IMPRIMITIVE IRREDUCIBLE MODULES FOR FINITE QUASISIMPLE GROUPS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Workshop Permutation Groups BIRS, July 24, 2013

- The project and its motivation
- Some results
- 8 Reductions
- Harish-Chandra induction

This is a joint project with William J. Husen and Kay Magaard.

This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over some field K,
- **6** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- V a finite dimensional vector space over some field K,
- **6** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

EXPLANATIONS

• G is quasisimple, if G = G' and G/Z(G) is simple.

This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over some field K,
- **6** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

EXPLANATIONS

- G is quasisimple, if G = G' and G/Z(G) is simple.
- **2** $G \rightarrow SL(V)$ is imprimitive, if $V = V_1 \oplus \cdots \oplus V_m$, m > 1, and the action of G permutes the V_i transitively.

This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over some field K,
- **6** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

EXPLANATIONS

- G is quasisimple, if G = G' and G/Z(G) is simple.
- G → SL(V) is imprimitive, if V = V₁ ⊕ · · · ⊕ V_m, m > 1, and the action of G permutes the V_i transitively.
 We call H := Stab_G(V₁) a block stabilizer.

This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over some field K,
- **6** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

EXPLANATIONS

• G is quasisimple, if G = G' and G/Z(G) is simple.

G → SL(V) is imprimitive, if V = V₁ ⊕ · · · ⊕ V_m, m > 1, and the action of G permutes the V_i transitively.
 We call H := Stab_G(V₁) a block stabilizer.
 We have V ≅ Ind^G_H(V₁) := KG ⊗_{KH} V₁ as KG-modules.

Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V).

Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V). Let $G \leq X$ be finite, quasisimple, such that

• $\varphi: G \rightarrow X \leq SL(V)$ is absolutely irreducible, and

Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V). Let $G \leq X$ be finite, quasisimple, such that

• $\varphi: G \rightarrow X \leq SL(V)$ is absolutely irreducible, and

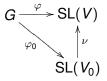
ont realizable over a smaller field.

Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V). Let G < X be finite, quasisimple, such that

• $\varphi: G \rightarrow X \leq SL(V)$ is absolutely irreducible, and

ont realizable over a smaller field.

 $[\varphi: G \rightarrow SL(V)$ is realizable over a smaller field, if φ factors as

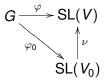


Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V). Let $G \leq X$ be finite, quasisimple, such that

• $\varphi: G \rightarrow X \leq SL(V)$ is absolutely irreducible, and

ont realizable over a smaller field.

 $[\varphi: G \rightarrow SL(V)$ is realizable over a smaller field, if φ factors as



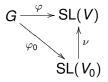
for some proper subfield $K_0 \leq K$, a K_0 -vector space V_0 with $V = K \otimes_{K_0} V_0$, and a representation $\varphi_0 : G \to SL(V_0)$.]

Let *K* be a finite field and *V* a f.d. *K*-vector space. Let $X \leq SL(V)$ be a classical group, e.g., X = Sp(V), SO(V). Let $G \leq X$ be finite, quasisimple, such that

• $\varphi: G \to X \leq SL(V)$ is absolutely irreducible, and

ont realizable over a smaller field.

 $[\varphi: G \rightarrow SL(V)$ is realizable over a smaller field, if φ factors as



for some proper subfield $K_0 \leq K$, a K_0 -vector space V_0 with $V = K \otimes_{K_0} V_0$, and a representation $\varphi_0 : G \to SL(V_0)$.] Is $N_X(G)$ a maximal subgroup of X?

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

REDUCTION

HARISH-CHANDRA INDUCTION

Some obstructions

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

 C_2 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is imprimitive.

SOME OBSTRUCTIONS

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

C₂-obstruction: φ : $N_X(G) \rightarrow X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \ldots, V_m\}) \leq X$.

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

 C_2 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \dots, V_m\}) \leq X$.

 C_4 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is tensor decomposable,

SOME OBSTRUCTIONS

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

C₂-obstruction: φ : $N_X(G) \rightarrow X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \ldots, V_m\}) \leq X$.

 C_4 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is tensor decomposable,

i.e., $V = U \otimes_{\mathcal{K}} W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$.

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

C₂-obstruction: φ : $N_X(G) \rightarrow X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \ldots, V_m\}) \leq X$.

 C_4 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is tensor decomposable,

i.e., $V = U \otimes_{\mathcal{K}} W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$. Then $N_X(G) \leq X \cap (SL(U) \otimes_{\mathcal{K}} SL(W)) \leq X$.

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

C₂-obstruction: φ : $N_X(G) \rightarrow X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \ldots, V_m\}) \leq X$.

 C_4 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is tensor decomposable,

i.e., $V = U \otimes_{\mathcal{K}} W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$. Then $N_X(G) \leq X \cap (SL(U) \otimes_{\mathcal{K}} SL(W)) \leq X$.

S-obstruction: There is a quasisimple group *H* such that $N_X(G) \leq H \leq X$.

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher's subgroup classification (1984).

 C_2 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is imprimitive. Then $N_X(G) \leq Stab_X(\{V_1, \dots, V_m\}) \leq X$.

C_4 -obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is tensor decomposable,

i.e., $V = U \otimes_{\mathcal{K}} W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$. Then $N_X(G) \leq X \cap (SL(U) \otimes_{\mathcal{K}} SL(W)) \leq X$.

S-obstruction: There is a quasisimple group *H* such that $N_X(G) \leq H \leq X$. (Thus $\operatorname{Res}_G^H(V)$ is absolutely irreducible.)

REDUCTIONS

HARISH-CHANDRA INDUCTION

AN EXAMPLE: THE MATHIEU GROUP M_{11}

Let *X* be a finite classical group.

Let *X* be a finite classical group.

Let $\varphi: M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field.

Let *X* be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.

An example: The Mathieu group M_{11}

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X?

An example: The Mathieu group M_{11}

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

(1) $M_{11} \rightarrow A_{11} \rightarrow \text{SO}^+_{10}(3)'$ (S-obstruction).

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \rightarrow A_{11} \rightarrow SO^+_{10}(3)' & (\mathcal{S}\mbox{-obstruction}). \\ (2) \ M_{11} \rightarrow SO_{55}(\ell) \ is \ imprimitive, \ \ell \geq 5 & (\mathcal{C}_2\mbox{-obstruction}). \end{array}$

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \rightarrow A_{11} \rightarrow \mathrm{SO}^+_{10}(3)' & (\mathcal{S}\text{-obstruction}). \\ (2) \ M_{11} \rightarrow \mathrm{SO}_{55}(\ell) \ is \ imprimitive, \ \ell \geq 5 & (\mathcal{C}_2\text{-obstruction}). \\ (3) \ Also: \ M_{11} \rightarrow M_{12} \rightarrow A_{12} \rightarrow \mathrm{SO}_{11}(\ell) \rightarrow \mathrm{SO}_{55}(\ell), \ \ell \geq 5. \end{array}$

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \rightarrow A_{11} \rightarrow \text{SO}_{10}^+(3)' & (\mathcal{S}\text{-obstruction}). \\ (2) \ M_{11} \rightarrow \text{SO}_{55}(\ell) \ \text{is imprimitive, } \ell \geq 5 & (\mathcal{C}_2\text{-obstruction}). \\ (3) \ \text{Also:} \ M_{11} \rightarrow M_{12} \rightarrow A_{12} \rightarrow \text{SO}_{11}(\ell) \rightarrow \text{SO}_{55}(\ell), \ \ell \geq 5. \\ (4) \ M_{11} \rightarrow 2.M_{12} \rightarrow \text{SL}_{10}(3) & (\mathcal{S}\text{-obstruction}). \end{array}$

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \to A_{11} \to \mathrm{SO}_{10}^+(3)' & (\mathcal{S}\text{-obstruction}). \\ (2) \ M_{11} \to \mathrm{SO}_{55}(\ell) \ is \ imprimitive, \ \ell \geq 5 & (\mathcal{C}_2\text{-obstruction}). \\ (3) \ Also: \ M_{11} \to M_{12} \to A_{12} \to \mathrm{SO}_{11}(\ell) \to \mathrm{SO}_{55}(\ell), \ \ell \geq 5. \\ (4) \ M_{11} \to 2.M_{12} \to \mathrm{SL}_{10}(3) & (\mathcal{S}\text{-obstruction}). \\ (5) \ M_{11} \to \mathrm{SL}_5(3) \to \mathrm{SO}_{24}^-(3)' & (\mathcal{S}\text{-obstruction}). \end{array}$

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \to A_{11} \to SO^+_{10}(3)' & (\mathcal{S}\mbox{-obstruction}). \\ (2) \ M_{11} \to SO_{55}(\ell) \ is \ imprimitive, \ \ell \geq 5 & (\mathcal{C}_2\mbox{-obstruction}). \\ (3) \ Also: \ M_{11} \to M_{12} \to A_{12} \to SO_{11}(\ell) \to SO_{55}(\ell), \ \ell \geq 5. \\ (4) \ M_{11} \to 2.M_{12} \to SL_{10}(3) & (\mathcal{S}\mbox{-obstruction}). \\ (5) \ M_{11} \to SL_{5}(3) \to SO^-_{24}(3)' & (\mathcal{S}\mbox{-obstruction}). \end{array}$

What about $\varphi: M \to SO_{196882}^{-}(2)$? (*M*: Monster)

MOTIVATION II: MATRIX GROUPS COMPUTATION

The following algorithmic problem arises in the "matrix groups computation" project.

MOTIVATION II: MATRIX GROUPS COMPUTATION

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

• G acts absolutely irreducibly on $V = K^n$,

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

- G acts absolutely irreducibly on $V = K^n$,
- G is "nearly" simple,

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

- G acts absolutely irreducibly on $V = K^n$,
- Ø G is "nearly" simple,
- the isomorphism type of the non-abelian simple composition factor of *G*.

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

- G acts absolutely irreducibly on $V = K^n$,
- *G* is "nearly" simple,
- the isomorphism type of the non-abelian simple composition factor of *G*.

Decide whether G acts primitively on V.

The following algorithmic problem arises in the "matrix groups computation" project.

Let *K* be a finite field, $x_1, \ldots, x_r \in GL_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

- G acts absolutely irreducibly on $V = K^n$,
- *G* is "nearly" simple,
- the isomorphism type of the non-abelian simple composition factor of *G*.

Decide whether G acts primitively on V.

A table look-up in our lists might help to answer this question.

Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

char(K) = 0 and G = 2.A_n
 (Djoković-Malzan, Nett-Noeske).

Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

- char(K) = 0 and G = 2.A_n
 (Djoković-Malzan, Nett-Noeske).
- **2** char(K) arbitrary and
 - G sporadic;

Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

- char(K) = 0 and G = 2.A_n
 (Djoković-Malzan, Nett-Noeske).
- \bigcirc char(K) arbitrary and
 - G sporadic;
 - *G* a finite reductive group if *G* has an exceptional Schur multiplier or if *G* has two distinct defining characteristics (finitely many groups);

Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

- char(K) = 0 and G = 2.A_n
 (Djoković-Malzan, Nett-Noeske).
- **2** char(K) arbitrary and
 - G sporadic;
 - *G* a finite reductive group if *G* has an exceptional Schur multiplier or if *G* has two distinct defining characteristics (finitely many groups);
 - *G* a Suzuki or Ree group, $G = G_2(q)$, or *G* a Steinberg triality group

(Seitz, H.-Husen-Magaard).

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

•
$$n = m^2 + 1$$
 and $\chi = \operatorname{Res}_G^{S_n}(\zeta^\lambda)$ with $\lambda = (m + 1, m^{m-1})$.

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

•
$$n = m^2 + 1$$
 and $\chi = \operatorname{Res}_{G}^{S_n}(\zeta^{\lambda})$ with $\lambda = (m + 1, m^{m-1})$.
Also, $\chi = \operatorname{Ind}_{A_{n-1}}^{G}(\chi_1)$ with χ_1 a constituent of $\operatorname{Res}_{A_{n-1}}^{S_{n-1}}(\zeta^{\mu})$
with $\mu = (m^m)$.

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

•
$$n = m^2 + 1$$
 and $\chi = \operatorname{Res}_{G}^{S_n}(\zeta^{\lambda})$ with $\lambda = (m + 1, m^{m-1})$.
Also, $\chi = \operatorname{Ind}_{A_{n-1}}^{G}(\chi_1)$ with χ_1 a constituent of $\operatorname{Res}_{A_{n-1}}^{S_{n-1}}(\zeta^{\mu})$
with $\mu = (m^m)$.

2
$$n = 2m$$
 and $\chi = \operatorname{Res}_{G}^{S_{n}}(\zeta^{\lambda})$ with $\lambda = (m+1, 1^{m-1})$

We replace modules by characters, Irr(G) denotes the set of irreducible \mathbb{C} -characters of G.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

•
$$n = m^2 + 1$$
 and $\chi = \operatorname{Res}_{G}^{S_n}(\zeta^{\lambda})$ with $\lambda = (m + 1, m^{m-1})$.
Also, $\chi = \operatorname{Ind}_{A_{n-1}}^{G}(\chi_1)$ with χ_1 a constituent of $\operatorname{Res}_{A_{n-1}}^{S_{n-1}}(\zeta^{\mu})$
with $\mu = (m^m)$.

•
$$n = 2m$$
 and $\chi = \operatorname{Res}_{G}^{S_{n}}(\zeta^{\lambda})$ with $\lambda = (m + 1, 1^{m-1})$
Also, $\chi = \operatorname{Ind}_{N_{G}(S_{m} \times S_{m})}^{G}(\chi_{1})$ with $\chi_{1}(1) = 1$.

THE COVERING GROUPS OF THE ALTERNATING GROUPS

Again we take $K = \mathbb{C}$.

THEOREM (DANIEL NETT, FELIX NOESKE, 2009)

Suppose that $G = 2.A_n$, $n \ge 10$, is the covering group of A_n , and let $\psi \in Irr(G)$ be imprimitive.

THE COVERING GROUPS OF THE ALTERNATING GROUPS

Again we take $K = \mathbb{C}$.

THEOREM (DANIEL NETT, FELIX NOESKE, 2009)

Suppose that $G = 2.A_n$, $n \ge 10$, is the covering group of A_n , and let $\psi \in Irr(G)$ be imprimitive.

Then n = 1 + m(m+1)/2, and $\psi = \text{Res}_{G}^{2.S_{n}}(\sigma^{\lambda})$ with

 $\lambda = (m + 1, m - 1, m - 2, ..., 1)$

THE COVERING GROUPS OF THE ALTERNATING GROUPS

Again we take $K = \mathbb{C}$.

THEOREM (DANIEL NETT, FELIX NOESKE, 2009)

Suppose that $G = 2.A_n$, $n \ge 10$, is the covering group of A_n , and let $\psi \in Irr(G)$ be imprimitive. Then n = 1 + m(m+1)/2, and $\psi = \operatorname{Res}_G^{2.S_n}(\sigma^{\lambda})$ with $\lambda = (m+1, m-1, m-2, ..., 1)$. Also, $\psi = \operatorname{Ind}_{2.A_{n-1}}^G(\psi_1)$ with ψ_1 a constituent of $\operatorname{Res}_{2.A_{n-1}}^{2.S_{n-1}}(\sigma^{\mu})$ with $\mu = (m, m-1, ..., 1)$.

Let **G** denote a reductive algebraic group over **F**, an algebraically closed field, $char(\mathbf{F}) = p > 0$.

Let **G** denote a reductive algebraic group over **F**, an algebraically closed field, $char(\mathbf{F}) = p > 0$.

Let *F* denote a Frobenius morphism of **G** with respect to some \mathbb{F}_q -structure of **G**.

Let **G** denote a reductive algebraic group over **F**, an algebraically closed field, $char(\mathbf{F}) = p > 0$.

Let *F* denote a Frobenius morphism of **G** with respect to some \mathbb{F}_q -structure of **G**.

Then $G := \mathbf{G}^{F}$ is a finite reductive group of characteristic *p*.

Let **G** denote a reductive algebraic group over **F**, an algebraically closed field, $char(\mathbf{F}) = p > 0$.

Let *F* denote a Frobenius morphism of **G** with respect to some \mathbb{F}_{q} -structure of **G**.

Then $G := \mathbf{G}^F$ is a finite reductive group of characteristic *p*.

An *F*-stable Levi subgroup **L** of **G** is split, if **L** is a Levi complement in an *F*-stable parabolic subgroup **P** of **G**.

Let **G** denote a reductive algebraic group over **F**, an algebraically closed field, $char(\mathbf{F}) = p > 0$.

Let *F* denote a Frobenius morphism of **G** with respect to some \mathbb{F}_q -structure of **G**.

Then $G := \mathbf{G}^F$ is a finite reductive group of characteristic *p*.

An *F*-stable Levi subgroup **L** of **G** is split, if **L** is a Levi complement in an *F*-stable parabolic subgroup **P** of **G**.

Such a pair (**L**, **P**) gives rise to a parabolic subgroup $P = \mathbf{P}^F$ of *G* with Levi complement $L = \mathbf{L}^F$.

The following result of Seitz contains the classification in defining characteristic.

The following result of Seitz contains the classification in defining characteristic.

THEOREM (GARY SEITZ, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive FG-module.

The following result of Seitz contains the classification in defining characteristic.

THEOREM (GARY SEITZ, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive FG-module.

Then G is one of

 $SL_2(5), SL_2(7), SL_3(2), Sp_4(3),\\$

The following result of Seitz contains the classification in defining characteristic.

THEOREM (GARY SEITZ, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive FG-module.

Then G is one of

 $SL_2(5), SL_2(7), SL_3(2), Sp_4(3),\\$

and V is the Steinberg module.

The following result of Seitz contains the classification in defining characteristic.

THEOREM (GARY SEITZ, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive FG-module.

Then G is one of

$$SL_{2}(5), SL_{2}(7), SL_{3}(2), Sp_{4}(3),$$

and V is the Steinberg module.

Thus it remains to study finite reductive groups in non-defining characteristics (including 0).

REDUCTIONS

HARISH-CHANDRA INDUCTION

THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.

Let G be a finite reductive group of characteristic p.

Suppose that G

is quasisimple,

Let G be a finite reductive group of characteristic p.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,

Let G be a finite reductive group of characteristic p.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let G be a finite reductive group of characteristic p.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let *K* be an algebraically closed field with char(K) $\neq p$.

Let *G* be a finite reductive group of characteristic *p*.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let *K* be an algebraically closed field with $char(K) \neq p$.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup.

Let G be a finite reductive group of characteristic p.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let *K* be an algebraically closed field with $char(K) \neq p$.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\operatorname{Ind}_{H}^{G}(V_{1})$ is irreducible for some KH-module V_{1} .

Let *G* be a finite reductive group of characteristic *p*.

Suppose that G

- is quasisimple,
- Ø does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let *K* be an algebraically closed field with char(K) $\neq p$.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\operatorname{Ind}_{H}^{G}(V_1)$ is irreducible for some KH-module V_1 .

Then H = P is a parabolic subgroup of G.

Let *G* be a finite group, $H \leq G$, and *K* a field.

SOME EASY CHARACTERISTIC-FREE CRITERIA

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible.

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

$$[G:H] \leq \dim(V).$$

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

• $[G: H] \le \dim(V).$ • $|H|^2 \ge |G|.$

Let *G* be a finite group, $H \leq G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

- $[G:H] \leq \dim(V).$
- **2** $|H|^2 \ge |G|.$
- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.

SOME EASY CHARACTERISTIC-FREE CRITERIA

Let *G* be a finite group, $H \leq G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

SOME EASY CHARACTERISTIC-FREE CRITERIA

Let *G* be a finite group, $H \leq G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H]\dim(V_1)$.

Let *G* be a finite group, $H \leq G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since dim(V) = [G : H]dim (V_1) . **Proof** of 2: $[G : H]^2 \le$ dim $(V)^2 \le |G|$.

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since dim(V) = [G : H]dim (V_1) . **Proof** of 2: $[G : H]^2 \le$ dim $(V)^2 \le |G|$. **Proof** of 3: This is a consequence of Mackey's theorem.

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since dim(V) = [G : H]dim(V_1). **Proof** of 2: [G : H]² \leq dim(V)² \leq |G|. **Proof** of 3: This is a consequence of Mackey's theorem. **Proof** of 4: For $t \in G$, ${}^{t}H \cap H = C_{G}({}^{t}a, a)$.

Let *G* be a finite group, $H \le G$, and *K* a field. Let V_1 be a *KH*-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

 $[G:H] \leq \dim(V).$

$$|H|^2 \geq |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralized by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since dim(V) = [G : H]dim(V_1). **Proof** of 2: [G : H]² \leq dim(V)² \leq |G|. **Proof** of 3: This is a consequence of Mackey's theorem. **Proof** of 4: For $t \in G$, ${}^{t}H \cap H = C_{G}({}^{t}a, a)$. Hence $t \notin \langle {}^{t}a, a \rangle$ for $t \in G \setminus H$, since such a *t* does not centralize ${}^{t}H \cap H$ by 3.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Then $H_0 = C_G(a)$ with $a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}$, where $\langle \alpha \rangle = \mathbb{F}_q^*$.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Then $H_0 = C_G(a)$ with $a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}$, where $\langle \alpha \rangle = \mathbb{F}_q^*$. Put $t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix}$ with $N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Then $H_0 = C_G(a)$ with $a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}$, where $\langle \alpha \rangle = \mathbb{F}_q^*$. Put $t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix}$ with $N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $t \in \langle {}^ta, a \rangle$, hence t centralizes ${}^tH_0 \cap H_0$.

Large subgroups of finite reductive groups are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Then $H_0 = C_G(a)$ with $a = \begin{vmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{vmatrix}$, where $\langle \alpha \rangle = \mathbb{F}_q^*$. Put $t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix}$ with $N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $t \in \langle {}^{t}a, a \rangle$, hence t centralizes ${}^{t}H_{0} \cap H_{0}$. Finally, $t \in C_G(s)$ and ${}^tH_0 \cap sH_0 = \emptyset$, thus $t \in C_G({}^tH \cap H)$.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with $char(K) \neq p$.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, 2013)

Let P be a parabolic subgroup of G with unipotent radical U.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $Ind_P^G(V_1)$ is irreducible.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $Ind_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

In other words, $\operatorname{Ind}_{P}^{G}(V_{1})$ is Harish-Chandra induced.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $Ind_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

In other words, $Ind_P^G(V_1)$ is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification problem, reducing certain aspects to Weyl groups.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let L be a Levi complement of U in P.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let *L* be a Levi complement of *U* in *P*. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let *L* be a Levi complement of *U* in *P*. Chose a head composition factor V_2 of $\operatorname{Res}_L^P(V_1)$. Let *Q* be the opposite parabolic subgroup of *P*, so $P \cap Q = L$.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let *L* be a Levi complement of *U* in *P*. Chose a head composition factor V_2 of $\operatorname{Res}_L^P(V_1)$. Let *Q* be the opposite parabolic subgroup of *P*, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\operatorname{Ind}_P^G(V_1) \to \operatorname{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \operatorname{Infl}_L^Q(V_2)$.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let *L* be a Levi complement of *U* in *P*. Chose a head composition factor V_2 of $\operatorname{Res}_L^P(V_1)$. Let *Q* be the opposite parabolic subgroup of *P*, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\operatorname{Ind}_P^G(V_1) \to \operatorname{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \operatorname{Infl}_L^Q(V_2)$. As $\operatorname{Ind}_P^G(V_1)$ is simple, and $\dim(\operatorname{Ind}_Q^G(\tilde{V}_2)) \leq \dim(\operatorname{Ind}_P^G(V_1))$, this implies that

$$\operatorname{Ind}_{P}^{G}(V_{1})\cong\operatorname{Ind}_{Q}^{G}(\tilde{V}_{2}).$$

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

Proof: (Sketch) Let *L* be a Levi complement of *U* in *P*. Chose a head composition factor V_2 of $\operatorname{Res}_L^P(V_1)$. Let *Q* be the opposite parabolic subgroup of *P*, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\operatorname{Ind}_P^G(V_1) \to \operatorname{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \operatorname{Infl}_L^Q(V_2)$. As $\operatorname{Ind}_P^G(V_1)$ is simple, and $\dim(\operatorname{Ind}_Q^G(\tilde{V}_2)) \leq \dim(\operatorname{Ind}_P^G(V_1))$, this implies that

$$\operatorname{Ind}_{P}^{G}(V_{1})\cong\operatorname{Ind}_{Q}^{G}(\widetilde{V}_{2}).$$

It follows that $\dim(V_1) = \dim(V_2)$.

Let X be a finite classical group on the vector space V.

Let X be a finite classical group on the vector space V.

- Let $G \leq X$ be a quasisimple reductive group such that
 - $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by *G*.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.

Now $N_H(P)$ stabilizes U, hence fixes V_1 .

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

- $\varphi: G \to X \leq SL(V)$ is absolutely irreducible,
- $V = \operatorname{Ind}_{P}^{G}(V_{1})$ for some parabolic subgroup *P* of *G*,
- the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.

Now $N_H(P)$ stabilizes U, hence fixes V_1 .

Thus $H = GN_H(P)$ permutes the V_i .

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.)

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with char(K) $\neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $\operatorname{Ind}_P^G(\operatorname{Infl}_L^P(V_1))$ is irreducible.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with $char(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $Ind_P^G(Infl_L^P(V_1))$ is irreducible.

EXAMPLE

$$G = \operatorname{GL}_n(q)$$
, $L = \operatorname{GL}_m(q) \times \operatorname{GL}_{n-m}(q)$ with $m \neq n - m$.

Let *G* be a finite reductive, quasisimple group of characteristic *p*, and let *K* be an algebraically closed field with $char(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible *KG*-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $Ind_P^G(Infl_L^P(V_1))$ is irreducible.

EXAMPLE

 $G = \operatorname{GL}_n(q)$, $L = \operatorname{GL}_m(q) \times \operatorname{GL}_{n-m}(q)$ with $m \neq n - m$. Then every irreducible cuspidal KL-module is in general position.

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = SL_m(q)$ or $G_m(q) = Sp_{2m}(q)$.

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let
$$G_m(q) = SL_m(q)$$
 or $G_m(q) = Sp_{2m}(q)$. Put

$$f(m,q):=\frac{|\mathrm{Irr}_i(G_m(q))|}{|\mathrm{Irr}(G_m(q))|},$$

where $\operatorname{Irr}_i(G_m(q)) = \{\chi \in \operatorname{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}.$

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let
$$G_m(q) = SL_m(q)$$
 or $G_m(q) = Sp_{2m}(q)$. Put

$$f(m,q):=\frac{|\mathrm{Irr}_i(G_m(q))|}{|\mathrm{Irr}(G_m(q))|},$$

where $\operatorname{Irr}_i(G_m(q)) = \{\chi \in \operatorname{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}.$ Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists an we have:

•
$$f(m) = 1 - 1/m$$
 if $G_m(q) = SL_m(q)$,

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let
$$G_m(q) = SL_m(q)$$
 or $G_m(q) = Sp_{2m}(q)$. Put

$$f(m,q):=\frac{|\mathrm{Irr}_i(G_m(q))|}{|\mathrm{Irr}(G_m(q))|},$$

where $\operatorname{Irr}_i(G_m(q)) = \{\chi \in \operatorname{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}.$ Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists an we have:

•
$$f(m) = 1 - 1/m$$
 if $G_m(q) = SL_m(q)$,
• $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m m!}$, if $G_m(q) = Sp_{2m}(q)$ [Lübeck].

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let
$$G_m(q) = SL_m(q)$$
 or $G_m(q) = Sp_{2m}(q)$. Put

$$f(m,q):=\frac{|\mathrm{Irr}_i(G_m(q))|}{|\mathrm{Irr}(G_m(q))|},$$

where $\operatorname{Irr}_i(G_m(q)) = \{\chi \in \operatorname{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}.$

Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists an we have:

•
$$f(m) = 1 - 1/m$$
 if $G_m(q) = SL_m(q)$,
• $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m m!}$, if $G_m(q) = Sp_{2m}(q)$ [Lübeck].

In each case, $\lim_{m\to\infty} f(m) = 1$.

ASYMPTOTICS

Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let
$$G_m(q) = SL_m(q)$$
 or $G_m(q) = Sp_{2m}(q)$. Put

$$f(m,q):=\frac{|\mathrm{Irr}_i(G_m(q))|}{|\mathrm{Irr}(G_m(q))|},$$

where $\operatorname{Irr}_i(G_m(q)) = \{\chi \in \operatorname{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}.$

Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists an we have:

•
$$f(m) = 1 - 1/m$$
 if $G_m(q) = SL_m(q)$,
• $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m m!}$, if $G_m(q) = Sp_{2m}(q)$ [Lübeck].

In each case, $\lim_{m\to\infty} f(m) = 1$.

Analogous results hold for the other classical groups.

Example: $SL_2(q)$, q even

	<i>C</i> ₁	<i>C</i> ₂	$C_3(a)$	$C_4(b)$
χ1	1	1	1	1
χ_{2}	q	0	1	—1
$\chi_3(m)$	<i>q</i> + 1	1	$\zeta^{\rm am}+\zeta^{-\rm am}$	0
$\chi_4(n)$	q – 1	-1	$\frac{1}{\zeta^{am}+\zeta^{-am}}$	$-\xi^{bn}-\xi^{-bn}$

EXAMPLE: $SL_2(q)$, q even

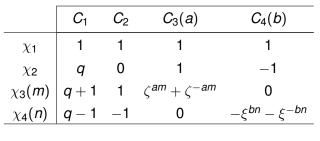
		<i>C</i> ₂		$C_4(b)$
χ1	1	1	$1 \\ 1 \\ \zeta^{am} + \zeta^{-am} \\ 0$	1
χ2	q	0	1	-1
$\chi_3(m)$	<i>q</i> + 1	1	$\zeta^{\rm am}+\zeta^{-\rm am}$	0
χ ₄ (<i>n</i>)	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$
$a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$				

EXAMPLE: $SL_2(q)$, q even

	<i>C</i> ₁	<i>C</i> ₂	- ()	$C_4(b)$
χ1	1	1	1 1 $\zeta^{am} + \zeta^{-am}$ 0	1
χ_{2}	q	0	1	—1
$\chi_3(m)$	<i>q</i> + 1	1	$\zeta^{\rm am}+\zeta^{-\rm am}$	0
$\chi_4(n)$	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$
$a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$				

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

EXAMPLE: $\mathsf{SL}_2(q), q$ even



 $a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

Number of irreducible characters: q + 1.

EXAMPLE: $SL_2(q)$, q even

	<i>C</i> ₁	<i>C</i> ₂	$C_3(a)$	$C_4(b)$
χ1	1	1	1	1
χ_{2}	q	0	$1 \ \zeta^{am} + \zeta^{-am} \ 0$	-1
$\chi_3(m)$	<i>q</i> + 1	1	$\zeta^{\rm am}+\zeta^{-\rm am}$	0
χ ₄ (<i>n</i>)	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$

 $a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

Number of irreducible characters: q + 1.

Number of imprimitive irreducible characters: q/2 - 1.

HARISH-CHANDRA INDUCTION

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group.

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group.

HARISH-CHANDRA INDUCTION

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\operatorname{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series

HARISH-CHANDRA INDUCTION

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

THEOREM (H.-HUSEN-MAGAARD, 2013)

If $C_{\mathbf{G}^*}(s)$ is contained in a proper split Levi subgroup of \mathbf{G}^* , every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

THEOREM (H.-HUSEN-MAGAARD, 2013)

If $C_{\mathbf{G}^*}(s)$ is contained in a proper split Levi subgroup of \mathbf{G}^* , every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced. Suppose that $C_{\mathbf{G}^*}(s)$ is connected and **not** contained in a proper split Levi subgroup of \mathbf{G}^* .

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

THEOREM (H.-HUSEN-MAGAARD, 2013)

If $C_{\mathbf{G}^*}(s)$ is contained in a proper split Levi subgroup of \mathbf{G}^* , every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

Suppose that $C_{\mathbf{G}^*}(s)$ is connected and **not** contained in a proper split Levi subgroup of \mathbf{G}^* .

Then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

THEOREM (H.-HUSEN-MAGAARD, 2013)

If $C_{\mathbf{G}^*}(s)$ is contained in a proper split Levi subgroup of \mathbf{G}^* , every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

Suppose that $C_{\mathbf{G}^*}(s)$ is connected and **not** contained in a proper split Levi subgroup of \mathbf{G}^* .

Then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

In particular, the elements of $\mathcal{E}(G, [1])$ are HC-primitive.

Let $G = \operatorname{GL}_n(q)$. Then $\mathbf{G} = \mathbf{G}^*$.

Let $G = GL_n(q)$. Then $\mathbf{G} = \mathbf{G}^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{\mathbf{G}^*}(s)$ is connected.

Let $G = GL_n(q)$. Then $\mathbf{G} = \mathbf{G}^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{\mathbf{G}^*}(s)$ is connected.

THEOREM (H.-HUSEN-MAGAARD, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

Let $G = GL_n(q)$. Then $\mathbf{G} = \mathbf{G}^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{\mathbf{G}^*}(s)$ is connected.

THEOREM (H.-HUSEN-MAGAARD, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

Otherwise, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

THE CLASSIFICATION FOR $GL_n(q)$

Let $G = GL_n(q)$. Then $\mathbf{G} = \mathbf{G}^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{\mathbf{G}^*}(s)$ is connected.

THEOREM (H.-HUSEN-MAGAARD, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

Otherwise, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

Notice that the minimal polynomial of *s* is irreducible if and only if $C_G(s) \cong \operatorname{GL}_m(q^d)$ for integers *m*, *d* with md = n.

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE FOR THE DESCENT FROM $GL_n(q)$ to $SL_n(q)$

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let **1** denote the trivial character and $\mathbf{1}^-$ the unique linear character of $GL_2(q)$ of order 2.

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let **1** denote the trivial character and $\mathbf{1}^-$ the unique linear character of $GL_2(q)$ of order 2.

Then $\chi := \text{Ind}_{P}^{G}(\text{Infl}_{L}^{P}(\mathbf{1} \otimes \mathbf{1}^{-}))$ is irreducible, hence imprimitive.

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let **1** denote the trivial character and $\mathbf{1}^-$ the unique linear character of $GL_2(q)$ of order 2.

Then $\chi := \operatorname{Ind}_{P}^{G}(\operatorname{Infl}_{L}^{P}(\mathbf{1} \otimes \mathbf{1}^{-}))$ is irreducible, hence imprimitive. However, $\operatorname{Res}_{\operatorname{SL}_{4}(q)}^{G}(\chi) = \psi_{1} + \psi_{2}$, with irreducible, **primitive** characters ψ_{1}, ψ_{2} .

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let **1** denote the trivial character and $\mathbf{1}^-$ the unique linear character of $GL_2(q)$ of order 2.

Then $\chi := \operatorname{Ind}_{P}^{G}(\operatorname{Infl}_{L}^{P}(\mathbf{1} \otimes \mathbf{1}^{-}))$ is irreducible, hence imprimitive. However, $\operatorname{Res}_{\operatorname{SL}_{4}(q)}^{G}(\chi) = \psi_{1} + \psi_{2}$, with irreducible, **primitive** characters ψ_{1}, ψ_{2} .

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let $\chi \in Irr(GL_n(q))$ be Harish-Chandra primitive.

Then $\operatorname{Res}_{\operatorname{SL}_n(q)}^{\operatorname{GL}_n(q)}(\chi)$ is irreducible and Harish-Chandra primitive.

Let $G = SL_n(q)$, $s \in G^* = PGL_n(q)$ semisimple.

Let $G = SL_n(q)$, $s \in G^* = PGL_n(q)$ semisimple.

There is a bijection

 $\operatorname{Irr}(W(s)^F) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_\eta,$

where W(s) is the "Weyl group" of $C_{\mathbf{G}^*}(s)$ (Bonnafé).

Let $G = SL_n(q)$, $s \in G^* = PGL_n(q)$ semisimple.

There is a bijection

$$\operatorname{Irr}(W(s)^{\mathsf{F}}) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_{\eta},$$

where W(s) is the "Weyl group" of $C_{\mathbf{G}^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive **and** imprimitive characters.

Let $G = SL_n(q)$, $s \in G^* = PGL_n(q)$ semisimple.

There is a bijection

$$\operatorname{Irr}(W(s)^{\mathsf{F}}) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_{\eta},$$

where W(s) is the "Weyl group" of $C_{\mathbf{G}^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive **and** imprimitive characters.

Then $W(s)^F = S: \langle \gamma \rangle$, with $S = S_m \times \cdots \times S_m$, and γ permuting the *e* factors S_m of *S* transitively, and *em* | *n*.

Let $G = SL_n(q)$, $s \in G^* = PGL_n(q)$ semisimple.

There is a bijection

$$\operatorname{Irr}(W(s)^{\mathsf{F}}) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_{\eta},$$

where W(s) is the "Weyl group" of $C_{\mathbf{G}^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive **and** imprimitive characters.

Then $W(s)^F = S: \langle \gamma \rangle$, with $S = S_m \times \cdots \times S_m$, and γ permuting the *e* factors S_m of *S* transitively, and *em* | *n*.

THEOREM (H.-MAGAARD)

 $\chi_{\eta} \in \mathcal{E}(G, [s])$ is primitive, if and only if $\operatorname{Res}_{S}^{S:\langle\gamma\rangle}(\eta)$ is irreducible.

Thank you for listening!