangle group.

A general problem

Problem: Find the finite simple quotients of a given hyperbolic triangle group T.

Everitt 2000: every hyperbolic triangle group surjects onto all but finitely many alternating groups.

Focus on finding finite simple images of T of Lie type.
Setting:
$T=T_{a, b, c}$: a hyperbolic triangle group.
$G_{0}=G\left(p^{r}\right)=G(q):$ a finite quasisimple group of Lie type.

A general problem

Problem: Find the finite simple quotients of a given hyperbolic triangle group T.

Everitt 2000: every hyperbolic triangle group surjects onto all but finitely many alternating groups.

Focus on finding finite simple images of T of Lie type.
Setting:
$T=T_{a, b, c}:$ a hyperbolic triangle group.
$G_{0}=G\left(p^{r}\right)=G(q):$ a finite quasisimple group of Lie type.
G : corresponding algebraic group over $K=\bar{K}$, char $K=p$.

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:
(1) Macbeath 1969: $\operatorname{PSL}_{2}\left(p^{r}\right)$ is Hurwitz $\Leftrightarrow r=1$ and $p \equiv 0, \pm 1 \bmod 7$ or $r=3$ and $p \equiv \pm 2, \pm 3 \bmod 7$.

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:
(1) Macbeath 1969: $\operatorname{PSL}_{2}\left(p^{r}\right)$ is Hurwitz $\Leftrightarrow r=1$ and $p \equiv 0, \pm 1 \bmod 7$ or $r=3$ and $p \equiv \pm 2, \pm 3 \bmod 7$.

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:
(1) Macbeath 1969: $\operatorname{PSL}_{2}\left(p^{r}\right)$ is Hurwitz $\Leftrightarrow r=1$ and $p \equiv 0, \pm 1 \bmod 7$ or $r=3$ and $p \equiv \pm 2, \pm 3 \bmod 7$.
(2) Lucchini-Tamburini-Wilson 2000: Many classical groups of large rank are Hurwitz. e.g. if $n>267$ then $\operatorname{SL}_{n}(q)$ is Hurwitz for every q.
\qquad

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:
(1) Macbeath 1969: $\operatorname{PSL}_{2}\left(p^{r}\right)$ is Hurwitz $\Leftrightarrow r=1$ and $p \equiv 0, \pm 1 \bmod 7$ or $r=3$ and $p \equiv \pm 2, \pm 3 \bmod 7$.
(2) Lucchini-Tamburini-Wilson 2000: Many classical groups of large rank are Hurwitz. e.g. if $n>267$ then $\operatorname{SL}_{n}(q)$ is Hurwitz for every q.
(3) Di Martino-Tamburini-Zalesski 2000: If G is classical of low rank, given p there are very few $G\left(p^{r}\right)$ (possibly 0) which are Hurwitz.

Hurwitz generation

- Many results in the literature on ($2,3,7$)-generation of finite groups (Hurwitz generation).
- Motivation: If S is a compact Riemann surface of genus $h \geq 2$ then \mid Aut $S \mid \leq 84(h-1)$ and bound is attained iff Aut S is Hurwitz.
- Examples:
(1) Macbeath 1969: $\operatorname{PSL}_{2}\left(p^{r}\right)$ is Hurwitz $\Leftrightarrow r=1$ and $p \equiv 0, \pm 1 \bmod 7$ or $r=3$ and $p \equiv \pm 2, \pm 3 \bmod 7$.
(2) Lucchini-Tamburini-Wilson 2000: Many classical groups of large rank are Hurwitz. e.g. if $n>267$ then $\operatorname{SL}_{n}(q)$ is Hurwitz for every q.
(3) Di Martino-Tamburini-Zalesski 2000: If G is classical of low rank, given p there are very few $G\left(p^{r}\right)$ (possibly 0) which are Hurwitz.
- If $(a, b, c) \neq(2,3,7)$: less results in the literature.

Some groups of low rank

- Fix (a, b, c) with a, b, c primes
- $\underline{G_{0}=\operatorname{PSL}_{2}\left(p^{r}\right)}$

Theorem (M 2009)

Given $p, \exists!r$ such that $\mathrm{PSL}_{2}\left(p^{r}\right)$ is an (a, b, c)-group.

- $G_{0}=\operatorname{PSL}_{3}\left(p^{r}\right)$
- There is a dichotomy between the case $a=2$ and $a \neq 2$.

Theorem (M 2013)

(1) Given p, there are at most four r such that $\mathrm{PSL}_{3}\left(p^{r}\right)$ is a $(2, b, c)$-group.
(2) If $a \neq 2$ then a randomly chosen homomorphism in $\operatorname{Hom}\left(T, G_{0}\right)$ is surjective with probability tending to 1 as $\left|G_{0}\right| \rightarrow \infty$
i.e. $\exists \infty$ many r such that $\mathrm{PSL}_{3}\left(p^{r}\right)$ is an (a, b, c)-group.

Rigidity

- Notation:

G: a simple algebraic group defined over $K=\bar{K}$, char $K=p$.
j_{a} : dimension of the subvariety of G of elements of order dividing a
i.e. ja: max. dim. of a conj. class of G of elements of order dividing a.

- e.g. if $G=\operatorname{SL}_{2}(K)$ where $p \neq 2$, then $j_{2}=0$ and $j_{a}=2$ for $a \neq 2$.

Proposition (M 2010)

If $j_{a}+j_{b}+j_{c}<2 \operatorname{dim} G$ then $G_{0}=G\left(p^{r}\right)$ is not an (a, b, c)-group.

- e.g. Let $G_{0}=\operatorname{Sp}_{6}\left(p^{r}\right)$ with p odd, and $(a, b, c)=(2,5,5)$. Then $j_{2}=8$, $j_{5}=16$ but $\operatorname{dim} G=21$. Hence G_{0} is not a (2,5,5)-group.

A conjecture

Definition

(1) If $j_{a}+j_{b}+j_{c}<2 \operatorname{dim} G$ then (a, b, c) is reducible for G.
(2) If $j_{a}+j_{b}+j_{c}=2 \operatorname{dim} G$ then (a, b, c) is rigid for G.
(3) If $j_{a}+j_{b}+j_{c}>2 \operatorname{dim} G$ then (a, b, c) is nonrigid for G.
e.g. (a, b, c) is always rigid for $\operatorname{PSL}_{2}(K)$.
e.g. for $\mathrm{PSL}_{3}(K),(a, b, c)$ is rigid $\Leftrightarrow a=2$. It is nonrigid otherwise.

Conjecture (M 2010)

Fix p. If (a, b, c) is rigid for G, a, b, c primes, then \exists only finitely r such that $G\left(p^{r}\right)$ is an (a, b, c)-group.

The conjecture holds for $\operatorname{PSL}_{2}\left(p^{r}\right)$ (exactly one r) and $\operatorname{PSL}_{3}\left(p^{r}\right)$ (at most four $r)$. It agrees with the known results in the literature on Hurwitz groups.

The conjecture holds in many cases

- (M 2010) The conjecture holds in many cases.
- Proof by a case by case study:
- First classify rigid triples of primes for simple algebraic groups.
- Use the concept of linear rigidity.

The conjecture holds in many cases

- (M 2010) The conjecture holds in many cases.
- Proof by a case by case study:
- First classify rigid triples of primes for simple algebraic groups.
- Use the concept of linear rigidity.

Remark

The converse of the conjecture is false. e.g. $(2,3,7)$ is nonrigid for $\mathrm{SL}_{7}(K)$ but $\mathrm{SL}_{7}(q)$ is never a Hurwitz group.

Reducible triples when a, b, c primes

G	p	(a, b, c)
$\mathrm{SL}_{2}(K)$	$p \neq 2$	$a=2$
$\mathrm{Sp}_{4}(K)$	$p \neq 2$	$a=2, b=3$
$\mathrm{Sp}_{6}(K)$	$p \neq 2$	$a=2, b=3$
		or $a=2, b=c=5$
$\mathrm{Sp}_{2 m}(K), m \in\{4,5,6,7,8,9,11\}$	$p \neq 2$	$a=2, b=3, c=7$

Lemma

Table gives quasisimple groups of Lie type that are not (a, b, c)-groups.

Rigid triples when a, b, c primes

S.C	p	(a, b, c)	S.C	p	(a, b, c)
$\mathrm{SL}_{2}(K)$	$\begin{aligned} & 2 \\ & \neq 2 \end{aligned}$	$\begin{aligned} & \text { any } \\ & a>2 \end{aligned}$	$\begin{aligned} & \operatorname{Sp}_{2 m}(K) \\ & m=10,12,13 \end{aligned}$	$\neq 2$	$(2,3,7)$
$\mathrm{SL}_{3}(K)$	any	$a=2$	$\operatorname{Spin}_{11}(K)$$\operatorname{Spin}_{12}(K)$	$\neq 2$	$(2,3,7)$
$\mathrm{SL}_{4}(K)$	any	$a=2, b=3$		$\neq 2$	$(2,3,7)$
$\mathrm{SL}_{5}(K)$	any	$a=2, b=3$	$\operatorname{Spin}_{12}(K)$		
$\mathrm{SL}_{6}(K)$	$\neq 2$	$a=2, b=3$			
$\mathrm{SL}_{10}(K)$	$\neq 2$	$(2,3,7)$	ad.	p	(a, b, c)
$\mathrm{Sp}_{4}(K)$	2	$b=3$	$\mathrm{PSL}_{2}(\mathrm{~K})$	any	any
	$\neq 2$	$a=b=3$ or $a=2, b>3$	$\mathrm{PSL}_{3}(K)$	any	$a=2$
		or $a=2, b>3$$a=2, b=5 c \geq 7$	$\mathrm{PSL}_{4}(K)$	any	$\begin{aligned} & a=2, b=3 \\ & a=2, b=3 \end{aligned}$
$\mathrm{Sp}_{6}(K)$	$\neq 2$		$\mathrm{PSL}_{5}(\mathrm{~K})$		
$\mathrm{Sp}_{8}(K)$	$\neq 2$	$\begin{aligned} & a=2, b=3, c>7 \\ & \text { or }(2,5,5) \end{aligned}$	$\begin{aligned} & \mathrm{PSp}_{4}(K) \\ & \mathrm{G}_{2}(K) \end{aligned}$	any any	$\begin{aligned} & b=3 \\ & (2,5,5) \end{aligned}$
$\mathrm{Sp}_{10}(K)$	$\neq 2$				

Another approach through deformation theory

- Let $\rho \in \operatorname{Hom}(T, G)$ and $s=\operatorname{Ad} \circ \rho$ so that T acts on $V=L(G)$ through s.
- $\phi: T \rightarrow V$ is a 1-cocycle if $\phi\left(t_{1} t_{2}\right)=\phi\left(t_{1}\right)+s\left(t_{1}\right) \phi\left(t_{2}\right) \forall t_{1}, t_{2} \in T$.
- $\phi: T \rightarrow V$ is a 1 -coboundary if $\exists v \in V$ s.t. $\forall t \in T: \phi(t)=v-s(t) v$.
- Set $Z^{1}(T, s)$: space of cocycles, $B^{1}(T, s)$: space of coboundaries and

$$
H^{1}(T, s)=Z^{1}(T, s) / B^{1}(T, s)
$$

Theorem (Weil 1964)

- $Z^{1}(T, s)$ is the tangent space to $\operatorname{Hom}(T, G)$ at ρ.
- If $p \nmid a b c$ then

$$
\begin{aligned}
\operatorname{dim} H^{1}(T, s) & =\operatorname{dim} V+i+i^{*}-\operatorname{dim} V^{x}-\operatorname{dim} V^{y}-\operatorname{dim} V^{z} \\
& =-2 \operatorname{dim} V+i+i^{*}+\operatorname{codim} V^{x}+\operatorname{codim} V^{y}+\operatorname{codim} V^{z} \\
& \leq-2 \operatorname{dim} G+i+i^{*}+j_{a}+j_{b}+j_{c} .
\end{aligned}
$$

where i, i^{*} are the dimensions of the space of invariants of s and s^{*}.

- If $\operatorname{dim} H^{1}(T, s)=0$ then ρ is locally rigid. i.e. \exists a neighborhood of ρ in which every element of it is obtained from ρ by conjugation by an element of G.

Proof of the conjecture

Here we no longer assume a, b, c primes.
Let d be the determinant of the Cartan matrix of $L(G)$.
Theorem (Larsen - Lubotzky - M 2013)
If $p \nmid a b c d$ and (a, b, c) is rigid for G, then there are only finitely many r such that $G\left(p^{r}\right)$ is an (a, b, c)-group.

Proof of the conjecture

 Here we no longer assume a, b, c primes.Let d be the determinant of the Cartan matrix of $L(G)$.

Theorem (Larsen - Lubotzky - M 2013)

If $p \nmid a b c d$ and (a, b, c) is rigid for G, then there are only finitely many r such that $G\left(p^{r}\right)$ is an (a, b, c)-group.

Proof (by contradiction).

- Let $\rho: T \rightarrow G\left(p^{r}\right)$ be an epimorphism and consider ρ as an element of $\operatorname{Hom}(T, G)$.
- Since $p \nmid a b c$ and (a, b, c) is rigid for G, get $\operatorname{dim} H^{1}(T, \operatorname{Ad} \circ \rho) \leq i+i^{*}$. Because $p \nmid d$, a result of Hiss implies $i=i^{*}=0$ for $r \gg 0$.
- So WLOG ρ is locally rigid.
- The orbit of ρ under the action of G by conjugation is open
- As in a variety one can have only finitely many open orbits, the result follows.

Positive results

- X : simple Dynkin diagram
- $\underline{G}=X(\mathbb{C})$: simple Chevalley group of type X over \mathbb{C}
- $X\left(p^{r}\right)$: finite untwisted simple group of Lie type X.

Definition

T is saturated with finite quotients of type X if: $\exists p_{0}, e \in \mathbb{N}$ s. t. \forall prime $p>p_{0}, X\left(p^{\ell \ell}\right)$ is a quotient of T for all $\ell \in \mathbb{N}$.

- Main point: T is satured with finite quotients of type X $\Leftrightarrow \exists \rho \in \operatorname{Hom}(T, X(\mathbb{C}))$ with Zariski dense image and $\operatorname{dim} H^{1}(T, \operatorname{Ad} \circ \rho)>0$.
- From now on - no finite fields or finite groups!

Criterion for Zariski-dense representation

$\underline{G}=X(\mathbb{C})$
Theorem (Larsen-Lubotzky 2012)
Let $\rho_{0}: T \rightarrow \underline{G}$ and \underline{H} : Zariski closure of $\rho_{0}(T)$. Assume:
(1) \underline{H} is semisimple and connected.
(2) \underline{H} is a maximal subgroup of \underline{G}.
(0) $\operatorname{dim} \operatorname{Epi}(T, \underline{H})-\operatorname{dim} \underline{H}<\operatorname{dim} H^{1}\left(T,\left.\operatorname{Ad}\right|_{L(\underline{G})} \circ \rho_{0}\right)$.

Then

- ρ_{0} is nonsingular in $\operatorname{Hom}(T, \underline{G})$.
- \exists nonsingular Zariski dense $\rho: T \rightarrow \underline{G}$ in the same component of $\operatorname{Hom}(T, G)$ containing ρ_{0}.
- $\operatorname{dim} H^{1}\left(T,\left.\operatorname{Ad}\right|_{L(G)} \circ \rho\right)=\operatorname{dim} H^{1}\left(T,\left.\operatorname{Ad}\right|_{L(G)} \circ \rho_{0}\right)$.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type. unipotent, called the principal homomorphism.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.
- Let $\sigma_{0}^{G}: T \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ induced from $p_{0}^{\underline{G}}$.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.
- Let $\sigma_{0}^{\underline{G}}: T \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ induced from $p_{0}^{\underline{G}}$.
- $\operatorname{Ad} \circ \sigma_{0}^{\underline{G}}$ has no invariants on $L(\underline{G})$.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.
- Let $\sigma_{0}^{\underline{G}}: T \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ induced from $p_{0}^{\underline{G}}$.
- $\operatorname{Ad} \circ \sigma_{0}^{\underline{G}}$ has no invariants on $L(\underline{G})$.
- $\operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma_{0}^{G}\right)$ is easy to calculate and depends only on the exponents of $W(\underline{G})$ and a, b, c.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.
- Let $\sigma_{0}^{\underline{G}}: T \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ induced from $p_{0}^{\underline{G}}$.
- $\operatorname{Ad} \circ \sigma_{0}^{\underline{G}}$ has no invariants on $L(\underline{G})$.
- $\operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma_{0}^{G}\right)$ is easy to calculate and depends only on the exponents of $W(\underline{G})$ and a, b, c.
- $\operatorname{dim} \operatorname{Epi}(T, \underline{G})-\operatorname{dim} \underline{G} \leq \operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma \frac{G}{0}\right)$.

The principal homomorphism

- $\underline{G}=X(\mathbb{C})$ simple of adjoint type.
- $\exists!p_{0}^{G}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ sending every nontrivial unipotent to a regular unipotent, called the principal homomorphism.
- It factors through $\mathrm{PSL}_{2}(\mathbb{C})$.
- Let $\sigma_{0}^{\underline{G}}: T \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ induced from $p p_{0}^{\underline{G}}$.
- $\operatorname{Ad} \circ \sigma_{0}^{\underline{G}}$ has no invariants on $L(\underline{G})$.
- $\operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma_{0}^{G}\right)$ is easy to calculate and depends only on the exponents of $W(\underline{G})$ and a, b, c.
- $\operatorname{dim} \operatorname{Epi}(T, \underline{G})-\operatorname{dim} \underline{G} \leq \operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma \frac{G}{0}\right)$.
- If $\underline{G}=\operatorname{PSL}_{2}(\mathbb{C})$ then $\operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma \frac{G}{0}\right)=0$.
- More generally: $\operatorname{dim} H^{1}\left(T, \operatorname{Ad} \circ \sigma_{0}^{\underline{G}}\right)=0 \Leftrightarrow(a, b, c)$ is rigid for \underline{G}.

A one-step ladder

- Let \underline{G} of type $X=A_{2}, B_{n}(n \geq 4), C_{n}(n \geq 2), G_{2}, F_{4}, E_{7}, E_{8}$.
- Dynkin: the image of $p_{0}^{G}: \mathrm{PSL}_{2}(\mathbb{C}) \rightarrow \underline{G}$ is maximal in \underline{G}.
- Get Zariski dense $\rho: T \rightarrow \underline{G}$ provided $\operatorname{dim} H^{1}\left(T,\left.\operatorname{Ad}\right|_{L(G)} \circ \sigma_{0}^{G}\right)>0$.
- Computation: T is saturated with finite quotients of type X unless $X=A_{2}$ and $a=2, X=C_{2}$ and $b=3, X=G_{2}$ and $a=2, c=5$. (i.e. unless (a, b, c) is rigid for \underline{G}.)

Two and three-step ladders

- For other types X need two steps, unless $X=A_{6}$ or D_{4} in which we need three steps.
- Two steps:

Can choose $\underline{H}=Y(\mathbb{C})$ maximal in $\underline{G}=X(\mathbb{C})$ with $p_{0}^{\underline{H}}=p_{0}^{\underline{G}}$ and \underline{H} of type Y treated in 1-step ladder.
$\left|\begin{array}{ll|ll|ll}X & Y & X & Y & X & Y \\ A_{r} & B_{r / 2}(r \text { even }) & B_{3} & G_{2} & D_{r} & B_{r-1} \\ & C_{(r+1) / 2}(r \text { odd }) & E_{6} & F_{4} & & \end{array}\right|$

So start with $\sigma_{0}^{H}: T \rightarrow$ PSL $_{2}(\mathbb{C}) \rightarrow \underline{H}$ and apply [LL].
If [LL (3)] is satisfied, get Zariski dense

Two and three-step ladders

- For other types X need two steps, unless $X=A_{6}$ or D_{4} in which we need three steps.
- Two steps:

Can choose $\underline{H}=Y(\mathbb{C})$ maximal in $\underline{G}=X(\mathbb{C})$ with $p_{0}^{H}=p_{0}^{\underline{G}}$ and \underline{H} of type Y treated in 1-step ladder.

$|$| X | Y | X | Y | X | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A_{r} | $B_{r / 2}(r$ even $)$ | B_{3} | G_{2} | D_{r} | B_{r-1} |
| | $C_{(r+1) / 2}(r$ odd $)$ | E_{6} | F_{4} | | |

So start with $\sigma_{0}^{\underline{H}}: T \rightarrow \mathrm{PSL}_{2}(\mathbb{C}) \rightarrow \underline{H}$ and apply [LL].

Continue with $\rho_{1}: T \rightarrow \underline{H} \hookrightarrow \underline{G}$ and apply [LL] a sec
If $[\mathrm{LL}(3)]$ is satisfied, get Zariski dense $\rho_{2}: T \rightarrow \underline{G}$.

Two and three-step ladders

- For other types X need two steps, unless $X=A_{6}$ or D_{4} in which we need three steps.
- Two steps:

Can choose $\underline{H}=Y(\mathbb{C})$ maximal in $\underline{G}=X(\mathbb{C})$ with $p_{0}^{H}=p_{0}^{\underline{G}}$ and \underline{H} of type Y treated in 1-step ladder.
$\left|\begin{array}{ll|ll|ll}X & Y & X & Y & X & Y \\ A_{r} & B_{r / 2}(r \text { even }) & B_{3} & G_{2} & D_{r} & B_{r-1} \\ & C_{(r+1) / 2}(r \text { odd }) & E_{6} & F_{4} & & \end{array}\right|$

So start with $\sigma_{0}^{\underline{H}}: T \rightarrow \mathrm{PSL}_{2}(\mathbb{C}) \rightarrow \underline{H}$ and apply [LL].
If [LL (3)] is satisfied, get Zariski dense $\rho_{1}: T \rightarrow \underline{H}$.

Two and three-step ladders

- For other types X need two steps, unless $X=A_{6}$ or D_{4} in which we need three steps.
- Two steps:

Can choose $\underline{H}=Y(\mathbb{C})$ maximal in $\underline{G}=X(\mathbb{C})$ with $p_{0}^{\underline{H}}=p_{0}^{\underline{G}}$ and \underline{H} of type Y treated in 1-step ladder.
$\left|\begin{array}{ll|ll|ll}X & Y & X & Y & X & Y \\ A_{r} & B_{r / 2}(r \text { even }) & B_{3} & G_{2} & D_{r} & B_{r-1} \\ & C_{(r+1) / 2}(r \text { odd }) & E_{6} & F_{4} & & \end{array}\right|$

So start with $\sigma_{0}^{\underline{H}}: T \rightarrow \mathrm{PSL}_{2}(\mathbb{C}) \rightarrow \underline{H}$ and apply [LL].
If [LL (3)] is satisfied, get Zariski dense $\rho_{1}: T \rightarrow \underline{H}$.
Continue with $\rho_{1}: T \rightarrow \underline{H} \hookrightarrow \underline{G}$ and apply [LL] a second time. If [LL (3)] is satisfied, get Zariski dense $\rho_{2}: T \rightarrow \underline{\text { G. }}$

Two and three-step ladders

- For other types X need two steps, unless $X=A_{6}$ or D_{4} in which we need three steps.
- Two steps:

Can choose $\underline{H}=Y(\mathbb{C})$ maximal in $\underline{G}=X(\mathbb{C})$ with $p_{0}^{\underline{H}}=p_{0}^{\underline{G}}$ and \underline{H} of type Y treated in 1-step ladder.
$\left|\begin{array}{ll|ll|ll}X & Y & X & Y & X & Y \\ A_{r} & B_{r / 2}(r \text { even }) & B_{3} & G_{2} & D_{r} & B_{r-1} \\ & C_{(r+1) / 2}(r \text { odd }) & E_{6} & F_{4} & & \end{array}\right|$

So start with $\sigma_{0}^{\underline{H}}: T \rightarrow \operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \underline{H}$ and apply [LL].
If [LL (3)] is satisfied, get Zariski dense $\rho_{1}: T \rightarrow \underline{H}$.
Continue with $\rho_{1}: T \rightarrow \underline{H} \hookrightarrow \underline{G}$ and apply [LL] a second time. If [LL (3)] is satisfied, get Zariski dense $\rho_{2}: T \rightarrow \underline{\text { G. }}$

- Same philosophy for the three-step ladders:
$G_{2}(\mathbb{C})<B_{3}(\mathbb{C})<A_{6}(\mathbb{C})$.
$G_{2}(\mathbb{C})<B_{3}(\mathbb{C})<D_{4}(\mathbb{C})$.

A few remarks

- If [LL (3)] is not satisfied, we cannot proceed any further with the principal homomorphism.
- Sometimes, we can proceed with some other embeddings.

Main result

Theorem (Larsen - Lubotzky - M 2013)

T is saturated with finite quotients of type X, except possibly if (X, T) is in the following table.

X	(a, b, c)	r
A_{n}	$(2,3,7)$	$5 \leq n \leq 19$
	$(2,3,8)$	$5 \leq n \leq 13$
	$(2,3, c), c \geq 9$	$5 \leq n \leq 7$
	$(2,4,5)$	$3 \leq n \leq 13$
	$(2,4,6)$	$3 \leq n \leq 9$
	$(2,4, c), c \geq 7$	$3 \leq n \leq 5$
	$(2,5,5)$	$n=6$
	$(2, b, c), b \geq 5$	$n=3$
	$(3,3, c), c \geq 4$	$n \in\{3,4,6\}$
	$(2,3, c), c \geq 7$	$n \in\{3,4\}$
	$(2, b, c), b=3, c \geq 7 ; b=4, c \geq 5 ; b, c \geq 5$	$n=2$
	$a n y$	$n=1$
B_{3}	$(2,3, c), c \geq 7 ;(3,3, c), c \geq 4$	
	$(2,4,5),(2,5,5)$	
C_{2}	$(2,3, c), c \geq 7 ;(3,3, c), c \geq 4$	$n \in\{4,5,9\}$
D_{n}	$(2,3,7)$	$n \in\{4,5\}$
	$(2,3, c), c \geq 8$	$n=5$
	$(2,4,5)$	$n \in\{4,5\}$
	$(3,3,4)$	
G_{2}	$(3,3, c), c \geq 5$	$n=4$
E_{6}	$(2,4,5),(2,5,5)$	

Corollary

(i) If $1 / a+1 / b+1 / c \leq 1 / 2$ then T is saturated with finite quotients of type X for every $X \neq A_{1}$.
(ii) Every T is saturated with finite quotients of type X, except possibly if

$$
X \in Y=\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{G_{2}\right\} \cup\left\{E_{6}\right\} .
$$

Corollary

(i) If $1 / a+1 / b+1 / c \leq 1 / 2$ then T is saturated with finite quotients of type X for every $X \neq A_{1}$.
(ii) Every T is saturated with finite quotients of type X, except possibly if
$X \in Y=\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{G_{2}\right\} \cup\left\{E_{6}\right\}$.

Corollary

If $X \notin\left\{A_{n}: 1 \leq r \leq 7\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5\right\}$. Then almost every T is saturated with finite quotients of type X.

Corollary

(i) If $1 / a+1 / b+1 / c \leq 1 / 2$ then T is saturated with finite quotients of type X for every $X \neq A_{1}$.
(ii) Every T is saturated with finite quotients of type X, except possibly if

$$
X \in Y=\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{G_{2}\right\} \cup\left\{E_{6}\right\} .
$$

Corollary

If $X \notin\left\{A_{n}: 1 \leq r \leq 7\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5\right\}$. Then almost every T is saturated with finite quotients of type X.

Corollary

$T_{2,3,7}$ is saturated with finite quotients of type X, $\forall X \notin\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{E_{6}\right\}$.

Corollary

(i) If $1 / a+1 / b+1 / c \leq 1 / 2$ then T is saturated with finite quotients of type X for every $X \neq A_{1}$.
(ii) Every T is saturated with finite quotients of type X, except possibly if
$X \in Y=\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{G_{2}\right\} \cup\left\{E_{6}\right\}$.

Corollary

If $X \notin\left\{A_{n}: 1 \leq r \leq 7\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5\right\}$. Then almost every T is saturated with finite quotients of type X.

Corollary

$T_{2,3,7}$ is saturated with finite quotients of type X, $\forall X \notin\left\{A_{n}: 1 \leq n \leq 19\right\} \cup\left\{B_{3}\right\} \cup\left\{C_{2}\right\} \cup\left\{D_{n}: n=4,5,9\right\} \cup\left\{E_{6}\right\}$.

Corollary (Guralnick problem)

Every T is saturated with finite quotients of type E_{7} and E_{8}.

Thank you.

