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A digraph T is an ordered pair (V,.A) where the vertex-set V is a
finite non-empty set and the arc-set A is a binary relation on V.

The elements of V and A are called vertices and arcs of T,
respectively.

The digraph T is called a graph when the relation A is symmetric.

An automorphism of T is a permutation of V which preserves the
the relation A.



Cayley digraphs

Let R be a finite group and let S C R.



Cayley digraphs

Let R be a finite group and let S C R.

The Cayley digraph on R with connection set S, denoted
Cay(R,S), is the digraph with vertex-set R and with (g, h) being
an arc if and only if gh~! € S.



Cayley digraphs

Let R be a finite group and let S C R.

The Cayley digraph on R with connection set S, denoted
Cay(R,S), is the digraph with vertex-set R and with (g, h) being
an arc if and only if gh~! € S.

Note that Cay(R,S) may be disconnected and may have loops.
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Easy observation | : Cay(R,S) is a graph if and only if S is
inverse-closed, in which case it is called a Cayley graph.

Easy observation |l : R acts regularly as a group of automorphisms
of Cay(R,S) by right multiplication.

If R is the full automorphism group of Cay(R, S), then it is called
a DRR.

A DRR which is a graph is called a GRR.
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Do DRRs exist?

Babai (1980) showed that apart from 5 small exceptions, every
finite group R has a subset S such that Cay(R,S) is a DRR.

Conjecture (Babai, Godsil, 1982)

Let R be a group of order n. The proportion of subsets S of R
such that Cay(R,S) is a DRR goes to 1 as n — oc.

In other words, almost all Cayley digraphs are DRRs.

Babai and Godsil proved the conjecture for nilpotent groups of odd
order.
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What about undirected graphs?

The naive corresponding conjecture for graphs is false, for simple
reasons.

Let A be an abelian group and let ¢ : A — A, (a) = a~ 1. Then

is an automorphism of A. Moreover, ¢ # 1 unless A = (Z,)".

Let Cay(A, S) be a Cayley graph on A. Then ¢ is an automorphism
of Cay(A, S) fixing the vertex corresponding to the identity.

Conclusion : if A'is an abelian group and A % (Z3)", then no
Cayley graph on A is a GRR.
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Corresponding conjectures

Conjecture (Babai, Godsil, Imrich, Lévasz, 1982)

Let R be a group of order n which is neither generalized dicyclic
nor abelian. The proportion of inverse-closed subsets S of R such
that Cay(R,S) is a GRR goes to 1 as n — <.

In other words, after excluding some obvious exceptional groups,
almost all Cayley graphs are GRRs.
Conjecture (Babai, Godsil 1982)

Let A be an abelian group of order n. The proportion of
inverse-closed subsets S of A such that Aut(Cay(A,S)) = A x (v
goes to 1l as n — oo.
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A remark

If we want to count non-DRR’s, we may assume that
R < G < Aut(Cay(R, S)). Without loss of generality, R is
maximal in G.

Lemma
Let R be a group of order n. The number of subsets of R which

are fixed setwise by some element of Aut(R) \ {1} is at most
23n/4+o0(n)

Using this remark, we may therefore restrict our attention to the
case when R is a regular self-normalizing maximal subgroup of the
permutation group G.
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The abelian digraph case

We proved Babai and Godsil's conjectures for abelian groups.

Theorem (Dobson, Spiga, V., 2013)

Let A be an abelian group of order n. The proportion of subsets S
of A such that Cay(A,S) is a DRR goes to 1 as n — oc.

We dealt with this case by characterising permutation groups
containing a maximal abelian regular self-normalizing subgroup.
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The abelian graph case, |

In the undirected graph case, the corresponding needed result is
the following:

Theorem (Dobson, Spiga, V., 2013)

Let G be a permutation group with an abelian regular subgroup A
and a proper subgroup B which is generalized dihedral on A such
that Ng(A) = B. Then Z(G) is an elementary abelian 2-group
contained in A and G = U x Z(G) where G; < U = PGL(2, q)
and A/Z(G) = Cqq1.



The abelian graph case, Il

Using a bit of counting, the previous theorem settles the conjecture
of Babai and Godsil.



The abelian graph case, Il

Using a bit of counting, the previous theorem settles the conjecture
of Babai and Godsil.

Corollary (Dobson, Spiga, V., 2013)

Let A be an abelian group of order n. The proportion of
inverse-closed subsets S of A such that Aut(Cay(A,S)) = A x (1)
goes to 1l as n — oo.
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Future work

In general, a key case seems to be when R is maximal and
core-free in G.

In this case, G is primitive with point-stabiliser R and regular
subgroup Gi.

It might be useful to obtain some results about the number of such
groups. (Up to conjugacy in Sym(n).)
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Another conjecture

There is a also the following (related) conjecture:

Conjecture (McKay, Praeger, 1994)
Almost all vertex-transitive graphs are Cayley.

A possible approach suggested by Babai would be to find a good
upper bound on the number of minimally transitive permutation
groups of degree n.

Some work by Pyber on this.

Thank you!
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