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1. Motivation

eπ
√
163 = 262537412640768743.99999999999925007259

Almost an integer, and not by accident!

Put q(τ ) = e2πiτ . There is an analytic function of τ , the
j-invariant, with

j(τ ) = q(τ )−1+744+196884q(τ )+21493860q(τ )2+ . . .



For τ0 = (1 +
√
−163)/2, we have q(τ0) = −e−π

√
163,

and

j(τ0) = −262537412640768000 ≈ q(τ0)
−1 + 744

The ‘miracle’ has to do with the fact that Z[τ ] is a PID,
so that the field Q(

√
−163) has no everywhere unrami-

fied abelian extensions.

Kronecker’s Jugendtraum/Hilbert’s 12th Problem: in gen-
eral, can we generate abelian extensions of number fields
by special values of analytic functions?



In the known case, imaginary quadratic fields, the ana-
lytic functions come from certain concrete algebraic curves.

Connes’ idea: consider functions on non-commutative
geometric objects, ie elements in someC∗-dynamical sys-
tem, and evaluate them at certain ‘fabulous’ KMS states.



Conjecture. (Connes et al.) For a number field K,
there exists aC∗-dynamical systemAK (the ‘Bost-Connes
system’) with aQ-subalgebra A0

K satisfying:a) Extremal
KMS∞ states of AK form a principal homogenous space
under Gab

K , and

b) For each such state ϕ and every a ∈ A0
K , ϕ(a) is an al-

gebraic number. This correspondence isGab
K -equivariant:

ϕ(τa) = τ (ϕ(a)), for all τ ∈ GK

c) The set of all ϕ(a) generates Kab/K.

d) The partition function of the system is ζK(β).



Candidates for AK

• Bost-Connes original system is the Hecke algebra cor-
responding to the pair[

1 Z
0 1

]
⊂

[
1 Q
0 Q∗

]
.

They recover the well-known result, Qab = Q( ∞√1).
• Laca and Frankenhuijsen generalize this to an arbi-
trary number field by considering the Hecke pair[

1 O
0 O∗

]
⊂

[
1 K
0 K∗

]



This has the right phase transition and spontaneous
symmetry breaking only when O is a principal ideal
domain.

• The ‘right’ definition is a semigroup crossed product,
which explicitly puts in the correct Gab

K action.

We establish relations between these.



Local Class Field Theory

• K non-archimedean:

0 → O∗ → K∗ v−→ Z → 0
↓∼= ↓ ↓

0 → Iabv → Gab
K

recK−−−→ Ẑ → 0

Frobv 7→ 1

• K archimedean, ie K = R or C: K∗/Ko ∼−−−→
recK

Gab
K .



Number Fields - Notation

Fix K a number field (finite extension of Q).

• O: ring of integers of K
• v a valuation:

– v - ∞: v = vP, valuation at a prime P of O
– v | ∞: v : K ↪→ R or K ↪→ C

•Kv: completion of K at v
• Ov: ring of integers of Kv (for v - ∞)
•K∞ =

∏
v|∞Kv

•K∗
∞ =

∏
v|∞K∗

v , K
o
∞ - connected comp. of K∗

∞



•K∗
+ = {x ∈ K∗ : v(x) > 0, ∀v - ∞},

O∗
+ = K∗

+ ∩O∗: groups of totally positive elements
• Finite adèles: restricted product

Af =
∏′

v-∞
Ov⊂Kv

Kv

•Adèles: locally compact topological ring

A =
∏′

all v
Ov⊂Kv

Kv = K∞ × Af

• Idèles:
A∗ =

∏′

all v
O∗
v⊂K∗

v

K∗
v = K∗

∞ × A∗
f



• Ô =
∏

v-∞Ov

• J ∼= A∗
f/Ô

∗: the group of all ideals

• P ∼= K∗
+/O∗

+: the subgroup of J consisting of princi-
pal fractional ideals with a totally positive generator

• Cl+ = J/P : the narrow ideal class group - always
finite



Global Class Field Theory

Global Reciprocity Law glues together local reciprocity
maps:

1 → Ko∞K∗ → A∗ recK−−−→ Gab
K → 1

↑ ↑
K∗
v

recKv−−−−→ Gab
Kv

Main point (‘reciprocity’) is recK(K∗) = id.



For us it’s convenient to express the Global Reciprocity
Law purely in terms of A∗

f :

The restrictions of recK to A∗
f ⊃ Ô∗ give isomorphisms

A∗
f/K

∗
+
∼= Gab

K

Ô∗/O∗
+
∼= GKab/H+(K)

Here H+(K) is the (finite) extension of K which is its
‘universal cover’ - maximal extension unramified at all
v - ∞.



Induction

ρ : H ↪→ G: injective homomorphism of discrete abelian
groups.

X : locally compact space with a left action of H by
homeomorphisms. H acts diagonally on G×X . Put

G×H X = H\(G×X).

The composition i : X → G × X → G ×H X is H-
equivariant and induces H\X ∼= G\(G×H X).



i(X) is clopen in G×H X , the corresponding projection
in the multiplier algebra of C0(G ×H X) or G is full,
and

C0(X)or H ∼= 1i(X)(C0(G×H X)or G)1i(X).



The Bost-Connes System

A∗
f × A∗

f acts on A∗
f × Af by

(g, h)(x, y) = (gxh−1, hy)

1st coordinate acts on 1st component, 2nd acts diago-
nally.

Consider ω : A∗
f × Af → A∗

f × Af ,

(x, y) 7→ (x−1, xy)

Then ω((g, h)(x, y)) = (h, g)ω(x, y).



Restricting the actions, we see that ω intertwines with
the flip homomorphsimK∗

+×Ô∗ → Ô∗×K∗
+, (g, h) 7→

(h, g), and induces

(K∗
+×Ô∗)\(A

∗
f × Af )

∼=
(Ô∗×K∗

+)
\(A∗

f × Af )



Identify these two quotients:

(K∗
+×Ô∗)\(A

∗
f × Af )

∼= A∗
f/K

∗
+ ×Ô∗ Af

∼= Gab
K ×Ô∗ Af

∼= X

(Ô∗×K∗
+)
\(A∗

f × Af )
∼= A∗

f/Ô
∗ ×

K∗
+
Af

∼= J ×
(K∗

+/O∗
+)

Af/O∗
+

∼= J ×P Af/O∗
+ = X ′

Note: Both X and X ′ come with a right action of J =
A∗
f/Ô

∗, via recK × id and via and the 1st component,

respectively.



Define two subsets

Y = Gab
K ×Ô∗ Ô

Y ′ = {(g, ω) ∈ X+ : gω ∈ Ô/Ô∗}
Two isomorphic dynamical systems:

Bost-Connes:

{
AK = 1Y (C0(X)o J)1Y
σKt (fug) = NK(g)itfug.

Twisted Bost-Connes:

{
A′
K = 1Y ′(C0(X

′)o J)1Y ′

σ′t
K
(fug) = NK(g)itfug.



Connection with Hecke Algebras

The ‘ax + b’ groups

H+
O =

[
1 O
0 O∗

+

]
⊂ H+

K =

[
1 K
0 K∗

+

]
form a Hecke pair: any double coset is a finite union of
cosets.

The Hecke algebra C∗
r (H

+
O, H

+
K) has a time evolution

σt

([
1 y
0 x

])
= NK(x)it.



Theorem 1.Consider the inclusions Ô/O∗
+ ⊂ Af/O∗

+

and ZH+(K) = GKab/H+(K) ×Ô∗ Ô ⊂ X, and let

p1, p2 be the corresponding projections. There are C
∗-

algebra isomorphisms

C∗
r (H

+
K, H+

O)
∼=

p1(C0(Af/O∗
+)o P )p1

∼=
p2(AK)p2

The isomorphisms can be chosen so that the canon-
ical time evolution C∗

r (H
+
O, H

+
K) is compatible with

the one on the cross products given by σt(fux) =
NK(x)itfux, restricted to the corner.



Proof. The first isomorphism is straightforward: use du-
ality and the fact that H+

K = KoK∗, so we can project
in two stages. For the second isomorphism, induce from
P to J . Let i : Af/O∗

+ ↪→ J ×P Af/O∗
+ = X ′ be the

obvious inclusion. By the induction lemma,

C0(Af/O∗
+)o P ∼= 1

i(Af/O∗
+)
(C0(X

′)o J)1
i(Af/O∗

+)
.

Tracing through the various identifications, we get
i(p1)1i(Af/O∗

+)
= p′1Y ′, where p′ corresponds to p2 un-

der the isomorphism A′
K

∼= AK . Then

p1(C0(Af/O∗
+)o P )p1

∼=
i(p1)1i(Af/O∗

+)
(C0(X

′)o J)1
i(Af/O∗

+)
i(p1)

∼=

p′1Y ′(C0(X
′)o J)1Y ′p′ ∼= p′(A′

K)p′ ∼= p2(AK)p2�



Functoriality of Bost-Connes Systems

Let τ : K ↪→ L be an inclusion of number fields. Put

Xτ = JL ×JK XK

Compare actions of JL on Xτ and XL.

Lemma 1. πτ : Xτ → XL, πτ (g, x) = gx is JL-
equivariant with dense image.

πτ defines a JL-equivariant injective homomorphism
C0(XL) → Cb(Xτ ), hence π

∗
τ : C0(XK)oJL → M(C0(Xτ )o

JL).



ιτ : XK → Xτ , x 7→ (OL, x) is a JK-equivariant em-
bedding which induces an isomorphism ι∗τ : 1ιτ (XK)(C0(Xτ )o
JL)1ιτ (XK) → C0(XK)o JK .

Ãτ = (C0(Xτ )oJL)1ιτ (XK) is a (C0(XL)oJL)-(C0(XK)o
JK) correspondence:

• right Hilbert C0(XK)o JK-module via (ι∗τ )
−1, and

the C0(XK)o JK-valued inner product by ⟨ξ, η⟩ =
ι∗π(ξ

∗η).
• right C0(XL)o JL-module via π∗τ



To get a correspondence of BC algebras, we need to pass
to a corner: Aτ = 1YLÃτ1YK .

Lemma 2. Let τ : K → L, ρ : L → K field embed-
dings. Then Aρ ⊗AL

Aτ
∼= Aρ◦τ , canonically.

To make AK ’s into compatible C∗-dynamical systems,
we normalize the time evolution by

σKt (fug) = NK(g)it/[K:Q]fug

We have a 1-parameter family of isometries on Aτ ⊂
C0(Xτ )oJL given by Uτ

t fug = NL(g)
it/[L:Q]fug. This

makes Aτ into an equivariant correspondence of C∗-
dynamical systems (AL, σ

L) and (AK, σK) in the sense



that

Uτ
t (aξ) = σLt (a)U

τ
t ξ

Uτ
t (ξb) = Uτ

t ξσ
K
t (b)

⟨Uτ
t ξ, U

τ
t η⟩ = σKt (⟨ξ, η⟩).

Theorem The maps K 7→ (AK, σK), (τ : K → L) 7→
(Aτ , U

τ
t ) defines a functor from the category of number

fields (with embeddings as morphisms) andC∗-dynamical
systems (with isomorphism classes of equivariant corre-
spondences as morphisms).


