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The internal Zappa-Szép product of semigroups
These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose U, A C P are
subsemigroups with

1. UNA={e}, and
2. for all p € P there exists unique (u, a) € U x A such that p = va.
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The internal Zappa-Szép product of semigroups
These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose U, A C P are
subsemigroups with

1. UNA={e}, and
2. for all p € P there exists unique (u, a) € U x A such that p = va.

So for each a € A and u € U there are unique elements a- v € U and
al, € A determined by au = (a- u)al,.

The semigroup P is an (internal) Zappa-Szép product
UtA={(u,a):ue U,aec A} with

(u,a)(v,b) = (u(a-v),al,b).



The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps
tAxU—=U and |[:AxU—A
satisfying

5) ale, = a;

6) alu = (alu)lv;

7) ealu = ea; and
8) (ab)|, = alp.ub|y-



The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

tAxU—=U and |[:AxU—A

satisfying
(Bl) ea-u=uy; (B5) ale, = a;
(B2) (ab)-u=a-(b-u) (B6) aluv = (alu)lv;
(B3) a-ey = ey; (B7) ealu = ea; and
(B4) a-(uv) = (a-u)(alu-v);  (B8) (ab)|lu = alp.ublu-

Then we can form the (External) Zappa-Szép product semigroup
Ut A:={(u,a)): ue U,aec A} with multiplication given by

(u,a)(v,b) = (u(a-v),al,b).



Hypotheses on our semigroups

We will look at the C*-algebras of the Zappa-Szép product
semigroups in the sense of Li [10] with the following hypotheses
imposed on U and A:

(1) U and A are discrete left cancellative semigroups with identity;
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Hypotheses on our semigroups

We will look at the C*-algebras of the Zappa-Szép product
semigroups in the sense of Li [10] with the following hypotheses

imposed on U and A:

(1) U and A are discrete left cancellative semigroups with identity;

(2) U is right LCM, in the sense that every pair p,q € U with a right
common multiple r = pp’ = g4’ has a right least common
multiple;

(3) the set of principal right ideals {aA : a € A} of A is totally
ordered by inclusion; and

(4) the map u— a- uis bijective for each fixed a € A.

Lemma (BRRW, Submitted 13)
Under hypotheses (1)—(4), U > A is a discrete left cancellative right

LCM semigroup.



Example 1: Self-similar actions

Let X be a finite alphabet, and X* the set of finite words. Under
concatenation, X* is a semigroup with identity the empty word @. A
faithful action of a group G on X* is self-similar if for every g € G
and x € X, there exists unique g|x € G such that

g (xw) = (g - x)(glx - w).

The pair (G, X) is called a self-similar action. (See Nekrashevych's
book [12] for more on self-similar actions.)
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faithful action of a group G on X* is self-similar if for every g € G
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g (xw) = (g - x)(glx - w).

The pair (G, X) is called a self-similar action. (See Nekrashevych's
book [12] for more on self-similar actions.)

Example: Adding Machine
Consider (Z = (),4{0,1,...,n—1}) with

. i+1 ifi<n-1 e fi<n-1
vi= . and ] = .
0 ifi=n—-1 v ifi=n-1



Restrictions extend to finite words, and satisfy

glw =&l )lw, (gh)lv =glpvhly and (glv) ™' =g g

The action w — g - w and restriction w — g|,, maps satisfy
(B1)-(B8), and so we can form X* 1 G. Moreover, the semigroups
X* and G satisfy (1)—(4), so X* 1 G is a right LCM semigroup.
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glw =&l )lw, (gh)lv =glpvhly and (glv) ™' =g g

The action w — g - w and restriction w — g|,, maps satisfy
(B1)-(B8), and so we can form X* 1 G. Moreover, the semigroups
X* and G satisfy (1)—(4), so X* 1 G is a right LCM semigroup.

Zappa-Szép products of the form X* 1 G were first constructed by
Lawson in [9].

Example: Adding Machine

Note that since v|; € {e,7} C N, we can form X* > N, which is a
Zappa-Szép product associated to a “self-similar action of a
semigroup” .
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Laca-Raeburn [6] showed that (Q x Q% ,N x N*) is quasi-lattice
ordered.
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Example 2: N »x N*
Consider the semidirect product N x N*, where
(m,a)(n, b) = (m+ na, ab).

Laca-Raeburn [6] showed that (Q x Q% ,N x N*) is quasi-lattice
ordered.

Consider the following subsemigroups of N x N*:
U={(r,x):xeN,0<r<x} and A:={(m,1): meN}

We have UN A = {(0,1)} and each (m,a) € N x N* can be written
uniquely as a product in UA via

(m,a) = (m (mod a),a) (m = (m(mod a))’1>.

a

So we can form U > A with N x N* = U1 A, and U and A satisfy

(1)—(4).



Example 3: Z x Z~

Consider the ax + b-semigroup over Z, and the following
subsemigroups:

U={(r,x):x>1,0<r<x} and A=Zx{l, -1}

(Actually, A is a group.)



Example 3: Z x Z~

Consider the ax + b-semigroup over Z, and the following
subsemigroups:

U={(r,x):x>1,0<r<x} and A=Zx{l, -1}

(Actually, A is a group.)

We have UN A= {(0,1)} and each (m, a) € Z x Z* can be written
uniquely as a product in UA via

(m,a) = (m(mod |a|),\a\)(m_(m(m0d 121)) i).

El El




Example 3: Z x Z~
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So we can form U > A with Z x Z* = U g A, and U and A satisfy
(1)-(4).



Example 4: Baumslag-Solitar groups

For m, n > 1 define the Baumslag-Solitar group
BS(m,n) = (a,b: ab™ = b"a).

Spielberg [14] showed that (BS(m, n), BS(m, n)*) is quasi-lattice
ordered.



Example 4: Baumslag-Solitar groups

For m, n > 1 define the Baumslag-Solitar group
BS(m,n) = (a,b: ab™ = b"a).

Spielberg [14] showed that (BS(m, n), BS(m, n)*) is quasi-lattice
ordered.
Consider the subsemigroups of BS(m, n)*:

U = (e, a, ba, b2a,...,b”*13> ~F" and A= (e, b)=N.

n

We have UN A = {e}, and we can write each element of BS(m, n)™
uniquely as a product in UA (the normal form of an element). So we
can form U pa A with

e ifk<n-1

b-bka=pktimod Ny and bl = :
b™ ifk=n-—1.

Then BS(m,n)™ = Ut A, and U and A satisfy (1)—(4).



Example 5: Products of self-similar actions
Let X and Y be finite alphabets, G a group acting self-similarly on
both X and Y, and 6: Y x X — X x Y a bijection. For each
(y,x) € Y x X denote by Ox(y,x) € X and 0y(x,y) € Y the unique
elements satisfying

e(y,X) = (GX(YaX)’ ey(y,X)).
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Example 5: Products of self-similar actions

Let X and Y be finite alphabets, G a group acting self-similarly on
both X and Y, and 6: Y x X — X x Y a bijection. For each

(y,x) € Y x X denote by Ox(y,x) € X and 0y(x,y) € Y the unique
elements satisfying

9(}/, X) = (GX(ya X)’ GY(yax))‘

Then the semigroup generated by X U Y U {e} with relations

yx = 0x(y,x)0y(y,x) is the 2-graph F; studied in [3, 4].

Every element z € IF; admits a normal form z = vw where v € X*
and w € Y*. We have maps G xF, — F; and G xF, — G given by

(8,2)—g-z:=(g-v)(glv-w) and (g,2) — gl::=(g|v)|w-

Proposition (BRRW,13)

The maps given above induce a Zappa-Szép product semigroup
F; 1 G if and only if

Ox(y.x) = g “Ox(gy.glyx) and Oy(y,x) =gl . 0v(& . 8lyx)-



Example: Product of Adding Machines

Fix m, n > 2. Suppose Z acts as the adding machine on

X :={x0,x1,"* yXm—1} and Y :={yo,¥1, - Yn—1}. Thereis a
bijection from {0,1,...,n—1} x {0,1,...,m—1} to
{0,1,...,m—1} x{0,1,...,n— 1} sending (j, ) to the unique pair
(i',)") satisfying j + in = i" 4+ j’m. This induces a bijection

O:YxX—=XxY gienby 0(y;,x)=(x,yp)

and we can form the Zappa-Szép product IE‘(‘; > Z.



Example: Product of Adding Machines

Fix m, n > 2. Suppose Z acts as the adding machine on

X :={x0,x1,"* yXm—1} and Y :={yo,¥1, - Yn—1}. Thereis a
bijection from {0,1,...,n—1} x {0,1,...,m—1} to
{0,1,...,m—1} x{0,1,...,n— 1} sending (j, ) to the unique pair
(i',)") satisfying j + in = i" 4+ j’m. This induces a bijection

O:YxX—=XxY gienby 0(y;,x)=(x,yp)

and we can form the Zappa-Szép product IE‘(‘; > Z.

Note that F, is right LCM if and only if gcd(m, n) = 1.
Consider m = pa and n = pb. Then

p+0.pb=p+0.pa and p+a.pb=p+ b.pa,

So
YpXo = XpYo and  YpXm = Xp¥n,

and x, and y, have two incomparable right common multiples.



If gcd(m, n) =1, then

» F, and Z satisfy (1)-(4).



If gcd(m, n) =1, then
» F, and Z satisfy (1)-(4).
» x; — (i,m) and y; — (j,n) is an isomorphism of F, onto the

subsemigroup of N x N* generated by the elements
(0,m),...,(m—1,m),(0,n),...,(n—1,n).



If gcd(m, n) =1, then

» F, and Z satisfy (1)-(4).

» x; — (i,m) and y; — (j,n) is an isomorphism of F, onto the
subsemigroup of N x N* generated by the elements
(0,m),...,(m—1,m),(0,n),...,(n—1,n).

Also note that since N is invariant under restrictions, we can form
F, > N. If ged(m, n) = 1, then F, > N is isomorphic to the
subsemigroup of N x N* generated by (1, 1), (0, m), (0, n).



Semigroup C*-algebras
The following is due to Li [10]:

Let P be a discrete left cancellative semigroup. Let J(P) be the
smallest collection of right ideals containing P and &, closed under
left multiplication (pX := {px : x € X}) and pre-images under left
multiplication (p™'X = {y € P : py € X}), and closed under finite
intersections.
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Semigroup C*-algebras
The following is due to Li [10]:

Let P be a discrete left cancellative semigroup. Let J(P) be the
smallest collection of right ideals containing P and &, closed under
left multiplication (pX := {px : x € X}) and pre-images under left
multiplication (p™'X = {y € P : py € X}), and closed under finite
intersections.

The full semigroup C*-algebra C*(P) is the universal C*-algebra
generated by isometries {v, : p € P} and projections
{ex : X € J(P)} satisfying

VpVg = Vpg ep=1land eg =0

vpexvp = epx Ex ey = eéxny

Note that when P is right LCM, J(P) consists only of principal right
ideals; that is, 7(P) = {pP : p € P}. Moreover,

C*(P) =span{vpv, : p,q € P}.



The C*-algebra C*(U 1 A)
Let U and A be semigroups such that U 0 A exists, and satisfying
(1)—(4).
Theorem (BRRW,13)
The C*-algebra C*(U < A) is the universal C*-algebra generated by
isometric representations {s, : a € A} and {t, : u € U} satisfying

tht, = tuts whenever uUNvU = (ud)U = (W)U, ud = w'; (1)

and

(K1) saty = taus,),; and

(K2) sit, = t;sy,, where z € U satisfies a-z = u.



The C*-algebra C*(U < A)

Let U and A be semigroups such that U 0 A exists, and satisfying
(1)—(4).

Theorem (BRRW,13)

The C*-algebra C*(U < A) is the universal C*-algebra generated by
isometric representations {s, : a € A} and {t, : u € U} satisfying

tht, = tuts whenever uUNvU = (ud)U = (W)U, ud = w'; (1)
and
(K1) sat, = ta.uSa|,; and
(K2) sit, = t;sy,, where z € U satisfies a-z = u.

Note that when (G, P) is quasi-lattice ordered, we can always form
P > {e} satisfying our hypotheses. Then (1) says

taty = ty1 vy t-1uvy) (i 1V v exists),

which is Nica covariance. So C*(P < {e}) = C*(G, P).



The boundary quotient

Definition (BRRW,13)

We say a finite subset F C J(P) is a foundation set if for each
Y € J(P) there exists X € F with X N'Y # &. We define Q(P) to
be the quotient of C*(P) given by adding the relation

H (1—-ex) =0 for all foundation sets F C P.
XeF



The boundary quotient

Definition (BRRW,13)

We say a finite subset F C J(P) is a foundation set if for each

Y € J(P) there exists X € F with X N'Y # &. We define Q(P) to
be the quotient of C*(P) given by adding the relation

H (1—-ex) =0 for all foundation sets F C P.
XeF

We now give an alternative presentation for Q(U < A):

Theorem (BRRW,13)

Suppose U and A are semigroups such that U <1 A exists, and
satisfying (1)—(4). Then Q(U > A) is the universal C*-algebra
generated by isometric representations {s, : a € A} and {t,: u € U}
satisfying (1), (K1), (K2) and

(Q1) sus3 =1, and

(Q2) [Ijy.uver (1 = tuty) = 0 for all foundation sets F € 7 (V).



Example 1: C*-algebras associated to self-similar actions
The C*-algebra O(G, X) associated to a self-similar action (G, X)
was first considered by Nekrashevych [11].

Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz
algebra 7(G, X).
We can view

» 7(G, X) as the universal C*-algebra generated by a
Toeplitz-Cuntz family of isometries {vyx : x € X} and a unitary
representation u of G satisfying ugvx = vg.xug,; and

» O(G, X) as the quotient of 7(G, X) by the ideal / generated by
T— > ex WV



Example 1: C*-algebras associated to self-similar actions
The C*-algebra O(G, X) associated to a self-similar action (G, X)
was first considered by Nekrashevych [11].

Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz
algebra 7(G, X).

We can view

» 7(G, X) as the universal C*-algebra generated by a
Toeplitz-Cuntz family of isometries {vyx : x € X} and a unitary
representation u of G satisfying ugvx = vg.xug,; and

» O(G, X) as the quotient of 7(G, X) by the ideal / generated by
T— > ex WV

Proposition (BRRW,13)

There are isomorphisms

T(G,X)= C*(X* =1 G) and O(G,X)= Q(X* x G).
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Recall from Laca and Raeburn [6] that 7 (N x N*) is the universal
(C*-algebra generated by an isometry s and isometries v, for each
prime p satisfying

vps = sPv, s*vp = s”_lvps*

VpVg = VgqVp v;skvp =0forall1<k<p

Vpvg = Vqv, for p#q
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prime p satisfying
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The boundary quotient is Qn from Cuntz's [2], and corresponds to
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Example 2: C*-algebras associated to N x N*
Recall from Laca and Raeburn [6] that 7 (N x N*) is the universal
(C*-algebra generated by an isometry s and isometries v, for each
prime p satisfying
vps = sPv, s*v, = sP7ly,s*
VpVg = VgqVp v;skvp =0forall1<k<p
Vpvg = Vqv, for p#q
The boundary quotient is Qn from Cuntz's [2], and corresponds to
adding the relations
p—1
ss*=1 and Z(skvp)(skvp)* =1 for all primes p.
k=0

Proposition (BRRW,13)

For U= {(r,x):0<r<x}and A:={(m,1): me N} there are
isomorphisms T (N x N*) =2 C*(U > A) and Oy = Q(U 1 A),
sending s — s(1,1) and vp — t(q ) for all primes p.



Example 3: C*-algebras associated to Z x Z*

Recall from [2] that Qyz can be viewed as the universal C*-algebra
generated by a unitary s and isometries {v, : a € Z*} satisfying

Vavp = vy for all a, b € Z%;
Vs = s?v, and v,5* = s*9y, for all a € Z*; and

al—1 ; i
ZJ'-:'() svvis* =1 for all a € Z*.



Example 3: C*-algebras associated to Z x Z*

Recall from [2] that Qyz can be viewed as the universal C*-algebra
generated by a unitary s and isometries {v, : a € Z*} satisfying

Vavp = vy for all a, b € Z%;
Vs = s?v, and v,5* = s*9y, for all a € Z*; and

al—1 ; i
ZJ'-:'() svvis* =1 for all a € Z*.

Proposition (BRRW,13)
There is an isomorphism ¢ : Qz, — Q(Z x Z*) satisfying ¢(s) = s(1,1)

and
d(Va) = 5(0,a/]a)) t(0,|a|) for all a € Z*.
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Example 4: C*-algebras associated to BS(m, n)*
Recall that BS(m, n)* = U A, where

U= (e ababa,....,b" ta)=F and A= (e b) =N,
and

b-bka=pkrimedn s ong bl = {e Th<n-1
bm™ itk=n-1.

Proposition (BRRW,13)
The boundary quotient Q(BS(m, n)™ is the universal C*-algebra
generated by a unitary s and isometries t1, ..., t, satisfyng

> sti=tiy for 1 <i<n;

» st, = t1s™; and

> i ity = 1.
Moreover, Q(BS(m, n)*) is isomorphic to the Spielberg's category of

paths algebra from [14], and the topological graph algebra O(Ep m)
from Katsura's [5].
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Let X = {0,1} and N = (7). Consider X* > N, where

7-0=1 Ap=e
v-1=0 vl =".



Example 5: C*-algebras associated to {0, 1}* > N.
Let X = {0,1} and N = (7). Consider X* > N, where

7-0=1 Ap=e
v-1=0 vl =".

Then
» X*>aN=BS(1,2)"



Example 5: C*-algebras associated to {0, 1}* > N.
Let X = {0,1} and N = (7). Consider X* > N, where

7-0=1 Ap=e
v-1=0 vl =".

Then
» X*>aN=BS(1,2)"

> C*(X* s N) = C*(BS(1,2), BS(1,2)*)



Example 5: C*-algebras associated to {0,1}* < N.
Let X = {0,1} and N = (7). Consider X* > N, where

7-0=1 o=e
y-1=0 =7

Then
» X*>a N2 BS(1,2)"

> C*(X* s N) = C*(BS(1,2), BS(1,2)*)

> Recall from Larsen-Li [8] that Q> is the universal C*-algebra
generated by a unitary u and an isometry s, satisfying

su=u’s, and 255 + uspsyu™ = 1.

There is an isomorphism ¢ : Q@ — Q(X* < N) such that
¢(u) = sy and ¢(s2) = to.
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