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Groups will be finite.

In this talk we are interested in permutation groups, that is,
subgroups of the symmetric group Sym(2).

Most of our work applies to a large class of permutation groups
(transitive permutation groups G' admitting a system of

imprimitivity B with G acting primitively and faithfully on B):
for simplicity we restrict to the case of G itself being primitive.



The order |g| of a permutation g € Sym(£2) is the least common
multiple of the cycle lengths of g (when g is written as the
product of disjoint cycles).

The permutation g has a reqular cycle (or orbit) if g has a cycle
of length equal to |g|.

The element g = (1,2, 3)(5,6,7,8)(7,10) has no regular orbit.
The element g = (1,2)(3,4,5)(6,7,8,9,10,11) has a regular
orbit: the point 6 lies in a cycle of length |g| = 6.



Scope of this talk

In this talk we are interested in classifying the finite primitive
groups G such that, for each g € G, the permutation g has a
regular cycle.

In particular

lg| = length of a longest cycle of g.



Examples: Alt(n) or Sym(n) in its natural action on the
k-subsets of {1,...,n}.

» [k = 1] The permutation g = (1,2)(3,4,5), in its natural

action on {1,...,n}, has no regular cycles.
» [k = 2] The permutation g = (1,2)(3,4,5)(6,7,8,9,10), in
its natural action on the 2-subsets of {1,...,n}, has no

regular cycles.

» [Any k] Let nj be the sum of the first & prime numbers.
Every element of Sym(n) in its action on k-subsets of
{1,...,n} has a regular cycle if and only if n < ngy1.

As k tends to infinity, ny is asymptotic to k? log(k)/2 (the rate
of convergence is quite slow).



More examples: Let W = H wr Sym(¢) be endowed of its
natural primitive product action, with H = Alt(m) or

H = Sym(m) acting on the k-subsets of {1,...,m}. Then, for
m sufficiently large compared to k, the group W contains
elements with no regular cycles.



Theorem

Let G be a finite primitive group on €0 and let g € G. Then
either g has a regular cycle, or G preserves a product structure
on Q = AL with A isomorphic to the set of k-subsets of a set of
size m and Alt(m)* <t G < Sym(m) wrSym().

(Here we allow ¢ = 1.)

The proof is a combination of the work of two teams:

» Michael Giudici, Cheryl Praeger, P. S. (reducing the
problem to the case of G being an almost simple group),
and

» Simon Guest and P. S. (settling the case of G being an
almost simple group).



The inspiration to this work comes from a discussion during a
coffee break with Alex Zalesski. Alex is interested in

Question

Let G be a permutation group on §2, let H be a subgroup of G
and let K be a field. Under what conditions does the
permutation KG-module KS) restricted to H contain a regular
K H-module (that is, KQ contains a K H-submodule isomorphic
to the group algebra KH ).

[Siemons-Zalesski] For H cyclic, K H is a submodule of K€ if
and only if H has a regular orbit in its action on {2.



Our theorem was known

» for some families of 2-transitive groups (two papers of
Siemons and Zalesski), and when

» G is a simple classical group (in the very hard an technical
work of Emmett and Zalesski).

In the second case the hypothesis of G being a simple classical
group is fundamental (the proof is by induction on the size of
the Jordan blocks of ¢). In particular, it does not apply to the
general case of almost simple classical groups.

The proof does carry over to the case of G being contained in
the group of inner-diagonal automorphisms of a simple classical

group.



Two very basic lemmas

Lemma

Let G be a permutation group on 2. Assume that for every
g € G, with |g| square-free, g has a regular cycle. Then, for
every g € G, g has a reqular cycle.



Let G be a finite permutation group on €2 and let x be in G.
We let

Fi
FiXQ(x) = {w € Q | w® = w} and fprﬂ(x> = |D|(QQ($)’

Lemma
Let G be a transitive permutation group on ) and let g be in G.
The element g has a regqular cycle if and only if

pllgl
pprime

In particular, if

> fpra(g?) <1,

pllgl
p prime

then g has a reqular cycle.



Example: exceptional groups of Lie type.

Proposition
Let G be a finite primitive group with socle an exceptional group
of Lie type. If g € G, then g has a regular cycle.

Sketch.

Case-by-case analysis on the Lie type of G.

Step 1: obtain an upper bound P(G) on the maximal number
of prime divisors of |g| (for g € G\ {1}). This is easily achieved
by controlling the structure of the maximal tori of G.

Step 2: Lawther, Liebeck and Seitz have obtained a very
explicit upper bound F(G) for max{fprq(z) | z # 1}.

Step 3: Check when P(G)F(G) < 1. For the (very few) cases
where P(G)F(G) > 1 fire up magma. O



For this naive strategy to work we need a very sharp upper
bound on fprg(x) that does not depend on |z| (for x # 1) and a
small number of distinct prime divisors of |z| (for € G). This
works very rarely.



Reduction to the almost simple case (Michael Giudici,
Cheryl Praeger, P. S.)

According to the O’Nan-Scott theorem, a primitive group G
either

» preserves a cartesian decomposition of 2; or
» (G is of affine type; or

» (G is of diagonal type; or

> ( is almost simple.

The general strategy is to deal (in turn) with each of these cases
and arguing by induction.



Cartesian product decomposition

Theorem
Let H < Sym(A) such that each h € H has a regular cycle.
Then each g € H wrSym(¢) acting on A has a reqular cycle.

The proof is combinatorial and (in part) constructive. Given
g=(h1,...,hg)o, with hy,..., hy € H and o € Sym(¢), our
proof exhibits “excplicitly” an element w = (d1,...,d;) of A on
which g induces a regular cycle. Here I am using the quotation
marks because the construction depends on exhibiting
excplicitly an element §; of A on which h; induces a regular
cycle. The definition of the element w depends on the conjugacy
class of g.



Affine groups

Here G is a subgroup of the affine general linear group AGL4(q).

Lemma
Let g € GLg(q). Write V = IFZ and

Sy = {v € V | vliesinaregular cycleof g}.

Then Sy spans the vector space V.

Corollary
Let g € AGL4(q). Then g has a regular cycle.



Diagonal groups

Theorem
Let G be a primitive group of diagonal type and let g € G. Then
g has a regular cycle.

Here the proof is very technical and at a critical juncture we
need a theorem of Potter: an automorphism of a non-abelian
simple group cannot invert more than 4/15 of its group
elements (the equality is met only for Alt(5)).

Corollary

Let T be a non-abelian simple group and let o be an
automorphism of T'. Then o induces at least one reqular orbit
i 1ts action on T.



Almost simple groups G (Simon Guest, P. S.)

The proof is (again) a case-by-case analysis depending on the
non-abelian simple socle of G.

The socle of G is a sporadic simple group: the proof uses
detailed description of the maximal subgroups of G and the
following observation:

Lemma

Let G be a transitive group on Q and let g be in G\ {1}.
Assume that the derived subgroup of G is transitive. Then,
there exists a non-principal constituent x of the permutation
character of G with

1+ [x(9)]



» The socle of G is an exceptional group of Lie type: done
(bounds on fixed-point-ratios and estimate on element
orders);

» The socle of G is an alternating group: the proof is a
combination of combinatorial methods (for the actions on
uniform partitions) and of bounds on fixed-point-ratios (for
the actions on the cosets of a primitive subgroup).



The socle of G is an almost simple classical group

Definition

Let G be an almost simple classical group with socle Gy and
with natural module V over a field of prime characteristic p. A
subgroup H of G is a subspace subgroup if for each maximal
subgroup M of Gy containing H N G one of the following holds:

(a) M is the stabilizer in Gy of a proper non-zero
subspace U of V', where U is totally singular, or
non-degenerate, or, if G is orthogonal and p = 2,
a non-singular 1-space (U can be any subspace if
Go = PSL(V));

(b) M = O3,(q) and (Go,p) = (SP2m(a)’s2)-



Theorem (Burness)

Let G be a finite almost simple classical group acting transitively
and faithfully on a set Q0 with point stabilizer G, < H, where H
is a mazimal non-subspace subgroup of G. Then

tpro(z) < a8z tn T,

for all elements x € G of prime order (where v and n depend on
the Lie type of G).

Using this theorem we reduced the general problem to subspace
actions.



A reduction for subspace actions

Lemma

Let G be a finite group with two permutation representations on
the finite sets Q1 and Qo. Fori € {1,2}, let ; be the
permutation character for the action of G on §;, and suppose
that m1 < ma. Given g € G, if g has a cycle of length |g| on Qq,
then g has a cycle of length |g| also on Qs.

In a nutshell: to prove our theorem we may consider only those
actions having a permutation character that is minimal.



Theorem (Frohart, Guralnick, Magaard)

Let G be an almost simple classical group with natural module
V' of dimension n. If G is linear, assume that G does not
contain a graph automorphism. Let k € {2,...,n — 1}, and let
K be the stabilizer of a nondegenerate or totally singular
k-subspace of V. Let P be the stabilizer of a singular 1-space of
V. Then 1% < 1[G( unless one of the following holds.

(1) K 1is the stabilizer of a maximal totally singular

subspace of V.

(2) K 1is the stabilizer of a 2-subspace containing no
singular points or the orthogonal complement of
such.



The rest of the proof uses results of Guralnick and Kantor: for
a classical group in one of its subspace actions, they bound
fprg(x) depending on the conjugacy class of x.



Corollary

Let G be a finite primitive group on ) and let g € G. Then
either |g| < |Q| , or G preserves a product structure on = A*
with A isomorphic to the set of k-subsets of a set of size m and
Alt(m)* <1 G < Sym(m) wrSym(£).

(Here we allow ¢ = 1.)



