Zappa-Szép products of semigroups and their C^* -algebras

Nathan Brownlowe

University of Wollongong

Banff, 2013

(Joint with Jacqui Ramagge, Dave Robertson, Mike Whittaker)

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose $U,A\subseteq P$ are subsemigroups with

1. $U \cap A = \{e\}$, and

2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that p = ua.

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose $U,A\subseteq P$ are subsemigroups with

- 1. $U \cap A = \{e\}$, and
- 2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that p = ua.

So for each $a \in A$ and $u \in U$ there are unique elements $a \cdot u \in U$ and $a|_u \in A$ determined by $au = (a \cdot u)a|_u$.

The internal Zappa-Szép product of semigroups

These definitions can be found in the work of Brin [1]:

Suppose P is a semigroup with identity. Suppose $U,A\subseteq P$ are subsemigroups with

1. $U \cap A = \{e\}$, and

2. for all $p \in P$ there exists unique $(u, a) \in U \times A$ such that p = ua.

So for each $a \in A$ and $u \in U$ there are unique elements $a \cdot u \in U$ and $a|_u \in A$ determined by $au = (a \cdot u)a|_u$.

The semigroup *P* is an (internal) Zappa-Szép product $U \bowtie A = \{(u, a) : u \in U, a \in A\}$ with

$$(u,a)(v,b) = (u(a \cdot v), a|_v b).$$

The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

$$\cdot: A imes U o U$$
 and $|: A imes U o A$

satisfying

The external Zappa-Szép product of semigroups

Suppose U and A are semigroups with identity, and there are maps

$$\cdot: A imes U o U$$
 and $|: A imes U o A$

satisfying

Then we can form the (External) Zappa-Szép product semigroup $U \bowtie A := \{(u, a)\} : u \in U, a \in A\}$ with multiplication given by

$$(u,a)(v,b) = (u(a \cdot v), a|_v b).$$

We will look at the C^* -algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A:

(1) U and A are discrete left cancellative semigroups with identity;

We will look at the C^* -algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A:

- (1) U and A are discrete left cancellative semigroups with identity;
- (2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple r = pp' = qq' has a right least common multiple;

We will look at the C^* -algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A:

- (1) U and A are discrete left cancellative semigroups with identity;
- (2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple r = pp' = qq' has a right least common multiple;
- (3) the set of principal right ideals $\{aA : a \in A\}$ of A is totally ordered by inclusion; and

We will look at the C^* -algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A:

- (1) U and A are discrete left cancellative semigroups with identity;
- (2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple r = pp' = qq' has a right least common multiple;
- (3) the set of principal right ideals $\{aA : a \in A\}$ of A is totally ordered by inclusion; and
- (4) the map $u \mapsto a \cdot u$ is bijective for each fixed $a \in A$.

We will look at the C^* -algebras of the Zappa-Szép product semigroups in the sense of Li [10] with the following hypotheses imposed on U and A:

- (1) U and A are discrete left cancellative semigroups with identity;
- (2) U is right LCM, in the sense that every pair $p, q \in U$ with a right common multiple r = pp' = qq' has a right least common multiple;
- (3) the set of principal right ideals {aA : a ∈ A} of A is totally ordered by inclusion; and
- (4) the map $u \mapsto a \cdot u$ is bijective for each fixed $a \in A$.

Lemma (BRRW, Submitted 13)

Under hypotheses (1)–(4), $U \bowtie A$ is a discrete left cancellative right LCM semigroup.

Example 1: Self-similar actions

Let X be a finite alphabet, and X^* the set of finite words. Under concatenation, X^* is a semigroup with identity the empty word \emptyset . A faithful action of a group G on X^* is *self-similar* if for every $g \in G$ and $x \in X$, there exists unique $g|_x \in G$ such that

$$g \cdot (xw) = (g \cdot x)(g|_x \cdot w).$$

The pair (G, X) is called a *self-similar action*. (See Nekrashevych's book [12] for more on self-similar actions.)

Example 1: Self-similar actions

Let X be a finite alphabet, and X^* the set of finite words. Under concatenation, X^* is a semigroup with identity the empty word \emptyset . A faithful action of a group G on X^* is *self-similar* if for every $g \in G$ and $x \in X$, there exists unique $g|_x \in G$ such that

$$g \cdot (xw) = (g \cdot x)(g|_x \cdot w).$$

The pair (G, X) is called a *self-similar action*. (See Nekrashevych's book [12] for more on self-similar actions.)

Example: Adding Machine

Consider
$$(\mathbb{Z} = \langle \gamma \rangle, \{0, 1, \dots, n-1\})$$
 with
 $\gamma \cdot i = \begin{cases} i+1 & \text{if } i < n-1 \\ 0 & \text{if } i = n-1 \end{cases}$ and $\gamma|_i = \begin{cases} e & \text{if } i < n-1 \\ \gamma & \text{if } i = n-1. \end{cases}$

Restrictions extend to finite words, and satisfy

$$|g|_{vw} = (g|_v)|_w, \quad (gh)|_v = g|_{h \cdot v}h|_v \text{ and } (g|_v)^{-1} = g^{-1}|_{g \cdot v}.$$

The action $w \mapsto g \cdot w$ and restriction $w \mapsto g|_w$ maps satisfy (B1)–(B8), and so we can form $X^* \bowtie G$. Moreover, the semigroups X^* and G satisfy (1)–(4), so $X^* \bowtie G$ is a right LCM semigroup.

Restrictions extend to finite words, and satisfy

$$|g|_{vw} = (g|_v)|_w, \quad (gh)|_v = g|_{h \cdot v}h|_v \text{ and } (g|_v)^{-1} = g^{-1}|_{g \cdot v}.$$

The action $w \mapsto g \cdot w$ and restriction $w \mapsto g|_w$ maps satisfy (B1)–(B8), and so we can form $X^* \bowtie G$. Moreover, the semigroups X^* and G satisfy (1)–(4), so $X^* \bowtie G$ is a right LCM semigroup.

Zappa-Szép products of the form $X^* \bowtie G$ were first constructed by Lawson in [9].

Restrictions extend to finite words, and satisfy

$$|g|_{vw} = (g|_v)|_w, \quad (gh)|_v = g|_{h \cdot v}h|_v \text{ and } (g|_v)^{-1} = g^{-1}|_{g \cdot v}.$$

The action $w \mapsto g \cdot w$ and restriction $w \mapsto g|_w$ maps satisfy (B1)–(B8), and so we can form $X^* \bowtie G$. Moreover, the semigroups X^* and G satisfy (1)–(4), so $X^* \bowtie G$ is a right LCM semigroup.

Zappa-Szép products of the form $X^* \bowtie G$ were first constructed by Lawson in [9].

Example: Adding Machine

Note that since $\gamma|_i \in \{e, \gamma\} \subset \mathbb{N}$, we can form $X^* \bowtie \mathbb{N}$, which is a Zappa-Szép product associated to a "self-similar action of a semigroup".

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N}\rtimes\mathbb{N}^{\times},$ where

$$(m, a)(n, b) = (m + na, ab).$$

Laca-Raeburn [6] showed that $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ is quasi-lattice ordered.

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N} \rtimes \mathbb{N}^{\times},$ where

$$(m, a)(n, b) = (m + na, ab).$$

Laca-Raeburn [6] showed that $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ is quasi-lattice ordered.

Consider the following subsemigroups of $\mathbb{N}\rtimes\mathbb{N}^{\times}\colon$

$$U := \{(r,x) : x \in \mathbb{N}^{\times}, 0 \leq r < x\}$$
 and $A := \{(m,1) : m \in \mathbb{N}\}.$

Example 2: $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Consider the semidirect product $\mathbb{N}\rtimes\mathbb{N}^{\times},$ where

$$(m, a)(n, b) = (m + na, ab).$$

Laca-Raeburn [6] showed that $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ is quasi-lattice ordered.

Consider the following subsemigroups of $\mathbb{N} \rtimes \mathbb{N}^{\times}$:

$$U:=\{(r,x): x\in \mathbb{N}^\times, 0\leq r< x\} \quad \text{and} \quad A:=\{(m,1): m\in \mathbb{N}\}.$$

We have $U \cap A = \{(0,1)\}$ and each $(m,a) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ can be written uniquely as a product in *UA* via

$$(m,a) = \left(m \pmod{a}, a\right) \left(\frac{m - (m \pmod{a})}{a}, 1\right).$$

So we can form $U \bowtie A$ with $\mathbb{N} \rtimes \mathbb{N}^{\times} \cong U \bowtie A$, and U and A satisfy (1)–(4).

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the ax + b-semigroup over \mathbb{Z} , and the following subsemigroups:

 $U = \{(r, x) : x \ge 1, 0 \le r < x\}$ and $A = \mathbb{Z} \times \{1, -1\}.$

(Actually, A is a group.)

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the ax + b-semigroup over \mathbb{Z} , and the following subsemigroups:

 $U = \{(r, x) : x \ge 1, 0 \le r < x\}$ and $A = \mathbb{Z} \times \{1, -1\}.$

(Actually, A is a group.)

We have $U \cap A = \{(0,1)\}$ and each $(m,a) \in \mathbb{Z} \rtimes \mathbb{Z}^{\times}$ can be written uniquely as a product in *UA* via

$$(m,a) = \Big(m \pmod{|a|}, |a|\Big)\Big(\frac{m - (m \pmod{|a|})}{|a|}, \frac{a}{|a|}\Big).$$

Example 3: $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Consider the ax + b-semigroup over \mathbb{Z} , and the following subsemigroups:

 $U = \{(r, x) : x \ge 1, 0 \le r < x\}$ and $A = \mathbb{Z} \times \{1, -1\}.$

(Actually, A is a group.)

We have $U \cap A = \{(0,1)\}$ and each $(m,a) \in \mathbb{Z} \rtimes \mathbb{Z}^{\times}$ can be written uniquely as a product in *UA* via

$$(m,a) = \Big(m \pmod{|a|}, |a|\Big)\Big(\frac{m - (m \pmod{|a|})}{|a|}, \frac{a}{|a|}\Big).$$

So we can form $U \bowtie A$ with $\mathbb{Z} \rtimes \mathbb{Z}^{\times} \cong U \bowtie A$, and U and A satisfy (1)–(4).

Example 4: Baumslag-Solitar groups

For $m, n \ge 1$ define the Baumslag-Solitar group

$$BS(m,n) = \langle a, b : ab^m = b^n a \rangle.$$

Spielberg [14] showed that $(BS(m, n), BS(m, n)^+)$ is quasi-lattice ordered.

Example 4: Baumslag-Solitar groups

For $m, n \ge 1$ define the Baumslag-Solitar group

$$BS(m,n) = \langle a, b : ab^m = b^n a \rangle.$$

Spielberg [14] showed that $(BS(m, n), BS(m, n)^+)$ is quasi-lattice ordered.

Consider the subsemigroups of $BS(m, n)^+$:

$$U = \langle e, a, ba, b^2 a, \dots, b^{n-1} a \rangle \cong \mathbb{F}_n^+ \quad ext{and} \quad A = \langle e, b
angle \cong \mathbb{N}.$$

We have $U \cap A = \{e\}$, and we can write each element of $BS(m, n)^+$ uniquely as a product in UA (the normal form of an element). So we can form $U \bowtie A$ with

$$b \cdot b^k a = b^{k+1 (ext{mod } n)} a$$
 and $b|_{b^k a} = egin{cases} e & ext{if } k < n-1 \ b^m & ext{if } k = n-1. \end{cases}$

Then $BS(m, n)^+ \cong U \bowtie A$, and U and A satisfy (1)-(4).

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \to X \times Y$ a bijection. For each $(y,x) \in Y \times X$ denote by $\theta_X(y,x) \in X$ and $\theta_Y(x,y) \in Y$ the unique elements satisfying

 $\theta(y,x) = (\theta_X(y,x), \theta_Y(y,x)).$

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \to X \times Y$ a bijection. For each $(y,x) \in Y \times X$ denote by $\theta_X(y,x) \in X$ and $\theta_Y(x,y) \in Y$ the unique elements satisfying

$$\theta(y,x) = (\theta_X(y,x), \theta_Y(y,x)).$$

Then the semigroup generated by $X \cup Y \cup \{e\}$ with relations $yx = \theta_X(y, x)\theta_Y(y, x)$ is the 2-graph \mathbb{F}^+_{θ} studied in [3, 4].

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \to X \times Y$ a bijection. For each $(y,x) \in Y \times X$ denote by $\theta_X(y,x) \in X$ and $\theta_Y(x,y) \in Y$ the unique elements satisfying

 $\theta(y,x) = (\theta_X(y,x), \theta_Y(y,x)).$

Then the semigroup generated by $X \cup Y \cup \{e\}$ with relations $yx = \theta_X(y, x)\theta_Y(y, x)$ is the 2-graph \mathbb{F}^+_{θ} studied in [3, 4].

Every element $z \in \mathbb{F}_{\theta}^+$ admits a normal form z = vw where $v \in X^*$ and $w \in Y^*$. We have maps $G \times \mathbb{F}_{\theta}^+ \to \mathbb{F}_{\theta}^+$ and $G \times \mathbb{F}_{\theta}^+ \to G$ given by

 $(g,z)\mapsto g\cdot z:=(g\cdot v)(g|_v\cdot w) \quad \text{and} \quad (g,z)\mapsto g|_z:=(g|_v)|_w.$

Let X and Y be finite alphabets, G a group acting self-similarly on both X and Y, and $\theta: Y \times X \to X \times Y$ a bijection. For each $(y,x) \in Y \times X$ denote by $\theta_X(y,x) \in X$ and $\theta_Y(x,y) \in Y$ the unique elements satisfying

 $\theta(y,x) = (\theta_X(y,x), \theta_Y(y,x)).$

Then the semigroup generated by $X \cup Y \cup \{e\}$ with relations $yx = \theta_X(y, x)\theta_Y(y, x)$ is the 2-graph \mathbb{F}^+_{θ} studied in [3, 4].

Every element $z \in \mathbb{F}_{\theta}^+$ admits a normal form z = vw where $v \in X^*$ and $w \in Y^*$. We have maps $G \times \mathbb{F}_{\theta}^+ \to \mathbb{F}_{\theta}^+$ and $G \times \mathbb{F}_{\theta}^+ \to G$ given by

 $(g,z)\mapsto g\cdot z:=(g\cdot v)(g|_v\cdot w) \quad \text{and} \quad (g,z)\mapsto g|_z:=(g|_v)|_w.$

Proposition (BRRW,13)

The maps given above induce a Zappa-Szép product semigroup $\mathbb{F}^+_{\theta} \bowtie G$ if and only if

$$\theta_X(y,x) = g^{-1} \cdot \theta_X(g \cdot y,g|_y \cdot x) \quad \text{and} \quad \theta_Y(y,x) = g|_{\theta_X(y,x)}^{-1} \cdot \theta_Y(g \cdot y,g|_y \cdot x).$$

Example: Product of Adding Machines

Fix $m, n \geq 2$. Suppose \mathbb{Z} acts as the adding machine on $X := \{x_0, x_1, \cdots, x_{m-1}\}$ and $Y := \{y_0, y_1, \cdots, y_{n-1}\}$. There is a bijection from $\{0, 1, \ldots, n-1\} \times \{0, 1, \ldots, m-1\}$ to $\{0, 1, \ldots, m-1\} \times \{0, 1, \ldots, n-1\}$ sending (j, i) to the unique pair (i', j') satisfying j + in = i' + j'm. This induces a bijection

 $\theta: Y \times X \to X \times Y$ given by $\theta(y_j, x_i) = (x_{i'}, y_{j'}),$

and we can form the Zappa-Szép product $\mathbb{F}_{\theta}^+ \bowtie \mathbb{Z}$.

Example: Product of Adding Machines

Fix $m, n \geq 2$. Suppose \mathbb{Z} acts as the adding machine on $X := \{x_0, x_1, \cdots, x_{m-1}\}$ and $Y := \{y_0, y_1, \cdots y_{n-1}\}$. There is a bijection from $\{0, 1, \ldots, n-1\} \times \{0, 1, \ldots, m-1\}$ to $\{0, 1, \ldots, m-1\} \times \{0, 1, \ldots, n-1\}$ sending (j, i) to the unique pair (i', j') satisfying j + in = i' + j'm. This induces a bijection

 $\theta: Y \times X \to X \times Y$ given by $\theta(y_j, x_i) = (x_{i'}, y_{j'}),$

and we can form the Zappa-Szép product $\mathbb{F}_{\theta}^+ \bowtie \mathbb{Z}$.

Note that \mathbb{F}_{θ}^+ is right LCM if and only if gcd(m, n) = 1. Consider m = pa and n = pb. Then

$$p+0.pb = p+0.pa$$
 and $p+a.pb = p+b.pa$,

So

$$y_p x_0 = x_p y_0$$
 and $y_p x_m = x_p y_n$,

and x_p and y_p have two incomparable right common multiples.

If gcd(m, n) = 1, then

• \mathbb{F}_{θ}^+ and \mathbb{Z} satisfy (1)–(4).

If gcd(m, n) = 1, then

- \mathbb{F}_{θ}^+ and \mathbb{Z} satisfy (1)–(4).
- x_i → (i, m) and y_j → (j, n) is an isomorphism of 𝔽⁺_θ onto the subsemigroup of ℕ ⋊ ℕ[×] generated by the elements (0, m), ..., (m − 1, m), (0, n), ..., (n − 1, n).

If gcd(m, n) = 1, then

• \mathbb{F}_{θ}^+ and \mathbb{Z} satisfy (1)–(4).

x_i → (i, m) and y_j → (j, n) is an isomorphism of 𝔽⁺_θ onto the subsemigroup of ℕ ⋊ ℕ[×] generated by the elements (0, m),..., (m − 1, m), (0, n),..., (n − 1, n).

Also note that since \mathbb{N} is invariant under restrictions, we can form $\mathbb{F}_{\theta}^+ \bowtie \mathbb{N}$. If gcd(m, n) = 1, then $\mathbb{F}_{\theta}^+ \bowtie \mathbb{N}$ is isomorphic to the subsemigroup of $\mathbb{N} \rtimes \mathbb{N}^{\times}$ generated by (1, 1), (0, m), (0, n).

Semigroup C*-algebras

The following is due to Li [10]:

Let *P* be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing *P* and \emptyset , closed under left multiplication ($pX := \{px : x \in X\}$) and pre-images under left multiplication ($p^{-1}X = \{y \in P : py \in X\}$), and closed under finite intersections.

Semigroup C*-algebras

The following is due to Li [10]:

Let *P* be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing *P* and \emptyset , closed under left multiplication ($pX := \{px : x \in X\}$) and pre-images under left multiplication ($p^{-1}X = \{y \in P : py \in X\}$), and closed under finite intersections.

The full semigroup C^* -algebra $C^*(P)$ is the universal C^* -algebra generated by isometries $\{v_p : p \in P\}$ and projections $\{e_X : X \in \mathcal{J}(P)\}$ satisfying

$v_p v_q = v_{pq}$	$e_P = 1$ and $e_{\varnothing} = 0$
$v_p e_X v_p = e_{pX}$	$e_X e_Y = e_{X \cap Y}$

Semigroup C*-algebras

The following is due to Li [10]:

Let *P* be a discrete left cancellative semigroup. Let $\mathcal{J}(P)$ be the smallest collection of right ideals containing *P* and \emptyset , closed under left multiplication ($pX := \{px : x \in X\}$) and pre-images under left multiplication ($p^{-1}X = \{y \in P : py \in X\}$), and closed under finite intersections.

The full semigroup C^* -algebra $C^*(P)$ is the universal C^* -algebra generated by isometries $\{v_p : p \in P\}$ and projections $\{e_X : X \in \mathcal{J}(P)\}$ satisfying

 $\begin{array}{ll} v_p v_q = v_{pq} & e_P = 1 \text{ and } e_{\varnothing} = 0 \\ v_p e_X v_p = e_{pX} & e_X e_Y = e_{X \cap Y} \end{array}$

Note that when P is right LCM, $\mathcal{J}(P)$ consists only of principal right ideals; that is, $\mathcal{J}(P) = \{pP : p \in P\}$. Moreover,

$$C^*(P) = \overline{\operatorname{span}}\{v_p v_q^* : p, q \in P\}.$$

The C*-algebra $C^*(U \bowtie A)$

Let U and A be semigroups such that $U \bowtie A$ exists, and satisfying (1)–(4).

Theorem (BRRW,13)

The C^{*}-algebra C^{*}($U \bowtie A$) is the universal C^{*}-algebra generated by isometric representations { $s_a : a \in A$ } and { $t_u : u \in U$ } satisfying

$$t^*_ut_v=t_{u'}t^*_{v'}$$
 whenever $uU\cap vU=(uu')U=(vv')U,\ uu'=vv';\ (1)$ and

(K1)
$$s_a t_u = t_{a \cdot u} s_{a|_u}$$
; and
(K2) $s_a^* t_u = t_z s_{a|_z}^*$, where $z \in U$ satisfies $a \cdot z = u$.

The C*-algebra $C^*(U \bowtie A)$

Let U and A be semigroups such that $U \bowtie A$ exists, and satisfying (1)–(4).

Theorem (BRRW,13)

The C^{*}-algebra C^{*}($U \bowtie A$) is the universal C^{*}-algebra generated by isometric representations { $s_a : a \in A$ } and { $t_u : u \in U$ } satisfying

$$t^*_u t_v = t_{u'} t^*_{v'}$$
 whenever $u U \cap v U = (uu') U = (vv') U$, $uu' = vv'; \ (1)$ and

(K1)
$$s_a t_u = t_{a \cdot u} s_{a|_u}$$
; and
(K2) $s_a^* t_u = t_z s_{a|_z}^*$, where $z \in U$ satisfies $a \cdot z = u$.

Note that when (G, P) is quasi-lattice ordered, we can always form $P \bowtie \{e\}$ satisfying our hypotheses. Then (1) says

$$t_u^* t_v = t_{u^{-1}(u \vee v)} t_{v^{-1}(u \vee v)} \quad \text{(if } u \vee v \text{ exists)},$$

which is Nica covariance. So $C^*(P \bowtie \{e\}) = C^*(G, P)$.

The boundary quotient

Definition (BRRW,13)

We say a finite subset $F \subset \mathcal{J}(P)$ is a *foundation set* if for each $Y \in \mathcal{J}(P)$ there exists $X \in F$ with $X \cap Y \neq \emptyset$. We define $\mathcal{Q}(P)$ to be the quotient of $C^*(P)$ given by adding the relation

$$\prod_{X\in F} (1-e_X) = 0$$
 for all foundation sets $F\subseteq P$.

The boundary quotient

Definition (BRRW,13)

We say a finite subset $F \subset \mathcal{J}(P)$ is a *foundation set* if for each $Y \in \mathcal{J}(P)$ there exists $X \in F$ with $X \cap Y \neq \emptyset$. We define $\mathcal{Q}(P)$ to be the quotient of $C^*(P)$ given by adding the relation

$$\prod_{X\in F} (1-e_X) = 0$$
 for all foundation sets $F\subseteq P$.

We now give an alternative presentation for $\mathcal{Q}(U \bowtie A)$:

Theorem (BRRW,13)

Suppose U and A are semigroups such that $U \bowtie A$ exists, and satisfying (1)–(4). Then $Q(U \bowtie A)$ is the universal C*-algebra generated by isometric representations { $s_a : a \in A$ } and { $t_u : u \in U$ } satisfying (1), (K1), (K2) and

(Q1)
$$s_a s_a^* = 1$$
; and
(Q2) $\prod_{\{u: u U \in F\}} (1 - t_u t_u^*) = 0$ for all foundation sets $F \subseteq \mathcal{J}(U)$.

Example 1: C^* -algebras associated to self-similar actions

The C^* -algebra $\mathcal{O}(G, X)$ associated to a self-similar action (G, X) was first considered by Nekrashevych [11].

Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz algebra $\mathcal{T}(G, X)$.

We can view

- ➤ T(G, X) as the universal C*-algebra generated by a Toeplitz-Cuntz family of isometries {v_x : x ∈ X} and a unitary representation u of G satisfying u_gv_x = v_{g·x}u_{g|x}; and
- $\mathcal{O}(G, X)$ as the quotient of $\mathcal{T}(G, X)$ by the ideal *I* generated by $1 \sum_{x \in X} v_x v_x^*$.

Example 1: C^* -algebras associated to self-similar actions

The C^* -algebra $\mathcal{O}(G, X)$ associated to a self-similar action (G, X) was first considered by Nekrashevych [11].

Laca, Raeburn, Ramagge and Whittaker [7] examined the Toeplitz algebra $\mathcal{T}(G, X)$.

We can view

- ➤ T(G, X) as the universal C*-algebra generated by a Toeplitz-Cuntz family of isometries {v_x : x ∈ X} and a unitary representation u of G satisfying u_gv_x = v_{g ⋅ x}u_{g|x}; and
- $\mathcal{O}(G, X)$ as the quotient of $\mathcal{T}(G, X)$ by the ideal *I* generated by $1 \sum_{x \in X} v_x v_x^*$.

Proposition (BRRW,13)

There are isomorphisms

 $\mathcal{T}(G,X) \cong C^*(X^* \bowtie G)$ and $\mathcal{O}(G,X) \cong \mathcal{Q}(X^* \bowtie G).$

Example 2: C^* -algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ is the universal C^* -algebra generated by an isometry s and isometries v_p for each prime p satisfying

$$\begin{array}{ll} v_p s = s^p v_p & s^* v_p = s^{p-1} v_p s^* \\ v_p v_q = v_q v_p & v_p^* s^k v_p = 0 \text{ for all } 1 \le k$$

Example 2: C^* -algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ is the universal C^* -algebra generated by an isometry s and isometries v_p for each prime p satisfying

$$\begin{array}{ll} v_p s = s^p v_p & s^* v_p = s^{p-1} v_p s^* \\ v_p v_q = v_q v_p & v_p^* s^k v_p = 0 \text{ for all } 1 \leq k$$

The boundary quotient is $\mathcal{Q}_{\mathbb{N}}$ from Cuntz's [2], and corresponds to adding the relations

$$ss^* = 1$$
 and $\sum_{k=0}^{p-1} (s^k v_p)(s^k v_p)^* = 1$ for all primes p .

Example 2: C^* -algebras associated to $\mathbb{N} \rtimes \mathbb{N}^{\times}$

Recall from Laca and Raeburn [6] that $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ is the universal C^* -algebra generated by an isometry s and isometries v_p for each prime p satisfying

$$\begin{array}{ll} v_p s = s^p v_p & s^* v_p = s^{p-1} v_p s^* \\ v_p v_q = v_q v_p & v_p^* s^k v_p = 0 \text{ for all } 1 \leq k$$

The boundary quotient is $\mathcal{Q}_{\mathbb{N}}$ from Cuntz's [2], and corresponds to adding the relations

$$ss^* = 1$$
 and $\sum_{k=0}^{p-1} (s^k v_p)(s^k v_p)^* = 1$ for all primes p .

Proposition (BRRW,13)

For $U = \{(r, x) : 0 \le r < x\}$ and $A := \{(m, 1) : m \in \mathbb{N}\}$ there are isomorphisms $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times}) \cong C^{*}(U \bowtie A)$ and $\mathcal{Q}_{\mathbb{N}} \cong \mathcal{Q}(U \bowtie A)$, sending $s \mapsto s_{(1,1)}$ and $v_{p} \mapsto t_{(0,p)}$ for all primes p.

Example 3: C^* -algebras associated to $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Recall from [2] that $Q_{\mathbb{Z}}$ can be viewed as the universal C^* -algebra generated by a unitary *s* and isometries $\{v_a : a \in \mathbb{Z}^{\times}\}$ satisfying

$$\begin{array}{l} v_a v_b = v_{ab} \text{ for all } a, b \in \mathbb{Z}^{\times}; \\ v_a s = s^a v_a \text{ and } v_a s^* = s^{*a} v_a \text{ for all } a \in \mathbb{Z}^{\times}; \text{ and} \\ \sum_{j=0}^{|a|-1} s^j v_a v_a^* s^{*j} = 1 \text{ for all } a \in \mathbb{Z}^{\times}. \end{array}$$

Example 3: C^* -algebras associated to $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$

Recall from [2] that $Q_{\mathbb{Z}}$ can be viewed as the universal C^* -algebra generated by a unitary *s* and isometries $\{v_a : a \in \mathbb{Z}^{\times}\}$ satisfying

$$\begin{array}{l} v_a v_b = v_{ab} \text{ for all } a, b \in \mathbb{Z}^\times; \\ v_a s = s^a v_a \text{ and } v_a s^* = s^{*a} v_a \text{ for all } a \in \mathbb{Z}^\times; \text{ and} \\ \sum_{j=0}^{|a|-1} s^j v_a v_a^* s^{*j} = 1 \text{ for all } a \in \mathbb{Z}^\times. \end{array}$$

Proposition (BRRW,13)

There is an isomorphism $\phi : Q_{\mathbb{Z}} \to Q(\mathbb{Z} \rtimes \mathbb{Z}^{\times})$ satisfying $\phi(s) = s_{(1,1)}$ and

$$\phi(\mathsf{v}_{\mathsf{a}}) = \mathsf{s}_{(0,\mathsf{a}/|\mathsf{a}|)} t_{(0,|\mathsf{a}|)}$$
 for all $\mathsf{a} \in \mathbb{Z}^{ imes}.$

Example 4: C^* -algebras associated to $BS(m, n)^+$ Recall that $BS(m, n)^+ \cong U \bowtie A$, where

and

$$U = \langle e, a, ba, b^2 a, \dots, b^{n-1} a \rangle \cong \mathbb{F}_n^+$$
 and $A = \langle e, b \rangle \cong \mathbb{N}$,

$$b \cdot b^k a = b^{k+1 \pmod{n}} a$$
 and $b|_{b^k a} = \begin{cases} e & \text{if } k < n-1 \\ b^m & \text{if } k = n-1. \end{cases}$

Example 4: C^* -algebras associated to $BS(m, n)^+$ Recall that $BS(m, n)^+ \cong U \bowtie A$, where

$$U = \langle e, a, ba, b^2 a, \dots, b^{n-1} a \rangle \cong \mathbb{F}_n^+$$
 and $A = \langle e, b \rangle \cong \mathbb{N}$,

$$b \cdot b^k a = b^{k+1 \pmod{n}} a$$
 and $b|_{b^k a} = \begin{cases} e & \text{if } k < n-1 \\ b^m & \text{if } k = n-1. \end{cases}$

Proposition (BRRW,13)

and

The boundary quotient $Q(BS(m, n)^+)$ is the universal C*-algebra generated by a unitary s and isometries t_1, \ldots, t_n satisfying

•
$$st_i = t_{i+1}$$
 for $1 \le i < n$;

$$\blacktriangleright \sum_{i=1}^n t_i t_i^* = 1.$$

Moreover, $Q(BS(m, n)^+)$ is isomorphic to the Spielberg's category of paths algebra from [14], and the topological graph algebra $O(E_{n,m})$ from Katsura's [5].

$$egin{array}{ll} \gamma \cdot 0 = 1 & \gamma ert_0 = e \ \gamma \cdot 1 = 0 & \gamma ert_1 = \gamma. \end{array}$$

$$egin{array}{ll} \gamma \cdot 0 = 1 & \gamma ert_0 = e \ \gamma \cdot 1 = 0 & \gamma ert_1 = \gamma. \end{array}$$

Then

► $X^* \bowtie \mathbb{N} \cong \mathsf{BS}(1,2)^+$

$$\begin{aligned} \gamma \cdot \mathbf{0} &= 1 \qquad \gamma |_{\mathbf{0}} &= e \\ \gamma \cdot \mathbf{1} &= \mathbf{0} \qquad \gamma |_{\mathbf{1}} &= \gamma. \end{aligned}$$

Then

$$\blacktriangleright X^* \bowtie \mathbb{N} \cong \mathsf{BS}(1,2)^+$$

• $C^*(X^* \bowtie \mathbb{N}) \cong C^*(BS(1,2), BS(1,2)^+)$

$$\begin{aligned} \gamma \cdot \mathbf{0} &= 1 \qquad \gamma|_{\mathbf{0}} &= e \\ \gamma \cdot \mathbf{1} &= \mathbf{0} \qquad \gamma|_{\mathbf{1}} &= \gamma. \end{aligned}$$

Then

►
$$X^* \bowtie \mathbb{N} \cong \mathsf{BS}(1,2)^+$$

•
$$C^*(X^* \bowtie \mathbb{N}) \cong C^*(BS(1,2), BS(1,2)^+)$$

Recall from Larsen-Li [8] that Q₂ is the universal C*-algebra generated by a unitary u and an isometry s₂ satisfying

$$s_2 u = u^2 s_2$$
 and $s_2 s_2^* + u s_2 s_2^* u^* = 1$.

There is an isomorphism $\phi : \mathcal{Q}_2 \to \mathcal{Q}(X^* \bowtie \mathbb{N})$ such that $\phi(u) = s_{\gamma}$ and $\phi(s_2) = t_0$.

- M.G. Brin, On the Zappa-Szép product, Comm. in Algebra 33 (2005), 393–424.
- J. Cuntz, C*-algebras associated with the ax + b-semigroup over ℕ, K-theory and noncommutative geometry, 201–215, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2008.
- K.R. Davidson, S.C. Power and D. Yang, *Dilation theory for rank 2 graph algebras*, J. Operator Theory **63** (2010), 245–270.
- K.R. Davidson and D. Yang, *Periodicity in rank* 2 graph algebras Canad. J. Math. **61** (2009), 1239–1261.
- T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras. IV. Pure infiniteness, J. Funct. Anal. 254 (2008), 1161–1187.
- M. Laca and I. Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math.
 225 (2010), 643–688.

- M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, http://arxiv.org/pdf/1301.4722.pdf
- N.S. Larsen and X. Li, *The 2-adic ring C*-algebra of the integers and its representations*, J. Funct. Anal. **262** (2012), 1392–1426.
- M.V. Lawson A correspondence between a class of semigroups and self-similar group actions. I, Semigroup Forum 76 (2008), 489–517.
- X. Li, Semigroup C*-algebras and amenability of semigroups, J. Funct. Anal. **262** (2012), 4302–4340.
- V. Nekrashevych, *Cuntz-Pimsner algebras of group actions*, J. Operator Theory **52** (2004), 223–249.
- V. Nekrashevych, Self-similar groups, Math. Surveys and Monographs vol. 117, Amer. Math. Soc., Providence, 2005.

- A. Nica, C^{*}-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory **27** (1992), 17–52.
- J. Spielberg, *C**-algebras for categories of paths associated to the Baumslag-Solitar groups, J. Lond. Math. Soc. **86** (2012), 728–754.

Thanks!