Bost-Connes Systems and Induction

Mak Trifković
University of Victoria

M. Laca, S. Neshveyev, T. Bost-Connes systems, Hecke algebras, and induction. J. Noncommut. Geom 7 (2013), no. 2

1. Motivation

$e^{\pi \sqrt{163}}=262537412640768743.99999999999925007259$

Almost an integer, and not by accident!
$\operatorname{Put} q(\tau)=e^{2 \pi i \tau}$. There is an analytic function of τ, the j-invariant, with

$$
j(\tau)=q(\tau)^{-1}+744+196884 q(\tau)+21493860 q(\tau)^{2}+\ldots
$$

For $\tau_{0}=(1+\sqrt{-163}) / 2$, we have $q\left(\tau_{0}\right)=-e^{-\pi \sqrt{163}}$, and

$$
j\left(\tau_{0}\right)=-262537412640768000 \approx q\left(\tau_{0}\right)^{-1}+744
$$

The 'miracle' has to do with the fact that $\mathbb{Z}[\tau]$ is a PID, so that the field $\mathbb{Q}(\sqrt{-163})$ has no everywhere unramified abelian extensions.

Kronecker's Jugendtraum/Hilbert's 12th Problem: in general, can we generate abelian extensions of number fields by special values of analytic functions?

In the known case, imaginary quadratic fields, the analytic functions come from certain concrete algebraic curves.

Connes' idea: consider functions on non-commutative geometric objects, ie elements in some C^{*}-dynamical system, and evaluate them at certain 'fabulous' KMS states.

Conjecture. (Connes et al.) For a number field K, there exists a C^{*}-dynamical system A_{K} (the 'Bost-Connes system') with a \mathbb{Q}-subalgebra A_{K}^{0} satisfying:a) Extremal KMS_{∞} states of A_{K} form a principal homogenous space under $G_{K}^{a b}$, and
b) For each such state ϕ and every $a \in A_{K}^{0}, \phi(a)$ is an algebraic number. This correspondence is $G_{K}^{a b}$-equivariant:

$$
\phi(\tau a)=\tau(\phi(a)), \text { for all } \tau \in G_{K}
$$

c) The set of all $\phi(a)$ generates $K^{a b} / K$.
d) The partition function of the system is $\zeta_{K}(\beta)$.

Candidates for A_{K}

- Bost-Connes original system is the Hecke algebra corresponding to the pair

$$
\left[\begin{array}{ll}
1 & \mathbb{Z} \\
0 & 1
\end{array}\right] \subset\left[\begin{array}{ll}
1 & \mathbb{Q} \\
0 & \mathbb{Q}^{*}
\end{array}\right] .
$$

They recover the well-known result, $\mathbb{Q}^{a b}=\mathbb{Q}(\sqrt[\infty]{1})$.

- Laca and Frankenhuijsen generalize this to an arbitrary number field by considering the Hecke pair

$$
\left[\begin{array}{cc}
1 & \mathcal{O} \\
0 & \mathcal{O}^{*}
\end{array}\right] \subset\left[\begin{array}{cc}
1 & K \\
0 & K^{*}
\end{array}\right]
$$

This has the right phase transition and spontaneous symmetry breaking only when \mathcal{O} is a principal ideal domain.

- The 'right' definition is a semigroup crossed product, which explicitly puts in the correct $G_{K}^{a b}$ action.

We establish relations between these.

Local Class Field Theory

- \mathcal{K} non-archimedean:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}^{*} \rightarrow \mathcal{K}^{*} \quad \xrightarrow{v} \mathbb{Z} \rightarrow 0 \\
& \downarrow \cong \downarrow \downarrow \\
& 0 \rightarrow I_{v}^{a b} \rightarrow G_{\mathcal{K}}^{a b} \quad \xrightarrow{r e c_{\mathcal{K}}} \hat{\mathbb{Z}} \rightarrow 0 \\
& \text { Frob }_{v} \quad \mapsto \quad 1
\end{aligned}
$$

- \mathcal{K} archimedean, ie $\mathcal{K}=\mathbb{R}$ or $\mathbb{C}: \mathcal{K}^{*} / \mathcal{K}^{o} \underset{r e c_{\mathcal{K}}}{\sim} G_{\mathcal{K}}^{a b}$.

Number Fields - Notation

Fix K a number field (finite extension of \mathbb{Q}).

- \mathcal{O} : ring of integers of K
- v a valuation:
$-v \nmid \infty: v=v_{\mathfrak{P}}$, valuation at a prime \mathfrak{P} of \mathcal{O}
$-v \mid \infty: v: K \hookrightarrow \mathbb{R}$ or $K \hookrightarrow \mathbb{C}$
- K_{v} : completion of K at v
- \mathcal{O}_{v} : ring of integers of K_{v} (for $v \nmid \infty$)
- $K_{\infty}=\prod_{v \mid \infty} K_{v}$
- $K_{\infty}^{*}=\prod_{v \mid \infty} K_{v}^{*}, K_{\infty}^{o}$ - connected comp. of K_{∞}^{*}
- $K_{+}^{*}=\left\{x \in K^{*}: v(x)>0, \quad \forall v \nmid \infty\right\}$,
$\mathcal{O}_{+}^{*}=K_{+}^{*} \cap \mathcal{O}^{*}$: groups of totally positive elements
- Finite adèles: restricted product

$$
\mathbb{A}_{f}=\prod_{\substack{v \nmid \infty \\ \mathcal{O}_{v} \subset K_{v}}}^{\prime} K_{v}
$$

- Adèles: locally compact topological ring

$$
\mathbb{A}=\prod_{\substack{\text { all } \\ \mathcal{O}_{v} \subset K_{v}}}^{\prime} K_{v}=K_{\infty} \times \mathbb{A}_{f}
$$

- Idèles:

$$
\mathbb{A}^{*}=\prod_{\substack{\text { all } v \\ \mathcal{O}_{v}^{*} \subset K_{v}^{*}}}^{\prime} K_{v}^{*}=K_{\infty}^{*} \times \mathbb{A}_{f}^{*}
$$

- $\hat{\mathcal{O}}=\prod_{v \nmid \infty} \mathcal{O}_{v}$
- $J \cong \mathbb{A}_{f}^{*} / \hat{\mathcal{O}}^{*}$: the group of all ideals
- $P \cong K_{+}^{*} / \mathcal{O}_{+}^{*}$: the subgroup of J consisting of principal fractional ideals with a totally positive generator - $\mathrm{Cl}_{+}=J / P$: the narrow ideal class group - always finite

Global Class Field Theory

Global Reciprocity Law glues together local reciprocity maps:

$$
\begin{aligned}
& 1 \rightarrow \overline{K_{\infty}^{o} K^{*}} \rightarrow \underset{\uparrow}{\mathbb{A}^{*}} \xrightarrow{r e c_{K}} \\
& G_{K}^{a b} \\
& \uparrow \\
& K_{v}^{*} \xrightarrow{r e c_{K_{v}}} G_{K_{v}}^{a b}
\end{aligned}
$$

Main point ('reciprocity') is $\operatorname{rec}_{K}\left(K^{*}\right)=i d$.

For us it's convenient to express the Global Reciprocity Law purely in terms of \mathbb{A}_{f}^{*} :

The restrictions of $r e c_{K}$ to $\mathbb{A}_{f}^{*} \supset \hat{\mathcal{O}}^{*}$ give isomorphisms

$$
\begin{aligned}
\mathbb{A}_{f}^{*} / \overline{K_{+}^{*}} \cong G_{K}^{a b} \\
\hat{\mathcal{O}}^{*} / \overline{\mathcal{O}_{+}^{*}} \cong G_{K^{a b} / H_{+}(K)}
\end{aligned}
$$

Here $H_{+}(K)$ is the (finite) extension of K which is its 'universal cover' - maximal extension unramified at all $v \nmid \infty$.

Induction

$\rho: H \hookrightarrow G$: injective homomorphism of discrete abelian groups.
X : locally compact space with a left action of H by homeomorphisms. H acts diagonally on $G \times X$. Put

$$
G \times_{H} X=H \backslash(G \times X) .
$$

The composition $i: X \rightarrow G \times X \rightarrow G \times_{H} X$ is H equivariant and induces $H \backslash X \cong G \backslash\left(G \times_{H} X\right)$.
$i(X)$ is clopen in $G \times_{H} X$, the corresponding projection in the multiplier algebra of $C_{0}\left(G \times_{H} X\right) \rtimes_{r} G$ is full, and

$$
C_{0}(X) \rtimes_{r} H \cong \mathbf{1}_{i(X)}\left(C_{0}\left(G \times_{H} X\right) \rtimes_{r} G\right) \mathbf{1}_{i(X)}
$$

The Bost-Connes System

$\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}^{*}$ acts on $\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}$ by

$$
(g, h)(x, y)=\left(g x h^{-1}, h y\right)
$$

1st coordinate acts on 1st component, 2nd acts diagonally.

Consider $\omega: \mathbb{A}_{f}^{*} \times \mathbb{A}_{f} \rightarrow \mathbb{A}_{f}^{*} \times \mathbb{A}_{f}$,

$$
(x, y) \mapsto\left(x^{-1}, x y\right)
$$

Then $\omega((g, h)(x, y))=(h, g) \omega(x, y)$.

Restricting the actions, we see that ω intertwines with the flip homomorphsim $\overline{K_{+}^{*}} \times \hat{\mathcal{O}}^{*} \rightarrow \hat{\mathcal{O}}^{*} \times \overline{K_{+}^{*}},(g, h) \mapsto$ (h, g), and induces

$$
\left(\overline{K_{+}^{*}} \times \hat{\mathcal{O}}^{*}\right) \backslash\left(\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}\right) \cong\left(\hat{\mathcal{O}}^{*} \times \overline{K_{+}^{*}} \backslash\left(\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}\right)\right.
$$

Identify these two quotients:

$$
\begin{aligned}
\left(\overline{K_{+}^{*}} \times \hat{\mathcal{O}}^{*}\right) \backslash\left(\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}\right) & \cong \mathbb{A}_{f}^{*} / \overline{K_{+}^{*}} \times_{\hat{\mathcal{O}}^{*}} \mathbb{A}_{f} \\
& \cong G_{K}^{a b} \times_{\hat{\mathcal{O}}^{*}} \mathbb{A}_{f} \\
& \cong X \\
\left(\hat{\mathcal{O}}^{*} \times \overline{K_{+}^{*}}\right) \backslash\left(\mathbb{A}_{f}^{*} \times \mathbb{A}_{f}\right) & \cong \mathbb{A}_{f}^{*} / \hat{\mathcal{O}}^{*} \times \overline{K_{+}^{*}} \mathbb{A}_{f} \\
& \cong J \times\left(\overline{K_{+}^{*} / \overline{\mathcal{O}_{+}^{*}}} \mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right. \\
& \cong J \times_{P} \mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}=X^{\prime}
\end{aligned}
$$

Note: Both X and X^{\prime} come with a right action of $J=$ $\mathbb{A}_{f}^{*} / \hat{\mathcal{O}}^{*}$, via $\operatorname{rec}_{K} \times i d$ and via and the 1 st component, respectively.

Define two subsets

$$
\begin{aligned}
Y & =G_{K}^{a b} \times_{\hat{\mathcal{O}}^{*}} \hat{\mathcal{O}} \\
Y^{\prime} & =\left\{(g, \omega) \in X^{+}: g \omega \in \hat{\mathcal{O}} / \hat{\mathcal{O}}^{*}\right\}
\end{aligned}
$$

Two isomorphic dynamical systems:

Bost-Connes:

$$
\left\{\begin{array}{l}
A_{K}=\mathbf{1}_{Y}\left(C_{0}(X) \rtimes J\right) \mathbf{1}_{Y} \\
\sigma_{t}^{K}\left(f u_{g}\right)=N_{K}(g)^{i t} f u_{g}
\end{array}\right.
$$

Twisted Bost-Connes: $\left\{\begin{array}{l}A_{K}^{\prime}=\mathbf{1}_{Y^{\prime}}\left(C_{0}\left(X^{\prime}\right) \rtimes J\right) \mathbf{1}_{Y^{\prime}} \\ \sigma_{t}^{\prime K}\left(f u_{g}\right)=N_{K}(g)^{i t} f u_{g} .\end{array}\right.$

Connection with Hecke Algebras

The ' $a x+b$ ' groups

$$
H_{\mathcal{O}}^{+}=\left[\begin{array}{cc}
1 & \mathcal{O} \\
0 & \mathcal{O}_{+}^{*}
\end{array}\right] \subset H_{K}^{+}=\left[\begin{array}{cc}
1 & K \\
0 & K_{+}^{*}
\end{array}\right]
$$

form a Hecke pair: any double coset is a finite union of cosets.

The Hecke algebra $C_{r}^{*}\left(H_{\mathcal{O}}^{+}, H_{K}^{+}\right)$has a time evolution

$$
\sigma_{t}\left(\left[\begin{array}{ll}
1 & y \\
0 & x
\end{array}\right]\right)=\mathrm{N}_{K}(x)^{i t}
$$

Theorem 1. Consider the inclusions $\hat{\mathcal{O}} / \overline{\mathcal{O}_{+}^{*}} \subset \mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}$ and $Z_{H^{+}(K)}=G_{K^{a b} / H_{+}(K)} \times_{\hat{\mathcal{O}}^{*}} \hat{\mathcal{O}} \subset X$, and let p_{1}, p_{2} be the corresponding projections. There are C^{*} algebra isomorphisms

$$
\begin{aligned}
& C_{r}^{*}\left(H_{K}^{+}, H_{\mathcal{O}}^{+}\right) \cong \\
& p_{1}\left(C_{0}\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right) \rtimes P\right) p_{1} \cong \\
& p_{2}\left(A_{K}\right) p_{2}
\end{aligned}
$$

The isomorphisms can be chosen so that the canonical time evolution $C_{r}^{*}\left(H_{\mathcal{O}}^{+}, H_{K}^{+}\right)$is compatible with the one on the cross products given by $\sigma_{t}\left(f u_{x}\right)=$ $N_{K}(x)^{i t} f u_{x}$, restricted to the corner.

Proof. The first isomorphism is straightforward: use duality and the fact that $H_{K}^{+}=K \rtimes K^{*}$, so we can project in two stages. For the second isomorphism, induce from P to J. Let $i: \mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}} \hookrightarrow J \times_{P} \mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}=X^{\prime}$ be the obvious inclusion. By the induction lemma,

$$
C_{0}\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right) \rtimes P \cong \mathbf{1}_{i\left(\mathbb{A}_{f} / \overline{\left.\mathcal{O}_{+}^{*}\right)}\right.}\left(C_{0}\left(X^{\prime}\right) \rtimes J\right) \mathbf{1}_{i\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right)}
$$

Tracing through the various identifications, we get $i\left(p_{1}\right) \mathbf{1}_{i\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right)}=p^{\prime} \mathbf{1}_{Y^{\prime}}$, where p^{\prime} corresponds to p_{2} under the isomorphism $A_{K}^{\prime} \cong A_{K}$. Then

$$
\begin{aligned}
& p_{1}\left(C_{0}\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right) \rtimes P\right) p_{1} \cong \\
& i\left(p_{1}\right) \mathbf{1}_{i\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right)}\left(C_{0}\left(X^{\prime}\right) \rtimes J\right) \mathbf{1}_{i\left(\mathbb{A}_{f} / \overline{\mathcal{O}_{+}^{*}}\right)} i\left(p_{1}\right) \cong \\
& p^{\prime} \mathbf{1}_{Y^{\prime}}\left(C_{0}\left(X^{\prime}\right) \rtimes J\right) \mathbf{1}_{Y^{\prime}} p^{\prime} \cong p^{\prime}\left(A_{K}^{\prime}\right) p^{\prime} \cong p_{2}\left(A_{K}\right) p_{2} \square
\end{aligned}
$$

Functoriality of Bost-Connes Systems

Let $\tau: K \hookrightarrow L$ be an inclusion of number fields. Put

$$
X_{\tau}=J_{L} \times{ }_{J_{K}} X_{K}
$$

Compare actions of J_{L} on X_{τ} and X_{L}.
Lemma 1. $\pi_{\tau}: X_{\tau} \rightarrow X_{L}, \pi_{\tau}(g, x)=g x$ is $J_{L^{-}}$ equivariant with dense image.
π_{τ} defines a J_{L}-equivariant injective homomorphism $\mathbb{C}_{0}\left(X_{L}\right) \rightarrow C_{b}\left(X_{\tau}\right)$, hence $\pi_{\tau}^{*}: C_{0}\left(X_{K}\right) \rtimes J_{L} \rightarrow M\left(C_{0}\left(X_{\tau}\right) \rtimes\right.$ $\left.J_{L}\right)$.

$$
\iota_{\tau}: X_{K} \rightarrow X_{\tau}, x \mapsto\left(\mathcal{O}_{L}, x\right) \text { is a } J_{K^{-}} \text {equivariant em- }
$$ bedding which induces an isomorphism $\iota_{\tau}^{*}: \mathbf{1}_{\iota_{\tau}\left(X_{K}\right)}\left(C_{0}\left(X_{\tau}\right) \rtimes\right.$ $\left.J_{L}\right) \mathbf{1}_{\iota_{\tau}\left(X_{K}\right)} \rightarrow C_{0}\left(X_{K}\right) \rtimes J_{K}$.

$$
\tilde{A}_{\tau}=\left(C_{0}\left(X_{\tau}\right) \rtimes J_{L}\right) \mathbf{1}_{\iota_{\tau}\left(X_{K}\right)} \text { is a }\left(C_{0}\left(X_{L}\right) \rtimes J_{L}\right)-\left(C_{0}\left(X_{K}\right) \rtimes\right.
$$ $\left.J_{K}\right)$ correspondence:

- right Hilbert $C_{0}\left(X_{K}\right) \rtimes J_{K^{-m}}$ module via $\left(\iota_{\tau}^{*}\right)^{-1}$, and the $C_{0}\left(X_{K}\right) \rtimes J_{K}$-valued inner product by $\langle\xi, \eta\rangle=$ $\iota_{\pi}^{*}\left(\xi^{*} \eta\right)$.
\bullet right $C_{0}\left(X_{L}\right) \rtimes J_{L}$-module via π_{τ}^{*}

To get a correspondence of BC algebras, we need to pass to a corner: $A_{\tau}=\mathbf{1}_{Y_{L}} \tilde{A}_{\tau} \mathbf{1}_{Y_{K}}$.

Lemma 2. Let $\tau: K \rightarrow L, \rho: L \rightarrow K$ field embeddings. Then $A_{\rho} \otimes_{A_{L}} A_{\tau} \cong A_{\rho \circ \tau}$, canonically.

To make A_{K} 's into compatible C^{*}-dynamical systems, we normalize the time evolution by

$$
\sigma_{t}^{K}\left(f u_{g}\right)=N_{K}(g)^{i t /[K: \mathbb{Q}]} f u_{g}
$$

We have a 1-parameter family of isometries on $A_{\tau} \subset$ $C_{0}\left(X_{\tau}\right) \rtimes J_{L}$ given by $U_{t}^{\tau} f u_{g}=N_{L}(g)^{i t /[L: \mathbb{Q}]} f u_{g}$. This makes A_{τ} into an equivariant correspondence of C^{*} dynamical systems $\left(A_{L}, \sigma^{L}\right)$ and $\left(A_{K}, \sigma^{K}\right)$ in the sense
that

$$
\begin{aligned}
U_{t}^{\tau}(a \xi) & =\sigma_{t}^{L}(a) U_{t}^{\tau} \xi \\
U_{t}^{\tau}(\xi b) & =U_{t}^{\tau} \xi \sigma_{t}^{K}(b) \\
\left\langle U_{t}^{\tau} \xi, U_{t}^{\tau} \eta\right\rangle & =\sigma_{t}^{K}(\langle\xi, \eta\rangle) .
\end{aligned}
$$

Theorem The maps $K \mapsto\left(A_{K}, \sigma_{K}\right),(\tau: K \rightarrow L) \mapsto$ $\left(A_{\tau}, U_{t}^{\tau}\right)$ defines a functor from the category of number fields (with embeddings as morphisms) and C^{*}-dynamical systems (with isomorphism classes of equivariant correspondences as morphisms).

