Sharply 2-transitive linear groups.

Dennis Gulko (Joint with Yair Glasner)

Department of Mathematics Ben-Gurion University of the Negev

Permutation groups, BIRS, July 2013.

Outline

1 Basic facts and examples

2 Some history behind the problem

3 Statement of the main theorem

4 Proof

Basic facts about sharply 2-transitive groups

■ A sharply 2-transitive group is a permutation group $\Gamma \leq \operatorname{Sym}(\Omega)$ which acts transitively and freely on pairs of distinct points.

- Sharply 2-transitive groups contain a lot of involutions (elements of order 2), and all are conjugate.
- If an involution stabilizes a point, then the conjugation action of Γ on $\operatorname{Inv}(\Gamma)$ is isomorphic to it's action on Ω.
\square This gives rise to the definition of the permutation characteristic of the group, $p-\operatorname{char}(\Gamma)$:

$$
p-\operatorname{char}(\Gamma)=\left\{\begin{array}{lll}
2 & \Gamma_{x} \cap \operatorname{lnv}(\Gamma)=\emptyset \\
p & \Gamma_{x} \cap \operatorname{lnv}(\Gamma) \neq \emptyset, & \quad \operatorname{Ord}(\sigma \tau)=p \\
0 & \Gamma_{x} \cap \operatorname{lnv}(\Gamma) \neq \emptyset, & \operatorname{Ord}(\sigma \tau)=\infty
\end{array}\right.
$$

The main example

Example

Given a field N, the affine action $x \mapsto a x+b$ is sharply 2-transitive.

An easy way to see this is using geometric interpretation (at least for $N=\mathbb{R})$. Taking (x, y) to (z, w) is equivalent to finding the unique line between (x, z) and (y, w).
Looking at this example a little closer, one can see that the same will work for a division ring or even a near-field.

Some history behind the problem

■ A long standing conjecture about sharply 2-transitive groups is that every such group is the affine group of a near-field, i.e. $N^{\times} \ltimes N$
■ In the finite case, it was completely settled by H.Zassenhaus: in his two 1936 papers he first proved this conjecture for finite groups, and later classified all finite near-fields.
■ In the infinite case, much less has been done. In 1952, J.Tits proved the conjecture for locally compact connected groups. In this case all near-fields are of finite rank over \mathbb{R}.
■ Moreover, J.Tits showed that for an infinite sharply k-transitive group, $k \leq 3$.

Statement of the main theorem

Theorem

Let F be a field and let $\Gamma \leq \mathrm{GL}_{n}(F)$ be a sharply 2-transitive group. Assume that char $(F) \neq 2$ and that $p-\operatorname{char}(\Gamma) \neq 2$. Then $\Gamma \cong N^{\times} \ltimes N$, where N is a near-field.

Proof strategy

> Theorem (Dixon and Mortimer, Permutation Groups, Theorem 7.6C)

> Let $|\Omega| \geq 2$ and let $\Gamma \leq \operatorname{Sym}(\Omega)$ be a sharply 2 -transitive group which possesses a fixed-point free normal abelian subgroup K. Then there exists a near-field N such that Γ is permutation isomorphic to $N^{\times} \ltimes N$.

- Using this theorem, it suffices to prove the existence of a fixed-point free normal abelian subgroup.

Passing to algebraic groups

$■$ Let G, H be the Zariski closures of $\Gamma, \Delta=\Gamma_{\omega}$ respectively, in $\mathrm{GL}_{n}(k)$ where $k=\bar{F}$.
\square We know that $\Gamma \curvearrowright \Gamma / \Delta$ sharply 2-transitively. What can we say about $G \curvearrowright G / H$? for that, we need to introduce the algebraic analogue of transitivity.

Passing to algebraic groups

Definition (Generic transitivity)

Let $\rho: G \curvearrowright X$ be an algebraic group acting algebraically on an algebraic variety $X . \rho$ is called generically n-transitive if the action ρ^{n} of G on X^{n} admits an open dense orbit.

Idea: First, show that $G \curvearrowright G / H$ is generically 2-transitive. If under our assumptions, there is no normal abelian subgroup then $G \curvearrowright G / H$ can not be generically 2-transitive.

Passing to algebraic groups

Theorem (Jonathan Brundan)

Let G be a connected reductive group and $H<G$ a proper reductive subgroup. Then, there is no dense (H, H)-double coset in G.

Theorem (Domingo Luna)

Let $H<G \leq \operatorname{GL}_{n}(F)$, with char $(F)=0$, be connected reductive groups acting on an algebraic variety X. Then the generic H orbit is closed.

Corollary

If G, H are both reductive then $G \curvearrowright G / H$ can not be generically 2-transitive.

Proof of the corollary

■ Assume that H admits an open orbit in it's action on G / H then at least one of the H^{0} orbits is open as well, since any H-orbit is a finite union of H^{0}-orbits. So we have $\bar{O}=H^{0} g H$ open.
$\square \bar{O}$ is connected and so is contained in the connected component $\bar{X}=G^{0} g H$.
■ The natural map $\varphi: G / H^{0} \rightarrow G / H$ restricted to $X=G^{0} g H^{0}$ is a covering map (since $\left[H: H^{0}\right]$ is finite), so $O=\varphi^{-1}(\bar{O}) \cap X=H^{0} g H^{0}$ is open (and hence dense) in X. This contradicts Brundan's theorem.
■ If char $(F)=0$, we can use Luna's theorem instead: the generic H^{0}-orbit in G^{0} / H^{0} is closed. But we have just seen that there exists an open orbit. Hence the action $H^{0} \curvearrowright G^{0} / H^{0}$ has to be transitive.

Proving splitting

Theorem

Let $\Gamma<\mathrm{GL}_{n}(F)$ be a sharply 2-transitive group. Assume that $\operatorname{char}(F) \neq 2$ and that $p-\operatorname{char}(\Gamma) \neq 2$. Then there exist a non-trivial abelian normal subgroup $N \triangleleft \Gamma$.

Proposition (1)

Let Γ be as in the assumptions of the theorem. If the conclusion of the theorem fails, then there exists an algebraically closed field k and a faithful representation $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(k)$ such that $\mathbb{G}=\overline{\rho(\Gamma)}^{Z}$ is reductive.

Proof of Proposition 1

■ Take a faithful representation $\rho_{0}: \Gamma \rightarrow \mathrm{GL}_{n}(k)$ for $k=\bar{F}$.
■ Let $\mathbb{G}_{0}=\overline{\rho(\Gamma)}^{Z}$. Let \mathbb{G}_{u} be the unipotent radical of \mathbb{G}_{0} and $N=\rho(\Gamma) \cap \mathbb{G}_{u}$.
■ Since N is nilpotent, it's penultimate element of the lower central series is a characteristic subgroup of N and hence is a normal abelian subgroup of $\rho(\Gamma)$ - a contradiction.

- So we can divide by \mathbb{G}_{u} and obtain the required representation ρ.

Generic 2-transitivity

Proposition (2)

Let $\Gamma, \Delta=\Gamma_{\omega}$ be as before and denote $G=\bar{\Gamma}^{Z}, H=\bar{\Delta}^{Z}$. Let $\sigma \in \Delta$ be the unique involution. Then σ is semi-simple, $H \leq C_{G}(\sigma)$ and G acts generically 2-transitively on G / H.
\square Fix the unique involution $\sigma \in \Delta$. Since Δ centralizes σ, so does H.
■ Take any $\gamma \in \Gamma$ not in Δ. Δ acts transitively on $\Gamma / \Delta \backslash\{\Delta\}$, so $\Gamma / \Delta=\Delta \sqcup \Delta \gamma \Delta$.
■ the set $H \sqcup H \gamma H \subseteq G / H$ is dense, since it contains the dense set $\Gamma H=H \sqcup \Delta \gamma H$ and locally closed, hence open.
■ It follows that the orbit of $(H, \gamma H)$ is open in $G / H \times G / H$:

Generic 2-transitivity

■ Take the natural map $\pi: G / H \times G / H \rightarrow G / H$.
■ The intersection $G(H, \gamma H) \cap \pi^{-1}(H)$ is open and dense in the fiber.

- Since the action is transitive, this is true for any fiber.

■ Hence the G-orbit $G(H, \gamma H)$ is dense. It is also locally closed, as an orbit of an algebraic action - and thus open.

Existence of a normal abelian subgroup

■ By the previous results we see that if there is no such subgroup, then $G, C=C_{G}(\sigma)$ are reductive and $G \curvearrowright G / H$ is generically 2 -transitive.
$■$ Since $H \leq C$ and $G \curvearrowright G / H$ is generically 2-transitive, then so is $G \curvearrowright G / C$.

- But G, C are both reductive, which contradicts the Corollary.

Concluding the proof

■ Let $N \triangleleft \Gamma$ be the normal abelian subgroup we just obtained.
■ For any $\omega \in \Omega,\left[N_{\omega}, N\right]=\langle e\rangle$ and hence $N_{\omega}=\langle e\rangle$.
■ So N is a fixed-point free normal abelian subgroup.

Thank You

Thank You!

