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Chaos is ubiquitous in population models 



Chaos in population dynamics 

Flour beetle Triboleum castaneum 
Costantino et al. 1997 Science 

Microbial food web 
Becks et al. 2005 Nature 

Plankton community 
Beninca et al. 2008 Nature 



Stone (2004, Nature) 



Chaos in ecology 

•  favours biodiversity (Huisman and Weissing 1999) 

•  reduces extinction risk (Allen et al 1993, Ruxton 1994) 

•  optimal from evolutionary perspective (Ferriere and Gatto 1994) 



Sensitive dependence on initial conditions 
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Sensitive dependence on initial conditions

à  short-term predictability 

à long-term predictions worthless 

Why control (ecological) chaos? 

•  prevent extinctions (or outbreaks) 

•  stability affects effective population sizes, genetic diversity and population fitness 

•  long-term predictability 



Chaos control in physics 
•  Aim is to suppress chaos  
•  achieved by stabilizing one of the infinitely many unstable periodic orbits 

•  perturbations: tiny and instantaneous 

Corron & Pethel (2002, Chaos) 

Example: OGY method (Ott, Grebogi, Yorke 1990 Phys. Rev. Lett.) 

•  requires previous determination of UPO 

•  applies small, wisely chosen and swift kicks once per cycle 
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Ecological reality…? 
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small 
swift 

continuously 

regular 

wisely chosen 
previously determined 
unstable periodic orbits 



Problems of existing approaches 

•  Equations need to be known 

•  Long time series 

•  Continuous, instantaneous and tiny perturbations 

•  Robustness in presence of noise? 



Outline 

•  Chaos control methods: 
–  Constant feedback (CF) 
–  Proportional feedback (PF) 
–  Target-oriented control (TOC) 
–  Limiter control (LC) 
–  Adaptive limiter control (ALC) 

 
•  Chaos anti-control (time-series based) 
 
•  Conclusions 
 



McCallum (1992, J. Theor. Biol.) 
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1.) Constant feedback (CF) 

Immigration can stabilize chaotic dynamics 

= constant feedback control 
    Parthasarathy & Sinha (1995, Phys Rev E) 
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Cost 
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Control, I 
0 1 



2.) Proportional feedback (CF) 

€ 

xt+1 = 1− γ( ) f xt( )

Liz 2010 Phys. Lett. A 



Cost 
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Control, c 

0 1 2 



3.) Target-oriented control (TOC) 

€ 

xt+1 = f xt + I xt( )( )

€ 

I x( ) = c T − x( ) restock population   if below target 
harvest population   if above target 

control, c 
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1−1 # f x*( ) < c <1+1 # f x*( )



Stochastic attractor switching 

€ 

xt+1 = 1+ εt( ) f xt + I xt( )( ) εt Gaussian noise with zero mean and σ2 variance  
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Condition for 95% chance of population size being in basin of attraction for N*+ 



Cost 
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Control, c 



If we don’t target the unstable fixed point, T≠x* 

€ 

T < x*
increases population size 

€ 

T > x*
decreases population size 



4.) Limiter control (LC) 

€ 

xt+1 =
f xt( ) if xt ≥ L 
L else
# 
$ 
% 

Avoid outbreaks 
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control, L 
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•  Culling increases mean population size (hydra effect)  
•  Culling increases mean population size above equilibrium value 
  (paradox of limiter control) 



5.) Adaptive limiter control (ALC) 

Idea: 
If population falls below a fraction of its previous size à restock 

(Sah et al. 2013 J. Theor. Biol.) 



Experimental results 
with Drosophila melanogaster 

ALC can reduce fluctuations 

Sah et al. 2013 J. Theor. Biol. 

ALC can reduce extinction risk 

Wikipedia 



bt : population size before control 

at : population size after control 

€ 

bt+1 = f at( )

Model proposed by Sah et al. (2013) 

€ 

L ≡ c ⋅ bt

€ 

bt+1 = f max bt , c ⋅ bt−1{ }( )
ALCb € 

bt+1 = f at( ), at+1 =
bt+1 if bt+1 ≥ c ⋅ bt
c ⋅ bt else
$ 
% 
& 

€ 

xt+1 = f max xt , c ⋅ xt−1{ }( )

Let 

€ 

xt ≡ bt

1st order 2nd order not topologically conjugate 

€ 

L ≡ c ⋅ at

€ 

at+1 =
f at( ) if  f at( ) ≥ c ⋅ at  
c ⋅ at else
$ 
% 
& 

€ 

at+1 =max f at( ), c ⋅ at{ }
ALCa Let 

€ 

xt ≡ at

€ 

xt+1 =max f xt( ), c ⋅ xt{ }

Experiments/simulations in Sah et al. (2013) 
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at+1 =
bt+1 if bt+1 ≥ L 
L else
# 
$ 
% 

order of events is important 



€ 

xt+1 =max f xt( ), c ⋅ xt{ }ALCa 

Activation threshold AT 

Control is activated if and only if xt ≥ AT 
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•  fluctuation range shrinks 

ALCa 

trapping region (global) 

•  stabilization to fixed point actually not possible 



Looking at a different stability measure… 

dimensionless measure of the average one-step variation scaled by the average 

€ 

FI =
1

T x 
xt +1 − xt0

T−1
∑

control makes things worse 

Fluctuation Index 

bt 

at 



ALCb 

alternative attractor 
makes things even worse 



ALCb lattice model 

€ 

xt+1 =
int f xt( )[ ] if  xt ≥ int c ⋅ xt−1[ ] 
int f int c ⋅ xt−1[ ]( )[ ] else
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discrete-state dynamical system 

alternative attractor robust against integerization 



ALCb stochastic models 

alternative attractor robust against noise 

demographic stochasticity 

€ 

xt+1 = f xt( ) exp s2 f xt( ) εt −
s2

2 f xt( )

$ 

% 
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( 
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€ 

xt+1 = f xt( ) exp s εt − s2 2( )

environmental stochasticity 
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above a  
lower bound 

within a certain 
diameter 

Targeting to desirable regions 



Cost 

ALCa 

LC 

•  includes transient 
•  ALCa without transients becomes more efficient for larger c 



Three categories of transients 

monotonic increase 
to the trapping region 

interventions every 
other generation 
before reaching the 
trapping region 

mixture of both 



Property CF PF TOC LC ALC 
Stabilization to fixed point ✔
 ✔
 ✔
 ✔
 ✖


for fixed parameter ✔
 ✔
 ✖
 ✔
 ✖


for range of parameters ✖
 ✖
 ✔
 ✖
 ✖


Global behaviour ✖ 
Gueron 1998 

✔ 
Liz 2010 

✔/✖ 
Franco & Liz 
2013 
Dattani et al 
2011 

✔
 ✔ 
Franco & H 
2013 

Can we avoid undesirable 
population states? 

? ? ? ✔/✖
 ✔


How to choose control? ✔ 
Gueron 1998 
Wieland 2002 

✔ 
Liz 2010 

✔ 
Franco & Liz 
2013 

? ✔ 
Franco & H 
2013 

Do we need to know laws of 
motion? 

Y
 Y Y Y Y 



Time-series based approach 

Chaos anti-control 



Implement 
interventions 

Define undesirable 
(crash) regions U 
 
 
 
 
“loss region” (Yang et al. 1995 PRE )  

Identify alert zones Zi 



   Critical intervention size 

= Width of alert zone Z1 

U 





Robustness 

Approach also tested for 

 

•  environmental stochasticity 
  (lognormal multiplicative noise) 

 

•  alternative interventions (motivated from sustainable harvesting) 

 

The essential thing is to kick the system off the crash path. 



Application to a stage-structured 
 insect population (flour beetle) 

ht
tp

://
ca

ld
er

a.
ca

ls
ta

te
la

.e
du

/n
on

lin
/ 



Identifying alert zones 

Undesirable region: 
A>100  (outbreaks) 

Alert zones 
(pre-images) 



Effectiveness 
for LPA model with demographic noise 

Stochastic LPA model from Desharnais et al. (2001, Ecol Lett) 

Intervention at t-1 by adding I adult individuals 
 



Idea can also be used for ‘brutal’ targeting 
 
 
 Aim: Generate crashes 

        of a pest species 

 



Summary 
 
 
 

•  Noise widens the alert zones (positive),  
   but also requires larger interventions (negative). 

•  There is a critical intervention size 
   corresponding to the ‘width’ of the alert zone. 

•  The earlier we intervene, the smaller the effort  
   (but also more complicated from a management point of view). 

  



Conclusions 
 
 
 

•  Works for little available data (typical in ecology) 

•  Time series-based approach (no equations needed) 

•  Chaos maintenance while avoiding outbreaks/extinction  

•  Utilises short-term predictability 



Future directions 
 
 
 

efficiency 

how to choose control 

transients 

global or local 

stabilization 

targeting 

robustness 

persistence 

•  Spatial structure, synchrony, “pinning” effects 

•  Higher-dimensional systems 

•  Different kinds of costs 

•  Combination of controls 
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