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Groups will be finite.

In this talk we are interested in permutation groups, that is,
subgroups of the symmetric group Sym(Ω).

Most of our work applies to a large class of permutation groups
(transitive permutation groups G admitting a system of
imprimitivity B with G acting primitively and faithfully on B):
for simplicity we restrict to the case of G itself being primitive.



The order |g| of a permutation g ∈ Sym(Ω) is the least common
multiple of the cycle lengths of g (when g is written as the
product of disjoint cycles).

The permutation g has a regular cycle (or orbit) if g has a cycle
of length equal to |g|.

The element g = (1, 2, 3)(5, 6, 7, 8)(7, 10) has no regular orbit.
The element g = (1, 2)(3, 4, 5)(6, 7, 8, 9, 10, 11) has a regular
orbit: the point 6 lies in a cycle of length |g| = 6.



Scope of this talk

In this talk we are interested in classifying the finite primitive
groups G such that, for each g ∈ G, the permutation g has a
regular cycle.

In particular

|g| = length of a longest cycle of g.



Examples: Alt(n) or Sym(n) in its natural action on the
k-subsets of {1, . . . , n}.

I [k = 1] The permutation g = (1, 2)(3, 4, 5), in its natural
action on {1, . . . , n}, has no regular cycles.

I [k = 2] The permutation g = (1, 2)(3, 4, 5)(6, 7, 8, 9, 10), in
its natural action on the 2-subsets of {1, . . . , n}, has no
regular cycles.

I [Any k] Let nk be the sum of the first k prime numbers.
Every element of Sym(n) in its action on k-subsets of
{1, . . . , n} has a regular cycle if and only if n < nk+1.

As k tends to infinity, nk is asymptotic to k2 log(k)/2 (the rate
of convergence is quite slow).



More examples: Let W = H wr Sym(`) be endowed of its
natural primitive product action, with H = Alt(m) or
H = Sym(m) acting on the k-subsets of {1, . . . ,m}. Then, for
m sufficiently large compared to k, the group W contains
elements with no regular cycles.



Theorem
Let G be a finite primitive group on Ω and let g ∈ G. Then
either g has a regular cycle, or G preserves a product structure
on Ω = ∆` with ∆ isomorphic to the set of k-subsets of a set of
size m and Alt(m)` CG ≤ Sym(m) wr Sym(`).

(Here we allow ` = 1.)

The proof is a combination of the work of two teams:

I Michael Giudici, Cheryl Praeger, P. S. (reducing the
problem to the case of G being an almost simple group),
and

I Simon Guest and P. S. (settling the case of G being an
almost simple group).



The inspiration to this work comes from a discussion during a
coffee break with Alex Zalesski. Alex is interested in

Question

Let G be a permutation group on Ω, let H be a subgroup of G
and let K be a field. Under what conditions does the
permutation KG-module KΩ restricted to H contain a regular
KH-module (that is, KΩ contains a KH-submodule isomorphic
to the group algebra KH).

[Siemons-Zalesski] For H cyclic, KH is a submodule of KΩ if
and only if H has a regular orbit in its action on Ω.



Our theorem was known

I for some families of 2-transitive groups (two papers of
Siemons and Zalesski), and when

I G is a simple classical group (in the very hard an technical
work of Emmett and Zalesski).

In the second case the hypothesis of G being a simple classical
group is fundamental (the proof is by induction on the size of
the Jordan blocks of g). In particular, it does not apply to the
general case of almost simple classical groups.

The proof does carry over to the case of G being contained in
the group of inner-diagonal automorphisms of a simple classical
group.



Two very basic lemmas

Lemma
Let G be a permutation group on Ω. Assume that for every
g ∈ G, with |g| square-free, g has a regular cycle. Then, for
every g ∈ G, g has a regular cycle.



Let G be a finite permutation group on Ω and let x be in G.
We let

FixΩ(x) = {ω ∈ Ω | ωx = ω} and fprΩ(x) =
|FixΩ(x)|
|Ω|

.

Lemma
Let G be a transitive permutation group on Ω and let g be in G.
The element g has a regular cycle if and only if⋃

p | |g|
p prime

FixΩ(g|g|/p) ( Ω.

In particular, if ∑
p | |g|
p prime

fprΩ(g|g|/p) < 1,

then g has a regular cycle.



Example: exceptional groups of Lie type.

Proposition

Let G be a finite primitive group with socle an exceptional group
of Lie type. If g ∈ G, then g has a regular cycle.

Sketch.
Case-by-case analysis on the Lie type of G.
Step 1: obtain an upper bound P (G) on the maximal number
of prime divisors of |g| (for g ∈ G \ {1}). This is easily achieved
by controlling the structure of the maximal tori of G.
Step 2: Lawther, Liebeck and Seitz have obtained a very
explicit upper bound F (G) for max{fprΩ(x) | x 6= 1}.
Step 3: Check when P (G)F (G) < 1. For the (very few) cases
where P (G)F (G) ≥ 1 fire up magma.



For this naive strategy to work we need a very sharp upper
bound on fprΩ(x) that does not depend on |x| (for x 6= 1) and a
small number of distinct prime divisors of |x| (for x ∈ G). This
works very rarely.



Reduction to the almost simple case (Michael Giudici,
Cheryl Praeger, P. S.)

According to the O’Nan-Scott theorem, a primitive group G
either

I preserves a cartesian decomposition of Ω; or

I G is of affine type; or

I G is of diagonal type; or

I G is almost simple.

The general strategy is to deal (in turn) with each of these cases
and arguing by induction.



Cartesian product decomposition

Theorem
Let H ≤ Sym(∆) such that each h ∈ H has a regular cycle.
Then each g ∈ H wr Sym(`) acting on ∆` has a regular cycle.

The proof is combinatorial and (in part) constructive. Given
g = (h1, . . . , h`)σ, with h1, . . . , h` ∈ H and σ ∈ Sym(`), our
proof exhibits “excplicitly” an element ω = (δ1, . . . , δ`) of ∆` on
which g induces a regular cycle. Here I am using the quotation
marks because the construction depends on exhibiting
excplicitly an element δi of ∆ on which hi induces a regular
cycle. The definition of the element ω depends on the conjugacy
class of g.



Affine groups

Here G is a subgroup of the affine general linear group AGLd(q).

Lemma
Let g ∈ GLd(q). Write V = Fdq and

Sg = {v ∈ V | v lies in a regular cycle of g}.

Then Sg spans the vector space V .

Corollary

Let g ∈ AGLd(q). Then g has a regular cycle.



Diagonal groups

Theorem
Let G be a primitive group of diagonal type and let g ∈ G. Then
g has a regular cycle.

Here the proof is very technical and at a critical juncture we
need a theorem of Potter: an automorphism of a non-abelian
simple group cannot invert more than 4/15 of its group
elements (the equality is met only for Alt(5)).

Corollary

Let T be a non-abelian simple group and let σ be an
automorphism of T . Then σ induces at least one regular orbit
in its action on T .



Almost simple groups G (Simon Guest, P. S.)

The proof is (again) a case-by-case analysis depending on the
non-abelian simple socle of G.
The socle of G is a sporadic simple group: the proof uses
detailed description of the maximal subgroups of G and the
following observation:

Lemma
Let G be a transitive group on Ω and let g be in G \ {1}.
Assume that the derived subgroup of G is transitive. Then,
there exists a non-principal constituent χ of the permutation
character of G with

fprΩ(g) ≤ 1 + |χ(g)|
1 + χ(1)

.



I The socle of G is an exceptional group of Lie type: done
(bounds on fixed-point-ratios and estimate on element
orders);

I The socle of G is an alternating group: the proof is a
combination of combinatorial methods (for the actions on
uniform partitions) and of bounds on fixed-point-ratios (for
the actions on the cosets of a primitive subgroup).



The socle of G is an almost simple classical group

Definition
Let G be an almost simple classical group with socle G0 and
with natural module V over a field of prime characteristic p. A
subgroup H of G is a subspace subgroup if for each maximal
subgroup M of G0 containing H ∩G0 one of the following holds:

(a) M is the stabilizer in G0 of a proper non-zero
subspace U of V , where U is totally singular, or
non-degenerate, or, if G0 is orthogonal and p = 2,
a non-singular 1-space (U can be any subspace if
G0 = PSL(V ));

(b) M = O
±
2m(q) and (G0, p) = (Sp2m(q)′, 2).



Theorem (Burness)

Let G be a finite almost simple classical group acting transitively
and faithfully on a set Ω with point stabilizer Gω ≤ H, where H
is a maximal non-subspace subgroup of G. Then

fprΩ(x) < |xG|−
1
2

+ 1
n

+ι,

for all elements x ∈ G of prime order (where ι and n depend on
the Lie type of G).

Using this theorem we reduced the general problem to subspace
actions.



A reduction for subspace actions

Lemma
Let G be a finite group with two permutation representations on
the finite sets Ω1 and Ω2. For i ∈ {1, 2}, let πi be the
permutation character for the action of G on Ωi, and suppose
that π1 ≤ π2. Given g ∈ G, if g has a cycle of length |g| on Ω1,
then g has a cycle of length |g| also on Ω2.

In a nutshell: to prove our theorem we may consider only those
actions having a permutation character that is minimal.



Theorem (Frohart, Guralnick, Magaard)

Let G be an almost simple classical group with natural module
V of dimension n. If G is linear, assume that G does not
contain a graph automorphism. Let k ∈ {2, . . . , n− 1}, and let
K be the stabilizer of a nondegenerate or totally singular
k-subspace of V . Let P be the stabilizer of a singular 1-space of
V . Then 1GP ≤ 1GK unless one of the following holds.

(1) K is the stabilizer of a maximal totally singular
subspace of V .

(2) K is the stabilizer of a 2-subspace containing no
singular points or the orthogonal complement of
such.



The rest of the proof uses results of Guralnick and Kantor: for
a classical group in one of its subspace actions, they bound
fprΩ(x) depending on the conjugacy class of x.



Corollary

Let G be a finite primitive group on Ω and let g ∈ G. Then
either |g| ≤ |Ω| , or G preserves a product structure on Ω = ∆`

with ∆ isomorphic to the set of k-subsets of a set of size m and
Alt(m)` CG ≤ Sym(m) wr Sym(`).

(Here we allow ` = 1.)


