Zappa-Szép products of semigroups and their C^{*}-algebras

Nathan Brownlowe
University of Wollongong

$$
\text { Banff, } 2013
$$

(Joint with Jacqui Ramagge, Dave Robertson, Mike Whittaker)

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:
Suppose P is a semigroup with identity. Suppose $U, A \subseteq P$ are subsemigroups with

1. $U \cap A=\{e\}$, and
2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that $p=u a$.

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:
Suppose P is a semigroup with identity. Suppose $U, A \subseteq P$ are subsemigroups with

1. $U \cap A=\{e\}$, and
2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that $p=u a$.

So for each $a \in A$ and $u \in U$ there are unique elements $a \cdot u \in U$ and $\left.a\right|_{u} \in A$ determined by $a u=\left.(a \cdot u) a\right|_{u}$.

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:
Suppose P is a semigroup with identity. Suppose $U, A \subseteq P$ are subsemigroups with

1. $U \cap A=\{e\}$, and
2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that $p=u a$.

So for each $a \in A$ and $u \in U$ there are unique elements $a \cdot u \in U$ and $\left.a\right|_{u} \in A$ determined by $a u=\left.(a \cdot u) a\right|_{u}$.

The semigroup P is an (internal) Zappa-Szép product $U \bowtie A=\{(u, a): u \in U, a \in A\}$ with

$$
(u, a)(v, b)=\left(u(a \cdot v),\left.a\right|_{v} b\right)
$$

The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

$$
\cdot: A \times U \rightarrow U \quad \text { and } \quad \mid: A \times U \rightarrow A
$$

satisfying
(B1) $e_{A} \cdot u=u$;
(B5) $\left.a\right|_{e_{U}}=a$;
(B2) $(a b) \cdot u=a \cdot(b \cdot u)$;
(B6) $\left.a\right|_{u v}=\left.\left(\left.a\right|_{u}\right)\right|_{v}$;
(B3) $a \cdot e_{U}=e_{U}$;
(B7) $\left.e_{A}\right|_{u}=e_{A}$; and
(B4) $a \cdot(u v)=(a \cdot u)\left(\left.a\right|_{u} \cdot v\right)$;
(B8) $\left.(a b)\right|_{u}=\left.\left.a\right|_{b \cdot u} b\right|_{u}$.

The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

$$
\cdot: A \times U \rightarrow U \quad \text { and } \quad \mid: A \times U \rightarrow A
$$

satisfying
(B1) $e_{A} \cdot u=u$;
(B5) $\left.a\right|_{e_{U}}=a$;
(B2) $(a b) \cdot u=a \cdot(b \cdot u)$;
(B6) a $\left.\right|_{u v}=\left.\left(\left.a\right|_{u}\right)\right|_{v}$;
(B3) $a \cdot e_{U}=e_{U}$;
(B7) $\left.e_{A}\right|_{u}=e_{A}$; and
(B4) $a \cdot(u v)=(a \cdot u)\left(\left.a\right|_{u} \cdot v\right)$;
(B8) $\left.(a b)\right|_{u}=\left.\left.a\right|_{b \cdot u} b\right|_{u}$.

Then we can form the (External) Zappa-Szép product semigroup $U \bowtie A:=\{(u, a)): u \in U, a \in A\}$ with multiplication given by

$$
(u, a)(v, b)=\left(u(a \cdot v),\left.a\right|_{v} b\right)
$$

Hypotheses on our semigroups

We will look at the C^{*}-algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A :
(1) U and A are discrete left cancellative semigroups with identity;

Hypotheses on our semigroups

We will look at the C^{*}-algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A :
(1) U and A are discrete left cancellative semigroups with identity;
(2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple $r=p p^{\prime}=q q^{\prime}$ has a right least common multiple;

Hypotheses on our semigroups

We will look at the C^{*}-algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A :
(1) U and A are discrete left cancellative semigroups with identity;
(2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple $r=p p^{\prime}=q q^{\prime}$ has a right least common multiple;
(3) the set of principal right ideals $\{a A: a \in A\}$ of A is totally ordered by inclusion; and

Hypotheses on our semigroups

We will look at the C^{*}-algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A :
(1) U and A are discrete left cancellative semigroups with identity;
(2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple $r=p p^{\prime}=q q^{\prime}$ has a right least common multiple;
(3) the set of principal right ideals $\{a A: a \in A\}$ of A is totally ordered by inclusion; and
(4) the map $u \mapsto a \cdot u$ is bijective for each fixed $a \in A$.

Hypotheses on our semigroups

We will look at the C^{*}-algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A :
(1) U and A are discrete left cancellative semigroups with identity;
(2) U is right LCM , in the sense that every pair $p, q \in U$ with a right common multiple $r=p p^{\prime}=q q^{\prime}$ has a right least common multiple;
(3) the set of principal right ideals $\{a A: a \in A\}$ of A is totally ordered by inclusion; and
(4) the map $u \mapsto a \cdot u$ is bijective for each fixed $a \in A$.

Lemma (BRRW, Submitted 13)

Under hypotheses (1)-(4), $U \bowtie A$ is a discrete left cancellative right LCM semigroup.

Example 1: Self-similar actions

Let X be a finite alphabet, and X^{*} the set of finite words. Under concatenation, X^{*} is a semigroup with identity the empty word \varnothing. A faithful action of a group G on X^{*} is self-similar if for every $g \in G$ and $x \in X$, there exists unique $\left.g\right|_{x} \in G$ such that

$$
g \cdot(x w)=(g \cdot x)\left(\left.g\right|_{x} \cdot w\right)
$$

The pair (G, X) is called a self-similar action. (See Nekrashevych's book [12] for more on self-similar actions.)

Example 1: Self-similar actions

Let X be a finite alphabet, and X^{*} the set of finite words. Under concatenation, X^{*} is a semigroup with identity the empty word \varnothing. A faithful action of a group G on X^{*} is self-similar if for every $g \in G$ and $x \in X$, there exists unique $\left.g\right|_{x} \in G$ such that

$$
g \cdot(x w)=(g \cdot x)\left(\left.g\right|_{x} \cdot w\right)
$$

The pair (G, X) is called a self-similar action. (See Nekrashevych's book [12] for more on self-similar actions.)

Example: Adding Machine
Consider $(\mathbb{Z}=\langle\gamma\rangle,\{0,1, \ldots, n-1\})$ with

$$
\gamma \cdot i=\left\{\begin{array}{ll}
i+1 & \text { if } i<n-1 \\
0 & \text { if } i=n-1
\end{array} \quad \text { and }\left.\quad \gamma\right|_{i}= \begin{cases}e & \text { if } i<n-1 \\
\gamma & \text { if } i=n-1\end{cases}\right.
$$

Restrictions extend to finite words, and satisfy

$$
\left.g\right|_{v w}=\left.\left(\left.g\right|_{v}\right)\right|_{w},\left.\quad(g h)\right|_{v}=\left.\left.g\right|_{h \cdot v} h\right|_{v} \quad \text { and } \quad\left(\left.g\right|_{v}\right)^{-1}=\left.g^{-1}\right|_{g \cdot v}
$$

The action $w \mapsto g \cdot w$ and restriction $\left.w \mapsto g\right|_{w}$ maps satisfy (B1)-(B8), and so we can form $X^{*} \bowtie G$. Moreover, the semigroups X^{*} and G satisfy (1)-(4), so $X^{*} \bowtie G$ is a right LCM semigroup.

Restrictions extend to finite words, and satisfy

$$
\left.g\right|_{v w}=\left.\left(\left.g\right|_{v}\right)\right|_{w},\left.\quad(g h)\right|_{v}=\left.\left.g\right|_{h \cdot v} h\right|_{v} \quad \text { and } \quad\left(\left.g\right|_{v}\right)^{-1}=\left.g^{-1}\right|_{g \cdot v}
$$

The action $w \mapsto g \cdot w$ and restriction $\left.w \mapsto g\right|_{w}$ maps satisfy (B1)-(B8), and so we can form $X^{*} \bowtie G$. Moreover, the semigroups X^{*} and G satisfy (1)-(4), so $X^{*} \bowtie G$ is a right LCM semigroup.

Zappa-Szép products of the form $X^{*} \bowtie G$ were first constructed by Lawson in [9].

Restrictions extend to finite words, and satisfy

$$
\left.g\right|_{v w}=\left.\left(\left.g\right|_{v}\right)\right|_{w},\left.\quad(g h)\right|_{v}=\left.\left.g\right|_{h \cdot v} h\right|_{v} \quad \text { and } \quad\left(\left.g\right|_{v}\right)^{-1}=\left.g^{-1}\right|_{g \cdot v}
$$

The action $w \mapsto g \cdot w$ and restriction $\left.w \mapsto g\right|_{w}$ maps satisfy (B1)-(B8), and so we can form $X^{*} \bowtie G$. Moreover, the semigroups X^{*} and G satisfy (1)-(4), so $X^{*} \bowtie G$ is a right LCM semigroup.

Zappa-Szép products of the form $X^{*} \bowtie G$ were first constructed by Lawson in [9].

Example: Adding Machine
Note that since $\left.\gamma\right|_{i} \in\{e, \gamma\} \subset \mathbb{N}$, we can form $X^{*} \bowtie \mathbb{N}$, which is a Zappa-Szép product associated to a "self-similar action of a semigroup".

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N} \rtimes \mathbb{N}^{\times}$, where

$$
(m, a)(n, b)=(m+n a, a b) .
$$

Laca-Raeburn [6] showed that $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is quasi-lattice ordered.

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N} \rtimes \mathbb{N}^{\times}$, where

$$
(m, a)(n, b)=(m+n a, a b) .
$$

Laca-Raeburn [6] showed that $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is quasi-lattice ordered.

Consider the following subsemigroups of $\mathbb{N} \rtimes \mathbb{N}^{\times}$:

$$
U:=\left\{(r, x): x \in \mathbb{N}^{\times}, 0 \leq r<x\right\} \quad \text { and } \quad A:=\{(m, 1): m \in \mathbb{N}\} .
$$

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N} \rtimes \mathbb{N}^{\times}$, where

$$
(m, a)(n, b)=(m+n a, a b)
$$

Laca-Raeburn [6] showed that $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is quasi-lattice ordered.

Consider the following subsemigroups of $\mathbb{N} \rtimes \mathbb{N}^{\times}$:

$$
U:=\left\{(r, x): x \in \mathbb{N}^{\times}, 0 \leq r<x\right\} \quad \text { and } \quad A:=\{(m, 1): m \in \mathbb{N}\} .
$$

We have $U \cap A=\{(0,1)\}$ and each $(m, a) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$can be written uniquely as a product in $U A$ via

$$
(m, a)=(m(\bmod a), a)\left(\frac{m-(m(\bmod a))}{a}, 1\right)
$$

So we can form $U \bowtie A$ with $\mathbb{N} \rtimes \mathbb{N}^{\times} \cong U \bowtie A$, and U and A satisfy (1)-(4).

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the $a x+b$-semigroup over \mathbb{Z}, and the following subsemigroups:

$$
U=\{(r, x): x \geq 1,0 \leq r<x\} \quad \text { and } \quad A=\mathbb{Z} \times\{1,-1\} .
$$

(Actually, A is a group.)

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the $a x+b$-semigroup over \mathbb{Z}, and the following subsemigroups:

$$
U=\{(r, x): x \geq 1,0 \leq r<x\} \quad \text { and } \quad A=\mathbb{Z} \times\{1,-1\} .
$$

(Actually, A is a group.)
We have $U \cap A=\{(0,1)\}$ and each $(m, a) \in \mathbb{Z} \rtimes \mathbb{Z}^{\times}$can be written uniquely as a product in $U A$ via

$$
(m, a)=(m(\bmod |a|),|a|)\left(\frac{m-(m(\bmod |a|))}{|a|}, \frac{a}{|a|}\right)
$$

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the $a x+b$-semigroup over \mathbb{Z}, and the following subsemigroups:

$$
U=\{(r, x): x \geq 1,0 \leq r<x\} \quad \text { and } \quad A=\mathbb{Z} \times\{1,-1\} .
$$

(Actually, A is a group.)
We have $U \cap A=\{(0,1)\}$ and each $(m, a) \in \mathbb{Z} \rtimes \mathbb{Z}^{\times}$can be written uniquely as a product in $U A$ via

$$
(m, a)=(m(\bmod |a|),|a|)\left(\frac{m-(m(\bmod |a|))}{|a|}, \frac{a}{|a|}\right)
$$

So we can form $U \bowtie A$ with $\mathbb{Z} \rtimes \mathbb{Z}^{\times} \cong U \bowtie A$, and U and A satisfy (1)-(4).

Example 4: Baumslag-Solitar groups

For $m, n \geq 1$ define the Baumslag-Solitar group

$$
B S(m, n)=\left\langle a, b: a b^{m}=b^{n} a\right\rangle
$$

Spielberg [14] showed that $\left(B S(m, n), B S(m, n)^{+}\right)$is quasi-lattice ordered.

Example 4: Baumslag-Solitar groups

For $m, n \geq 1$ define the Baumslag-Solitar group

$$
B S(m, n)=\left\langle a, b: a b^{m}=b^{n} a\right\rangle .
$$

Spielberg [14] showed that $\left(B S(m, n), B S(m, n)^{+}\right)$is quasi-lattice ordered.
Consider the subsemigroups of $B S(m, n)^{+}$:

$$
U=\left\langle e, a, b a, b^{2} a, \ldots, b^{n-1} a\right\rangle \cong \mathbb{F}_{n}^{+} \quad \text { and } \quad A=\langle e, b\rangle \cong \mathbb{N} .
$$

We have $U \cap A=\{e\}$, and we can write each element of $B S(m, n)^{+}$ uniquely as a product in $U A$ (the normal form of an element). So we can form $U \bowtie A$ with

$$
b \cdot b^{k} a=b^{k+1(\bmod n)} a \quad \text { and }\left.\quad b\right|_{b^{k} a}= \begin{cases}e & \text { if } k<n-1 \\ b^{m} & \text { if } k=n-1\end{cases}
$$

Then $B S(m, n)^{+} \cong U \bowtie A$, and U and A satisfy (1)-(4).

Example 5: Products of self-similar actions

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \rightarrow X \times Y$ a bijection. For each $(y, x) \in Y \times X$ denote by $\theta_{X}(y, x) \in X$ and $\theta_{Y}(x, y) \in Y$ the unique elements satisfying

$$
\theta(y, x)=\left(\theta_{X}(y, x), \theta_{Y}(y, x)\right)
$$

Example 5: Products of self-similar actions

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \rightarrow X \times Y$ a bijection. For each $(y, x) \in Y \times X$ denote by $\theta_{X}(y, x) \in X$ and $\theta_{Y}(x, y) \in Y$ the unique elements satisfying

$$
\theta(y, x)=\left(\theta_{X}(y, x), \theta_{Y}(y, x)\right)
$$

Then the semigroup generated by $X \cup Y \cup\{e\}$ with relations $y x=\theta_{X}(y, x) \theta_{Y}(y, x)$ is the 2-graph \mathbb{F}_{θ}^{+}studied in [3, 4].

Example 5: Products of self-similar actions

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \rightarrow X \times Y$ a bijection. For each $(y, x) \in Y \times X$ denote by $\theta_{X}(y, x) \in X$ and $\theta_{Y}(x, y) \in Y$ the unique elements satisfying

$$
\theta(y, x)=\left(\theta_{X}(y, x), \theta_{Y}(y, x)\right)
$$

Then the semigroup generated by $X \cup Y \cup\{e\}$ with relations $y x=\theta_{X}(y, x) \theta_{Y}(y, x)$ is the 2-graph \mathbb{F}_{θ}^{+}studied in [3, 4].
Every element $z \in \mathbb{F}_{\theta}^{+}$admits a normal form $z=v w$ where $v \in X^{*}$ and $w \in Y^{*}$. We have maps $G \times \mathbb{F}_{\theta}^{+} \rightarrow \mathbb{F}_{\theta}^{+}$and $G \times \mathbb{F}_{\theta}^{+} \rightarrow G$ given by

$$
(g, z) \mapsto g \cdot z:=(g \cdot v)\left(\left.g\right|_{v} \cdot w\right) \quad \text { and }\left.\quad(g, z) \mapsto g\right|_{z}:=\left.\left(\left.g\right|_{v}\right)\right|_{w}
$$

Example 5: Products of self-similar actions

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \rightarrow X \times Y$ a bijection. For each $(y, x) \in Y \times X$ denote by $\theta_{X}(y, x) \in X$ and $\theta_{Y}(x, y) \in Y$ the unique elements satisfying

$$
\theta(y, x)=\left(\theta_{X}(y, x), \theta_{Y}(y, x)\right)
$$

Then the semigroup generated by $X \cup Y \cup\{e\}$ with relations $y x=\theta_{X}(y, x) \theta_{Y}(y, x)$ is the 2-graph \mathbb{F}_{θ}^{+}studied in [3, 4].
Every element $z \in \mathbb{F}_{\theta}^{+}$admits a normal form $z=v w$ where $v \in X^{*}$ and $w \in Y^{*}$. We have maps $G \times \mathbb{F}_{\theta}^{+} \rightarrow \mathbb{F}_{\theta}^{+}$and $G \times \mathbb{F}_{\theta}^{+} \rightarrow G$ given by

$$
(g, z) \mapsto g \cdot z:=(g \cdot v)\left(\left.g\right|_{v} \cdot w\right) \quad \text { and }\left.\quad(g, z) \mapsto g\right|_{z}:=\left.\left(\left.g\right|_{v}\right)\right|_{w}
$$

Proposition (BRRW,13)

The maps given above induce a Zappa-Szép product semigroup $\mathbb{F}_{\theta}^{+} \bowtie G$ if and only if

$$
\theta_{X}(y, x)=g^{-1} \cdot \theta_{X}\left(g \cdot y,\left.g\right|_{y} \cdot x\right) \quad \text { and } \quad \theta_{Y}(y, x)=\left.g\right|_{\theta_{X}(y, x)} ^{-1} \cdot \theta_{Y}\left(g \cdot y,\left.g\right|_{y} \cdot x\right)
$$

Example: Product of Adding Machines

Fix $m, n \geq 2$. Suppose \mathbb{Z} acts as the adding machine on $X:=\left\{x_{0}, x_{1}, \cdots, x_{m-1}\right\}$ and $Y:=\left\{y_{0}, y_{1}, \cdots y_{n-1}\right\}$. There is a bijection from $\{0,1, \ldots, n-1\} \times\{0,1, \ldots, m-1\}$ to $\{0,1, \ldots, m-1\} \times\{0,1, \ldots, n-1\}$ sending (j, i) to the unique pair $\left(i^{\prime}, j^{\prime}\right)$ satisfying $j+i n=i^{\prime}+j^{\prime} m$. This induces a bijection

$$
\theta: Y \times X \rightarrow X \times Y \quad \text { given by } \quad \theta\left(y_{j}, x_{i}\right)=\left(x_{i^{\prime}}, y_{j^{\prime}}\right)
$$

and we can form the Zappa-Szép product $\mathbb{F}_{\theta}^{+} \bowtie \mathbb{Z}$.

Example: Product of Adding Machines

Fix $m, n \geq 2$. Suppose \mathbb{Z} acts as the adding machine on $X:=\left\{x_{0}, x_{1}, \cdots, x_{m-1}\right\}$ and $Y:=\left\{y_{0}, y_{1}, \cdots y_{n-1}\right\}$. There is a bijection from $\{0,1, \ldots, n-1\} \times\{0,1, \ldots, m-1\}$ to $\{0,1, \ldots, m-1\} \times\{0,1, \ldots, n-1\}$ sending (j, i) to the unique pair $\left(i^{\prime}, j^{\prime}\right)$ satisfying $j+i n=i^{\prime}+j^{\prime} m$. This induces a bijection

$$
\theta: Y \times X \rightarrow X \times Y \quad \text { given by } \quad \theta\left(y_{j}, x_{i}\right)=\left(x_{i^{\prime}}, y_{j^{\prime}}\right)
$$

and we can form the Zappa-Szép product $\mathbb{F}_{\theta}^{+} \bowtie \mathbb{Z}$.
Note that \mathbb{F}_{θ}^{+}is right LCM if and only if $\operatorname{gcd}(m, n)=1$.
Consider $m=p a$ and $n=p b$. Then

$$
p+0 . p b=p+0 . p a \quad \text { and } \quad p+a . p b=p+b . p a,
$$

So

$$
y_{p} x_{0}=x_{p} y_{0} \quad \text { and } \quad y_{p} x_{m}=x_{p} y_{n}
$$

and x_{p} and y_{p} have two incomparable right common multiples.

If $\operatorname{gcd}(m, n)=1$, then

- \mathbb{F}_{θ}^{+}and \mathbb{Z} satisfy (1)-(4).

If $\operatorname{gcd}(m, n)=1$, then

- \mathbb{F}_{θ}^{+}and \mathbb{Z} satisfy (1)-(4).
- $x_{i} \mapsto(i, m)$ and $y_{j} \mapsto(j, n)$ is an isomorphism of \mathbb{F}_{θ}^{+}onto the subsemigroup of $\mathbb{N} \rtimes \mathbb{N}^{\times}$generated by the elements
$(0, m), \ldots,(m-1, m),(0, n), \ldots,(n-1, n)$.

If $\operatorname{gcd}(m, n)=1$, then

- \mathbb{F}_{θ}^{+}and \mathbb{Z} satisfy (1)-(4).
- $x_{i} \mapsto(i, m)$ and $y_{j} \mapsto(j, n)$ is an isomorphism of \mathbb{F}_{θ}^{+}onto the subsemigroup of $\mathbb{N} \rtimes \mathbb{N}^{\times}$generated by the elements $(0, m), \ldots,(m-1, m),(0, n), \ldots,(n-1, n)$.

Also note that since \mathbb{N} is invariant under restrictions, we can form $\mathbb{F}_{\theta}^{+} \bowtie \mathbb{N}$. If $\operatorname{gcd}(m, n)=1$, then $\mathbb{F}_{\theta}^{+} \bowtie \mathbb{N}$ is isomorphic to the subsemigroup of $\mathbb{N} \rtimes \mathbb{N}^{\times}$generated by $(1,1),(0, m),(0, n)$.

Semigroup C^{*}-algebras

The following is due to Li [10]:
Let P be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing P and \varnothing, closed under left multiplication $(p X:=\{p x: x \in X\})$ and pre-images under left multiplication ($p^{-1} X=\{y \in P: p y \in X\}$), and closed under finite intersections.

Semigroup C^{*}-algebras

The following is due to Li [10]:
Let P be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing P and \varnothing, closed under left multiplication $(p X:=\{p x: x \in X\})$ and pre-images under left multiplication $\left(p^{-1} X=\{y \in P: p y \in X\}\right)$, and closed under finite intersections.

The full semigroup C^{*}-algebra $C^{*}(P)$ is the universal C^{*}-algebra generated by isometries $\left\{v_{p}: p \in P\right\}$ and projections $\left\{e_{X}: X \in \mathcal{J}(P)\right\}$ satisfying

$$
\begin{array}{ll}
v_{p} v_{q}=v_{p q} & e_{P}=1 \text { and } e_{\varnothing}=0 \\
v_{p} e_{X} v_{p}=e_{p X} & e_{X} e_{Y}=e_{X \cap Y}
\end{array}
$$

Semigroup C^{*}-algebras

The following is due to Li [10]:
Let P be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing P and \varnothing, closed under left multiplication $(p X:=\{p x: x \in X\})$ and pre-images under left multiplication ($p^{-1} X=\{y \in P: p y \in X\}$), and closed under finite intersections.

The full semigroup C^{*}-algebra $C^{*}(P)$ is the universal C^{*}-algebra generated by isometries $\left\{v_{p}: p \in P\right\}$ and projections $\left\{e_{X}: X \in \mathcal{J}(P)\right\}$ satisfying

$$
\begin{array}{ll}
v_{p} v_{q}=v_{p q} & e_{P}=1 \text { and } e_{\varnothing}=0 \\
v_{p} e_{X} v_{p}=e_{p X} & e_{X} e_{Y}=e_{X \cap Y}
\end{array}
$$

Note that when P is right LCM, $\mathcal{J}(P)$ consists only of principal right ideals; that is, $\mathcal{J}(P)=\{p P: p \in P\}$. Moreover,

$$
C^{*}(P)=\overline{\operatorname{span}}\left\{v_{p} v_{q}^{*}: p, q \in P\right\}
$$

The C^{*}-algebra $C^{*}(U \bowtie A)$

Let U and A be semigroups such that $U \bowtie A$ exists, and satisfying (1)-(4).

Theorem (BRRW,13)
The C^{*}-algebra $C^{*}(U \bowtie A)$ is the universal C^{*}-algebra generated by isometric representations $\left\{s_{a}: a \in A\right\}$ and $\left\{t_{u}: u \in U\right\}$ satisfying

$$
\begin{equation*}
t_{u}^{*} t_{v}=t_{u^{\prime}} t_{v^{\prime}}^{*} \text { whenever } u U \cap v U=\left(u u^{\prime}\right) U=\left(v v^{\prime}\right) U, u u^{\prime}=v v^{\prime} ; \tag{1}
\end{equation*}
$$

and
(K1) $s_{a} t_{u}=t_{a \cdot u} S_{a \mid u}$; and
(K2) $s_{a}^{*} t_{u}=t_{z} s_{a \mid z}^{*}$, where $z \in U$ satisfies $a \cdot z=u$.

The C^{*}-algebra $C^{*}(U \bowtie A)$

Let U and A be semigroups such that $U \bowtie A$ exists, and satisfying (1)-(4).

Theorem (BRRW,13)

The C^{*}-algebra $C^{*}(U \bowtie A)$ is the universal C^{*}-algebra generated by isometric representations $\left\{s_{a}: a \in A\right\}$ and $\left\{t_{u}: u \in U\right\}$ satisfying

$$
\begin{equation*}
t_{u}^{*} t_{v}=t_{u^{\prime}} t_{v^{\prime}}^{*} \text { whenever } u U \cap v U=\left(u u^{\prime}\right) U=\left(v v^{\prime}\right) U, u u^{\prime}=v v^{\prime} ; \tag{1}
\end{equation*}
$$ and

(K1) $s_{a} t_{u}=t_{a \cdot u} s_{\left.a\right|_{u}}$; and $(\mathrm{K} 2) s_{a}^{*} t_{u}=t_{z} s_{a \mid z}^{*}$, where $z \in U$ satisfies $a \cdot z=u$.

Note that when (G, P) is quasi-lattice ordered, we can always form $P \bowtie\{e\}$ satisfying our hypotheses. Then (1) says

$$
t_{u}^{*} t_{v}=t_{u^{-1}(u \vee v)} t_{v^{-1}(u \vee v)} \quad \text { (if } u \vee v \text { exists), }
$$

which is Nica covariance. So $C^{*}(P \bowtie\{e\})=C^{*}(G, P)$.

The boundary quotient

Definition (BRRW,13)
We say a finite subset $F \subset \mathcal{J}(P)$ is a foundation set if for each $Y \in \mathcal{J}(P)$ there exists $X \in F$ with $X \cap Y \neq \varnothing$. We define $\mathcal{Q}(P)$ to be the quotient of $C^{*}(P)$ given by adding the relation
$\prod_{X \in F}\left(1-e_{X}\right)=0 \quad$ for all foundation sets $F \subseteq P$.

The boundary quotient

Definition (BRRW,13)

We say a finite subset $F \subset \mathcal{J}(P)$ is a foundation set if for each $Y \in \mathcal{J}(P)$ there exists $X \in F$ with $X \cap Y \neq \varnothing$. We define $\mathcal{Q}(P)$ to be the quotient of $C^{*}(P)$ given by adding the relation

$$
\prod_{X \in F}\left(1-e_{X}\right)=0 \quad \text { for all foundation sets } F \subseteq P
$$

We now give an alternative presentation for $\mathcal{Q}(U \bowtie A)$:

Theorem (BRRW,13)

Suppose U and A are semigroups such that $U \bowtie A$ exists, and satisfying (1)-(4). Then $\mathcal{Q}(U \bowtie A)$ is the universal C^{*}-algebra generated by isometric representations $\left\{s_{a}: a \in A\right\}$ and $\left\{t_{u}: u \in U\right\}$ satisfying (1), (K1), (K2) and
(Q1) $s_{a} s_{a}^{*}=1$; and
(Q2) $\prod_{\{u: u U \in F\}}\left(1-t_{u} t_{u}^{*}\right)=0$ for all foundation sets $F \subseteq \mathcal{J}(U)$.

Example 1: C^{*}-algebras associated to self-similar actions

 The C^{*}-algebra $\mathcal{O}(G, X)$ associated to a self-similar action (G, X) was first considered by Nekrashevych [11].Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz algebra $\mathcal{T}(G, X)$.

We can view

- $\mathcal{T}(G, X)$ as the universal C^{*}-algebra generated by a Toeplitz-Cuntz family of isometries $\left\{v_{x}: x \in X\right\}$ and a unitary representation u of G satisfying $u_{g} v_{x}=v_{g \cdot x} u_{\left.g\right|_{x}}$; and
- $\mathcal{O}(G, X)$ as the quotient of $\mathcal{T}(G, X)$ by the ideal / generated by $1-\sum_{x \in X} v_{x} v_{x}^{*}$.

Example 1: C^{*}-algebras associated to self-similar actions

 The C^{*}-algebra $\mathcal{O}(G, X)$ associated to a self-similar action (G, X) was first considered by Nekrashevych [11].Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz algebra $\mathcal{T}(G, X)$.

We can view

- $\mathcal{T}(G, X)$ as the universal C^{*}-algebra generated by a Toeplitz-Cuntz family of isometries $\left\{v_{x}: x \in X\right\}$ and a unitary representation u of G satisfying $u_{g} v_{x}=v_{g \cdot x} u_{\left.g\right|_{x}}$; and
- $\mathcal{O}(G, X)$ as the quotient of $\mathcal{T}(G, X)$ by the ideal I generated by $1-\sum_{x \in X} v_{x} v_{x}^{*}$.

Proposition (BRRW,13)

There are isomorphisms

$$
\mathcal{T}(G, X) \cong C^{*}\left(X^{*} \bowtie G\right) \quad \text { and } \quad \mathcal{O}(G, X) \cong \mathcal{Q}\left(X^{*} \bowtie G\right)
$$

Example 2: C^{*}-algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is the universal C^{*}-algebra generated by an isometry s and isometries v_{p} for each prime p satisfying

$$
\begin{aligned}
& v_{p} s=s^{p} v_{p} \\
& v_{p} v_{q}=v_{q} v_{p} \\
& v_{p}^{*} v_{q}=v_{q} v_{p}^{*} \text { for } p \neq q
\end{aligned}
$$

$$
\begin{aligned}
& s^{*} v_{p}=s^{p-1} v_{p} s^{*} \\
& v_{p}^{*} s^{k} v_{p}=0 \text { for all } 1 \leq k<p
\end{aligned}
$$

Example 2: C^{*}-algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is the universal C^{*}-algebra generated by an isometry s and isometries v_{p} for each prime p satisfying

$$
\begin{aligned}
& v_{p} s=s^{p} v_{p} \\
& v_{p} v_{q}=v_{q} v_{p} \\
& v_{p}^{*} v_{q}=v_{q} v_{p}^{*} \text { for } p \neq q
\end{aligned}
$$

$$
\begin{aligned}
& s^{*} v_{p}=s^{p-1} v_{p} s^{*} \\
& v_{p}^{*} s^{k} v_{p}=0 \text { for all } 1 \leq k<p
\end{aligned}
$$

The boundary quotient is $\mathcal{Q}_{\mathbb{N}}$ from Cuntz's [2], and corresponds to adding the relations

$$
s s^{*}=1 \quad \text { and } \quad \sum_{k=0}^{p-1}\left(s^{k} v_{p}\right)\left(s^{k} v_{p}\right)^{*}=1 \text { for all primes } p .
$$

Example 2: C^{*}-algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is the universal C^{*}-algebra generated by an isometry s and isometries v_{p} for each prime p satisfying

$$
\begin{array}{ll}
v_{p} s=s^{p} v_{p} & s^{*} v_{p}=s^{p-1} v_{p} s^{*} \\
v_{p} v_{q}=v_{q} v_{p} & v_{p}^{*} s^{k} v_{p}=0 \text { for all } 1 \leq k<p \\
v_{p}^{*} v_{q}=v_{q} v_{p}^{*} \text { for } p \neq q &
\end{array}
$$

The boundary quotient is $\mathcal{Q}_{\mathbb{N}}$ from Cuntz's [2], and corresponds to adding the relations

$$
s s^{*}=1 \quad \text { and } \quad \sum_{k=0}^{p-1}\left(s^{k} v_{p}\right)\left(s^{k} v_{p}\right)^{*}=1 \text { for all primes } p .
$$

Proposition (BRRW,13)

For $U=\{(r, x): 0 \leq r<x\}$ and $A:=\{(m, 1): m \in \mathbb{N}\}$ there are isomorphisms $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right) \cong C^{*}(U \bowtie A)$ and $\mathcal{Q}_{\mathbb{N}} \cong \mathcal{Q}(U \bowtie A)$, sending $s \mapsto s_{(1,1)}$ and $v_{p} \mapsto t_{(0, p)}$ for all primes p.

Example 3: C^{*}-algebras associated to $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Recall from [2] that $\mathcal{Q}_{\mathbb{Z}}$ can be viewed as the universal C^{*}-algebra generated by a unitary s and isometries $\left\{v_{a}: a \in \mathbb{Z}^{\times}\right\}$satisfying

$$
\begin{aligned}
& v_{a} v_{b}=v_{a b} \text { for all } a, b \in \mathbb{Z}^{\times} ; \\
& v_{a} s=s^{a} v_{a} \text { and } v_{a} s^{*}=s^{* a} v_{a} \text { for all } a \in \mathbb{Z}^{\times} ; \text {and } \\
& \sum_{j=0}^{|a|-1} s^{j} v_{a} v_{a}^{*} s^{* j}=1 \text { for all } a \in \mathbb{Z}^{\times} .
\end{aligned}
$$

Example 3: C^{*}-algebras associated to $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Recall from [2] that $\mathcal{Q}_{\mathbb{Z}}$ can be viewed as the universal C^{*}-algebra generated by a unitary s and isometries $\left\{v_{a}: a \in \mathbb{Z}^{\times}\right\}$satisfying

$$
\begin{aligned}
& v_{a} v_{b}=v_{a b} \text { for all } a, b \in \mathbb{Z}^{\times} ; \\
& v_{a} s=s^{a} v_{a} \text { and } v_{a} s^{*}=s^{* a} v_{a} \text { for all } a \in \mathbb{Z}^{\times} ; \text {and } \\
& \sum_{j=0}^{|a|-1} s^{j} v_{a} v_{a}^{*} s^{* j}=1 \text { for all } a \in \mathbb{Z}^{\times} .
\end{aligned}
$$

Proposition (BRRW,13)

There is an isomorphism $\phi: \mathcal{Q}_{\mathbb{Z}} \rightarrow \mathcal{Q}\left(\mathbb{Z} \rtimes \mathbb{Z}^{\times}\right)$satisfying $\phi(s)=s_{(1,1)}$ and

$$
\phi\left(v_{a}\right)=s_{(0, a /|a|)} t_{(0,|a|)} \text { for all } a \in \mathbb{Z}^{\times} .
$$

Example 4: C^{*}-algebras associated to $B S(m, n)^{+}$ Recall that $B S(m, n)^{+} \cong U \bowtie A$, where

$$
U=\left\langle e, a, b a, b^{2} a, \ldots, b^{n-1} a\right\rangle \cong \mathbb{F}_{n}^{+} \quad \text { and } \quad A=\langle e, b\rangle \cong \mathbb{N},
$$

and

$$
b \cdot b^{k} a=b^{k+1(\bmod n)} a \quad \text { and }\left.\quad b\right|_{b^{k} a}= \begin{cases}e & \text { if } k<n-1 \\ b^{m} & \text { if } k=n-1 .\end{cases}
$$

Example 4: C^{*}-algebras associated to $B S(m, n)^{+}$

Recall that $B S(m, n)^{+} \cong U \bowtie A$, where

$$
U=\left\langle e, a, b a, b^{2} a, \ldots, b^{n-1} a\right\rangle \cong \mathbb{F}_{n}^{+} \quad \text { and } \quad A=\langle e, b\rangle \cong \mathbb{N},
$$

and

$$
b \cdot b^{k} a=b^{k+1(\bmod n)} a \quad \text { and }\left.\quad b\right|_{b^{k} a}= \begin{cases}e & \text { if } k<n-1 \\ b^{m} & \text { if } k=n-1 .\end{cases}
$$

Proposition (BRRW,13)

The boundary quotient $\mathcal{Q}\left(B S(m, n)^{+}\right.$is the universal C^{*}-algebra generated by a unitary s and isometries t_{1}, \ldots, t_{n} satisfyng

- $s t_{i}=t_{i+1}$ for $1 \leq i<n$;
- $s t_{n}=t_{1} s^{m}$; and
- $\sum_{i=1}^{n} t_{i} t_{i}^{*}=1$.

Moreover, $\mathcal{Q}\left(B S(m, n)^{+}\right)$is isomorphic to the Spielberg's category of paths algebra from [14], and the topological graph algebra $\mathcal{O}\left(E_{n, m}\right)$ from Katsura's [5].

Example 5: C^{*}-algebras associated to $\{0,1\}^{*} \bowtie \mathbb{N}$. Let $X=\{0,1\}$ and $\mathbb{N}=\langle\gamma\rangle$. Consider $X^{*} \bowtie \mathbb{N}$, where

$$
\begin{array}{ll}
\gamma \cdot 0=1 & \left.\gamma\right|_{0}=e \\
\gamma \cdot 1=0 & \left.\gamma\right|_{1}=\gamma
\end{array}
$$

Example 5: C^{*}-algebras associated to $\{0,1\}^{*} \bowtie \mathbb{N}$. Let $X=\{0,1\}$ and $\mathbb{N}=\langle\gamma\rangle$. Consider $X^{*} \bowtie \mathbb{N}$, where

$$
\begin{array}{ll}
\gamma \cdot 0=1 & \left.\gamma\right|_{0}=e \\
\gamma \cdot 1=0 & \left.\gamma\right|_{1}=\gamma
\end{array}
$$

Then

- $X^{*} \bowtie \mathbb{N} \cong \mathrm{BS}(1,2)^{+}$

Example 5: C^{*}-algebras associated to $\{0,1\}^{*} \bowtie \mathbb{N}$. Let $X=\{0,1\}$ and $\mathbb{N}=\langle\gamma\rangle$. Consider $X^{*} \bowtie \mathbb{N}$, where

$$
\begin{array}{ll}
\gamma \cdot 0=1 & \left.\gamma\right|_{0}=e \\
\gamma \cdot 1=0 & \left.\gamma\right|_{1}=\gamma
\end{array}
$$

Then

- $X^{*} \bowtie \mathbb{N} \cong \mathrm{BS}(1,2)^{+}$
- $C^{*}\left(X^{*} \bowtie \mathbb{N}\right) \cong C^{*}\left(B S(1,2), B S(1,2)^{+}\right)$

Example 5: C^{*}-algebras associated to $\{0,1\}^{*} \bowtie \mathbb{N}$. Let $X=\{0,1\}$ and $\mathbb{N}=\langle\gamma\rangle$. Consider $X^{*} \bowtie \mathbb{N}$, where

$$
\begin{array}{ll}
\gamma \cdot 0=1 & \left.\gamma\right|_{0}=e \\
\gamma \cdot 1=0 & \left.\gamma\right|_{1}=\gamma
\end{array}
$$

Then

- $X^{*} \bowtie \mathbb{N} \cong \mathrm{BS}(1,2)^{+}$
- $C^{*}\left(X^{*} \bowtie \mathbb{N}\right) \cong C^{*}\left(B S(1,2), B S(1,2)^{+}\right)$
- Recall from Larsen-Li [8] that \mathcal{Q}_{2} is the universal C^{*}-algebra generated by a unitary u and an isometry s_{2} satisfying

$$
s_{2} u=u^{2} s_{2} \quad \text { and } \quad s_{2} s_{2}^{*}+u s_{2} s_{2}^{*} u^{*}=1
$$

There is an isomorphism $\phi: \mathcal{Q}_{2} \rightarrow \mathcal{Q}\left(X^{*} \bowtie \mathbb{N}\right)$ such that $\phi(u)=s_{\gamma}$ and $\phi\left(s_{2}\right)=t_{0}$.

固 M．G．Brin，On the Zappa－Szép product，Comm．in Algebra 33 （2005），393－424．
睩 J．Cuntz，C＊－algebras associated with the ax + b－semigroup over \mathbb{N} ，K－theory and noncommutative geometry，201－215，EMS Ser． Congr．Rep．，Eur．Math．Soc．，Zurich， 2008.
國 K．R．Davidson，S．C．Power and D．Yang，Dilation theory for rank 2 graph algebras，J．Operator Theory 63 （2010），245－270．
图 K．R．Davidson and D．Yang，Periodicity in rank 2 graph algebras Canad．J．Math． 61 （2009），1239－1261．
T．Katsura，A class of C^{*}－algebras generalizing both graph algebras and homeomorphism C^{*}－algebras．IV．Pure infiniteness， J．Funct．Anal． 254 （2008），1161－1187．

围 M．Laca and I．Raeburn，Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers，Adv．Math． 225 （2010），643－688．

囯 M．Laca，I．Raeburn，J．Ramagge，and M．F．Whittaker Equilibrium states on the Cuntz－Pimsner algebras of self－similar actions，http：／／arxiv．org／pdf／1301．4722．pdf

固 N．S．Larsen and X．Li，The 2－adic ring C^{*}－algebra of the integers and its representations，J．Funct．Anal． 262 （2012），1392－1426．

囯 M．V．Lawson A correspondence between a class of semigroups and self－similar group actions．I，Semigroup Forum 76 （2008）， 489－517．
（ X．Li，Semigroup C^{*}－algebras and amenability of semigroups，J． Funct．Anal． 262 （2012），4302－4340．

囯 V．Nekrashevych，Cuntz－Pimsner algebras of group actions，J． Operator Theory 52 （2004），223－249．

围 V．Nekrashevych，Self－similar groups，Math．Surveys and Monographs vol．117，Amer．Math．Soc．，Providence， 2005.

目 A. Nica, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), 17-52.
國 J. Spielberg, C*-algebras for categories of paths associated to the Baumslag-Solitar groups, J. Lond. Math. Soc. 86 (2012), 728-754.

Thanks!

