

Sharply 2-transitive linear groups.

Basics	History	Statement	Proof
Outline			

- 2 Some history behind the problem
- 3 Statement of the main theorem

4 Proof

Der Sha

	4 L F	< <u>-</u> P	1.1	= * *	1 = 1	-	*)4(*
inis Gulko							BGU
rply 2-transitive linear groups.							2/18

Denni: Sharp

Basic facts about sharply 2-transitive groups

- A sharply 2-transitive group is a permutation group
 Γ ≤ Sym(Ω) which acts transitively and freely on pairs of distinct points.
- Sharply 2-transitive groups contain a lot of involutions (elements of order 2), and all are conjugate.
- If an involution stabilizes a point, then the conjugation action of Γ on Inv(Γ) is isomorphic to it's action on Ω.
- This gives rise to the definition of the permutation characteristic of the group, *p*-char(Γ):

$$p\operatorname{-char}(\Gamma) = \begin{cases} 2 & \Gamma_x \cap \operatorname{Inv}(\Gamma) = \emptyset \\ p & \Gamma_x \cap \operatorname{Inv}(\Gamma) \neq \emptyset, \quad \operatorname{Ord}(\sigma\tau) = p \\ 0 & \Gamma_x \cap \operatorname{Inv}(\Gamma) \neq \emptyset, \quad \operatorname{Ord}(\sigma\tau) = \infty \end{cases}$$

		_	
s Gulko			BGU
y 2-transitive linear groups.			3/18

The main example

Example

Given a field *N*, the affine action $x \mapsto ax + b$ is sharply 2-transitive.

An easy way to see this is using geometric interpretation (at least for $N = \mathbb{R}$). Taking (x, y) to (z, w) is equivalent to finding the unique line between (x, z) and (y, w). Looking at this example a little closer, one can see that the

same will work for a division ring or even a near-field.

Dennis Gulko			BGU
Sharply 2-transitive linear groups.			4/18

Some history behind the problem

- A long standing conjecture about sharply 2-transitive groups is that every such group is the affine group of a near-field, i.e. N[×] × N
- In the finite case, it was completely settled by H.Zassenhaus: in his two 1936 papers he first proved this conjecture for finite groups, and later classified all finite near-fields.
- In the infinite case, much less has been done. In 1952, J.Tits proved the conjecture for locally compact connected groups. In this case all near-fields are of finite rank over R.
- Moreover, J.Tits showed that for an infinite sharply k-transitive group, $k \leq 3$.

Statement

・ロト・日本・モー・モー ショー ショー

Statement of the main theorem

Theorem

Let *F* be a field and let $\Gamma \leq GL_n(F)$ be a sharply 2-transitive group. Assume that $char(F) \neq 2$ and that p-char(Γ) $\neq 2$. Then $\Gamma \cong N^{\times} \ltimes N$, where *N* is a near-field.

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	6/18

イロト イロト イモト イモト・モ

Proof strategy

Theorem (Dixon and Mortimer, Permutation Groups, Theorem 7.6C)

Let $|\Omega| \ge 2$ and let $\Gamma \le \text{Sym}(\Omega)$ be a sharply 2-transitive group which possesses a fixed-point free normal abelian subgroup K. Then there exists a near-field N such that Γ is permutation isomorphic to $N^{\times} \ltimes N$.

Using this theorem, it suffices to prove the existence of a fixed-point free normal abelian subgroup.

	-	2.40
Dennis Gulko		BGU
Sharply 2-transitive linear groups.		7/18

Passing to algebraic groups

- Let G, H be the Zariski closures of $\Gamma, \Delta = \Gamma_{\omega}$ respectively, in $GL_n(k)$ where $k = \overline{F}$.
- We know that $\Gamma \curvearrowright \Gamma/\Delta$ sharply 2-transitively. What can we say about $G \curvearrowright G/H$? for that, we need to introduce the algebraic analogue of transitivity.

イロト イロト イモト イモト ニモ

Passing to algebraic groups

Definition (Generic transitivity)

Let $\rho : G \curvearrowright X$ be an algebraic group acting algebraically on an algebraic variety *X*. ρ is called generically *n*-transitive if the action ρ^n of *G* on X^n admits an open dense orbit.

Idea: First, show that $G \curvearrowright G/H$ is generically 2-transitive. If under our assumptions, there is no normal abelian subgroup then $G \curvearrowright G/H$ can not be generically 2-transitive.

	-	1040
Dennis Gulko		BGU
Sharply 2-transitive linear groups.		9/18

Passing to algebraic groups

Theorem (Jonathan Brundan)

Let G be a connected reductive group and H < G a proper reductive subgroup. Then, there is no dense (H, H)-double coset in G.

Theorem (Domingo Luna)

Let $H < G \le GL_n(F)$, with char(F) = 0, be connected reductive groups acting on an algebraic variety X. Then the generic H orbit is closed.

Corollary

If G, H are both reductive then $G \curvearrowright G/H$ can not be generically 2-transitive.

590

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	10/18

Proof of the corollary

- Assume that *H* admits an open orbit in it's action on G/Hthen at least one of the H^0 orbits is open as well, since any *H*-orbit is a finite union of H^0 -orbits. So we have $\overline{O} = H^0 g H$ open.
- \overline{O} is connected and so is contained in the connected component $\overline{X} = G^0 g H$.
- The natural map $\varphi : G/H^0 \to G/H$ restricted to $X = G^0 g H^0$ is a covering map (since $[H : H^0]$ is finite), so $O = \varphi^{-1}(\overline{O}) \cap X = H^0 g H^0$ is open (and hence dense) in *X*. This contradicts Brundan's theorem.
- If char(F) = 0, we can use Luna's theorem instead: the generic H⁰-orbit in G⁰/H⁰ is closed. But we have just seen that there exists an open orbit. Hence the action H⁰ ∼ G⁰/H⁰ has to be transitive.

Proving splitting

Theorem

Let $\Gamma < GL_n(F)$ be a sharply 2-transitive group. Assume that $char(F) \neq 2$ and that p-char $(\Gamma) \neq 2$. Then there exist a non-trivial abelian normal subgroup $N \lhd \Gamma$.

Proposition (1)

Let Γ be as in the assumptions of the theorem. If the conclusion of the theorem fails, then there exists an algebraically closed field k and a faithful representation $\rho : \Gamma \to \operatorname{GL}_n(k)$ such that $\mathbb{G} = \overline{\rho(\Gamma)}^Z$ is reductive.

	-	*)4(*
Dennis Gulko		BGU
Sharply 2-transitive linear groups.		12/18

Proof of Proposition 1

- Take a faithful representation $\rho_0 : \Gamma \to \operatorname{GL}_n(k)$ for $k = \overline{F}$.
- Let $\mathbb{G}_0 = \overline{\rho(\Gamma)}^Z$. Let \mathbb{G}_u be the unipotent radical of \mathbb{G}_0 and $N = \rho(\Gamma) \cap \mathbb{G}_u$.
- Since N is nilpotent, it's penultimate element of the lower central series is a characteristic subgroup of N and hence is a normal abelian subgroup of ρ(Γ) a contradiction.
- So we can divide by \mathbb{G}_u and obtain the required representation ρ .

	< □ ▶	< 🗗 🕨	1 2 1 1	₹ 👌	-2	*) ((*
Dennis Gulko						BGU
Sharply 2-transitive linear groups.						13/18

Generic 2-transitivity

Proposition (2)

Let $\Gamma, \Delta = \Gamma_{\omega}$ be as before and denote $G = \overline{\Gamma}^{Z}, H = \overline{\Delta}^{Z}$. Let $\sigma \in \Delta$ be the unique involution. Then σ is semi-simple, $H \leq C_{G}(\sigma)$ and G acts generically 2-transitively on G/H.

- Fix the unique involution *σ* ∈ Δ. Since Δ centralizes *σ*, so does *H*.
- Take any γ ∈ Γ not in Δ. Δ acts transitively on Γ/Δ \ {Δ}, so Γ/Δ = Δ ⊔ ΔγΔ.
- the set *H* ⊔ *H*γ*H* ⊆ *G*/*H* is dense, since it contains the dense set Γ*H* = *H* ⊔ Δγ*H* and locally closed, hence open.
- It follows that the orbit of $(H, \gamma H)$ is open in $G/H \times G/H$:

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	14/18

De

Generic 2-transitivity

- Take the natural map $\pi : G/H \times G/H \rightarrow G/H$.
- The intersection $G(H, \gamma H) \cap \pi^{-1}(H)$ is open and dense in the fiber.
- Since the action is transitive, this is true for any fiber.
- Hence the G-orbit G(H, γH) is dense. It is also locally closed, as an orbit of an algebraic action and thus open.

	-	2.15
nnis Gulko	E	3GU
arply 2-transitive linear groups.	1	5/18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Existence of a normal abelian subgroup

- By the previous results we see that if there is no such subgroup, then G, C = C_G(σ) are reductive and G ∩ G/H is generically 2-transitive.
- Since $H \le C$ and $G \frown G/H$ is generically 2-transitive, then so is $G \frown G/C$.
- But G, C are both reductive, which contradicts the Corollary.

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	16/18

Statement

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Concluding the proof

- Let $N \lhd \Gamma$ be the normal abelian subgroup we just obtained.
- For any $\omega \in \Omega$, $[N_{\omega}, N] = \langle e \rangle$ and hence $N_{\omega} = \langle e \rangle$.
- So *N* is a fixed-point free normal abelian subgroup.

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	17/18

Basics	History	Statement	Proof
Thank You			

Thank You!

Dennis Gulko	BGU
Sharply 2-transitive linear groups.	18/18