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The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose U,A ⊆ P are
subsemigroups with

1. U ∩ A = {e}, and

2. for all p ∈ P there exists unique (u, a) ∈ U ×A such that p = ua.

So for each a ∈ A and u ∈ U there are unique elements a · u ∈ U and
a|u ∈ A determined by au = (a · u)a|u.

The semigroup P is an (internal) Zappa-Szép product
U ./ A = {(u, a) : u ∈ U, a ∈ A} with

(u, a)(v , b) = (u(a · v), a|v b).
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The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

· : A× U → U and | : A× U → A

satisfying

(B1) eA · u = u; (B5) a|eU
= a;

(B2) (ab) · u = a · (b · u); (B6) a|uv = (a|u)|v ;
(B3) a · eU = eU ; (B7) eA|u = eA; and
(B4) a · (uv) = (a · u)(a|u · v); (B8) (ab)|u = a|b·ub|u.

Then we can form the (External) Zappa-Szép product semigroup
U ./ A := {(u, a)) : u ∈ U, a ∈ A} with multiplication given by

(u, a)(v , b) = (u(a · v), a|v b).
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Hypotheses on our semigroups

We will look at the C ∗-algebras of the Zappa-Szép product
semigroups in the sense of Li [10] with the following hypotheses
imposed on U and A:

(1) U and A are discrete left cancellative semigroups with identity;

(2) U is right LCM, in the sense that every pair p, q ∈ U with a right
common multiple r = pp′ = qq′ has a right least common
multiple;

(3) the set of principal right ideals {aA : a ∈ A} of A is totally
ordered by inclusion; and

(4) the map u 7→ a · u is bijective for each fixed a ∈ A.

Lemma (BRRW, Submitted 13)

Under hypotheses (1)–(4), U ./ A is a discrete left cancellative right
LCM semigroup.
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Example 1: Self-similar actions

Let X be a finite alphabet, and X ∗ the set of finite words. Under
concatenation, X ∗ is a semigroup with identity the empty word ∅. A
faithful action of a group G on X ∗ is self-similar if for every g ∈ G
and x ∈ X , there exists unique g |x ∈ G such that

g · (xw) = (g · x)(g |x · w).

The pair (G ,X ) is called a self-similar action. (See Nekrashevych’s
book [12] for more on self-similar actions.)

Example: Adding Machine

Consider (Z = 〈γ〉, {0, 1, . . . , n − 1}) with

γ · i =

{
i + 1 if i < n − 1

0 if i = n − 1
and γ|i =

{
e if i < n − 1

γ if i = n − 1.
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Restrictions extend to finite words, and satisfy

g |vw = (g |v )|w , (gh)|v = g |h·v h|v and (g |v )−1 = g−1|g ·v .

The action w 7→ g · w and restriction w 7→ g |w maps satisfy
(B1)–(B8), and so we can form X ∗ ./ G . Moreover, the semigroups
X ∗ and G satisfy (1)–(4), so X ∗ ./ G is a right LCM semigroup.

Zappa-Szép products of the form X ∗ ./ G were first constructed by
Lawson in [9].

Example: Adding Machine

Note that since γ|i ∈ {e, γ} ⊂ N, we can form X ∗ ./ N, which is a
Zappa-Szép product associated to a “self-similar action of a
semigroup”.
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Example 2: N o N×

Consider the semidirect product N o N×, where

(m, a)(n, b) = (m + na, ab).

Laca-Raeburn [6] showed that (Q o Q∗+,N o N×) is quasi-lattice
ordered.

Consider the following subsemigroups of N o N×:

U := {(r , x) : x ∈ N×, 0 ≤ r < x} and A := {(m, 1) : m ∈ N}.

We have U ∩ A = {(0, 1)} and each (m, a) ∈ N o N× can be written
uniquely as a product in UA via

(m, a) =
(

m (mod a), a
)(m − (m (mod a))

a
, 1
)
.

So we can form U ./ A with N o N× ∼= U ./ A, and U and A satisfy
(1)–(4).
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Example 3: Z o Z×

Consider the ax + b-semigroup over Z, and the following
subsemigroups:

U = {(r , x) : x ≥ 1, 0 ≤ r < x} and A = Z× {1,−1}.

(Actually, A is a group.)

We have U ∩ A = {(0, 1)} and each (m, a) ∈ Z o Z× can be written
uniquely as a product in UA via
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Example 4: Baumslag-Solitar groups

For m, n ≥ 1 define the Baumslag-Solitar group

BS(m, n) = 〈a, b : abm = bna〉.

Spielberg [14] showed that (BS(m, n),BS(m, n)+) is quasi-lattice
ordered.

Consider the subsemigroups of BS(m, n)+:

U = 〈e, a, ba, b2a, . . . , bn−1a〉 ∼= F+
n and A = 〈e, b〉 ∼= N.

We have U ∩ A = {e}, and we can write each element of BS(m, n)+

uniquely as a product in UA (the normal form of an element). So we
can form U ./ A with

b · bka = bk+1(mod n)a and b|bka =

{
e if k < n − 1

bm if k = n − 1.

Then BS(m, n)+ ∼= U ./ A, and U and A satisfy (1)–(4).
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Example 5: Products of self-similar actions
Let X and Y be finite alphabets, G a group acting self-similarly on
both X and Y , and θ : Y × X → X × Y a bijection. For each
(y , x) ∈ Y × X denote by θX (y , x) ∈ X and θY (x , y) ∈ Y the unique
elements satisfying

θ(y , x) = (θX (y , x), θY (y , x)).

Then the semigroup generated by X ∪ Y ∪ {e} with relations
yx = θX (y , x)θY (y , x) is the 2-graph F+

θ studied in [3, 4].

Every element z ∈ F+
θ admits a normal form z = vw where v ∈ X ∗

and w ∈ Y ∗. We have maps G ×F+
θ → F+

θ and G ×F+
θ → G given by

(g , z) 7→ g · z := (g · v)(g |v · w) and (g , z) 7→ g |z := (g |v )|w .

Proposition (BRRW,13)

The maps given above induce a Zappa-Szép product semigroup
F+
θ ./ G if and only if

θX (y , x) = g−1·θX (g ·y , g |y ·x) and θY (y , x) = g |−1
θX (y ,x)·θY (g ·y , g |y ·x).
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Example: Product of Adding Machines

Fix m, n ≥ 2. Suppose Z acts as the adding machine on
X := {x0, x1, · · · , xm−1} and Y := {y0, y1, · · · yn−1}. There is a
bijection from {0, 1, . . . , n − 1} × {0, 1, . . . ,m − 1} to
{0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} sending (j , i) to the unique pair
(i ′, j ′) satisfying j + in = i ′ + j ′m. This induces a bijection

θ : Y × X → X × Y given by θ(yj , xi ) = (xi ′ , yj ′),

and we can form the Zappa-Szép product F+
θ ./ Z.

Note that F+
θ is right LCM if and only if gcd(m, n) = 1.

Consider m = pa and n = pb. Then

p + 0.pb = p + 0.pa and p + a.pb = p + b.pa,

So
ypx0 = xpy0 and ypxm = xpyn,

and xp and yp have two incomparable right common multiples.
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If gcd(m, n) = 1, then

I F+
θ and Z satisfy (1)–(4).

I xi 7→ (i ,m) and yj 7→ (j , n) is an isomorphism of F+
θ onto the

subsemigroup of N o N× generated by the elements
(0,m), . . . , (m − 1,m), (0, n), . . . , (n − 1, n).

Also note that since N is invariant under restrictions, we can form
F+
θ ./ N. If gcd(m, n) = 1, then F+

θ ./ N is isomorphic to the
subsemigroup of N o N× generated by (1, 1), (0,m), (0, n).
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Semigroup C ∗-algebras
The following is due to Li [10]:

Let P be a discrete left cancellative semigroup. Let J (P) be the
smallest collection of right ideals containing P and ∅, closed under
left multiplication (pX := {px : x ∈ X}) and pre-images under left
multiplication (p−1X = {y ∈ P : py ∈ X}), and closed under finite
intersections.

The full semigroup C ∗-algebra C ∗(P) is the universal C ∗-algebra
generated by isometries {vp : p ∈ P} and projections
{eX : X ∈ J (P)} satisfying

vpvq = vpq eP = 1 and e∅ = 0
vpeX vp = epX eX eY = eX∩Y

Note that when P is right LCM, J (P) consists only of principal right
ideals; that is, J (P) = {pP : p ∈ P}. Moreover,

C ∗(P) = span{vpv∗q : p, q ∈ P}.



Semigroup C ∗-algebras
The following is due to Li [10]:

Let P be a discrete left cancellative semigroup. Let J (P) be the
smallest collection of right ideals containing P and ∅, closed under
left multiplication (pX := {px : x ∈ X}) and pre-images under left
multiplication (p−1X = {y ∈ P : py ∈ X}), and closed under finite
intersections.

The full semigroup C ∗-algebra C ∗(P) is the universal C ∗-algebra
generated by isometries {vp : p ∈ P} and projections
{eX : X ∈ J (P)} satisfying

vpvq = vpq eP = 1 and e∅ = 0
vpeX vp = epX eX eY = eX∩Y

Note that when P is right LCM, J (P) consists only of principal right
ideals; that is, J (P) = {pP : p ∈ P}. Moreover,

C ∗(P) = span{vpv∗q : p, q ∈ P}.



Semigroup C ∗-algebras
The following is due to Li [10]:

Let P be a discrete left cancellative semigroup. Let J (P) be the
smallest collection of right ideals containing P and ∅, closed under
left multiplication (pX := {px : x ∈ X}) and pre-images under left
multiplication (p−1X = {y ∈ P : py ∈ X}), and closed under finite
intersections.

The full semigroup C ∗-algebra C ∗(P) is the universal C ∗-algebra
generated by isometries {vp : p ∈ P} and projections
{eX : X ∈ J (P)} satisfying

vpvq = vpq eP = 1 and e∅ = 0
vpeX vp = epX eX eY = eX∩Y

Note that when P is right LCM, J (P) consists only of principal right
ideals; that is, J (P) = {pP : p ∈ P}. Moreover,

C ∗(P) = span{vpv∗q : p, q ∈ P}.



The C ∗-algebra C ∗(U ./ A)

Let U and A be semigroups such that U ./ A exists, and satisfying
(1)–(4).

Theorem (BRRW,13)

The C ∗-algebra C ∗(U ./ A) is the universal C ∗-algebra generated by
isometric representations {sa : a ∈ A} and {tu : u ∈ U} satisfying

t∗utv = tu′t
∗
v ′ whenever uU ∩ vU = (uu′)U = (vv ′)U, uu′ = vv ′; (1)

and

(K1) satu = ta·usa|u ; and

(K2) s∗a tu = tzs∗a|z , where z ∈ U satisfies a · z = u.

Note that when (G ,P) is quasi-lattice ordered, we can always form
P ./ {e} satisfying our hypotheses. Then (1) says

t∗utv = tu−1(u∨v)tv−1(u∨v) (if u ∨ v exists),

which is Nica covariance. So C ∗(P ./ {e}) = C ∗(G ,P).
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The boundary quotient

Definition (BRRW,13)

We say a finite subset F ⊂ J (P) is a foundation set if for each
Y ∈ J (P) there exists X ∈ F with X ∩ Y 6= ∅. We define Q(P) to
be the quotient of C ∗(P) given by adding the relation∏

X∈F

(1− eX ) = 0 for all foundation sets F ⊆ P.

We now give an alternative presentation for Q(U ./ A):

Theorem (BRRW,13)

Suppose U and A are semigroups such that U ./ A exists, and
satisfying (1)–(4). Then Q(U ./ A) is the universal C ∗-algebra
generated by isometric representations {sa : a ∈ A} and {tu : u ∈ U}
satisfying (1), (K1), (K2) and

(Q1) sas∗a = 1; and

(Q2)
∏
{u:uU∈F}(1− tut∗u) = 0 for all foundation sets F ⊆ J (U).
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Example 1: C ∗-algebras associated to self-similar actions
The C ∗-algebra O(G ,X ) associated to a self-similar action (G ,X )
was first considered by Nekrashevych [11].

Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz
algebra T (G ,X ).

We can view
I T (G ,X ) as the universal C ∗-algebra generated by a

Toeplitz-Cuntz family of isometries {vx : x ∈ X} and a unitary
representation u of G satisfying ug vx = vg ·xug |x ; and

I O(G ,X ) as the quotient of T (G ,X ) by the ideal I generated by
1−

∑
x∈X vxv∗x .

Proposition (BRRW,13)

There are isomorphisms

T (G ,X ) ∼= C ∗(X ∗ ./ G ) and O(G ,X ) ∼= Q(X ∗ ./ G ).
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Example 2: C ∗-algebras associated to N o N×
Recall from Laca and Raeburn [6] that T (N o N×) is the universal
C ∗-algebra generated by an isometry s and isometries vp for each
prime p satisfying

vps = spvp s∗vp = sp−1vps∗

vpvq = vqvp v∗p skvp = 0 for all 1 ≤ k < p
v∗p vq = vqv∗p for p 6= q

The boundary quotient is QN from Cuntz’s [2], and corresponds to
adding the relations

ss∗ = 1 and

p−1∑
k=0

(skvp)(skvp)∗ = 1 for all primes p.

Proposition (BRRW,13)

For U = {(r , x) : 0 ≤ r < x} and A := {(m, 1) : m ∈ N} there are
isomorphisms T (N o N×) ∼= C ∗(U ./ A) and QN ∼= Q(U ./ A),
sending s 7→ s(1,1) and vp 7→ t(0,p) for all primes p.
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Example 3: C ∗-algebras associated to Z o Z×

Recall from [2] that QZ can be viewed as the universal C ∗-algebra
generated by a unitary s and isometries {va : a ∈ Z×} satisfying

vavb = vab for all a, b ∈ Z×;

vas = sava and vas∗ = s∗ava for all a ∈ Z×; and∑|a|−1
j=0 s jvav∗a s∗j = 1 for all a ∈ Z×.

Proposition (BRRW,13)

There is an isomorphism φ : QZ → Q(Z o Z×) satisfying φ(s) = s(1,1)

and
φ(va) = s(0,a/|a|)t(0,|a|) for all a ∈ Z×.
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Example 4: C ∗-algebras associated to BS(m, n)+

Recall that BS(m, n)+ ∼= U ./ A, where

U = 〈e, a, ba, b2a, . . . , bn−1a〉 ∼= F+
n and A = 〈e, b〉 ∼= N,

and

b · bka = bk+1(mod n)a and b|bka =

{
e if k < n − 1

bm if k = n − 1.

Proposition (BRRW,13)

The boundary quotient Q(BS(m, n)+ is the universal C ∗-algebra
generated by a unitary s and isometries t1, . . . , tn satisfyng

I sti = ti+1 for 1 ≤ i < n;

I stn = t1sm; and

I
∑n

i=1 ti t
∗
i = 1.

Moreover, Q(BS(m, n)+) is isomorphic to the Spielberg’s category of
paths algebra from [14], and the topological graph algebra O(En,m)
from Katsura’s [5].
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Example 5: C ∗-algebras associated to {0, 1}∗ ./ N.
Let X = {0, 1} and N = 〈γ〉. Consider X ∗ ./ N, where

γ · 0 = 1 γ|0 = e

γ · 1 = 0 γ|1 = γ.

Then

I X ∗ ./ N ∼= BS(1, 2)+

I C ∗(X ∗ ./ N) ∼= C ∗(BS(1, 2),BS(1, 2)+)

I Recall from Larsen-Li [8] that Q2 is the universal C ∗-algebra
generated by a unitary u and an isometry s2 satisfying

s2u = u2s2 and s2s∗2 + us2s∗2u∗ = 1.

There is an isomorphism φ : Q2 → Q(X ∗ ./ N) such that
φ(u) = sγ and φ(s2) = t0.
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