KMS states on C^{*}-algebras associated to k-graphs

BIRS workshop "Operator algebras and dynamical systems from number theory"

Joint work with Astrid an Huef, Marcelo Laca and lain Raeburn

Aidan Sims

26 November 2013

Higher-rank Cuntz-Krieger algebras

- Robertson and Steger studied C^{*}-algbras arising from \mathbb{Z}^{k} actions on \tilde{A}_{k}-buildings.
- Data consists of k commuting binary matrices such that $A_{i} A_{j} A_{l}$ is binary valued for distinct i, j, l.
- Resulting C^{*}-algebra generated by copies of the Cuntz-Krieger algebras $\mathcal{O}_{A_{i}}$ subject to commutation relations encoded by the products $A_{i} A_{j}$.

Higher-rank Cuntz-Krieger algebras

- Robertson and Steger studied C^{*}-algbras arising from \mathbb{Z}^{k} actions on \tilde{A}_{k}-buildings.
- Data consists of k commuting binary matrices such that $A_{i} A_{j} A_{l}$ is binary valued for distinct i, j, l.
- Resulting C^{*}-algebra generated by copies of the Cuntz-Krieger algebras $\mathcal{O}_{A_{i}}$ subject to commutation relations encoded by the products $A_{i} A_{j}$.
- Kumjian and Pask recognised that such a family of matrices encodes a sort of higher-rank graph:

Definition (KP). A k-graph is a countable category Λ with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property: whenever $d(\lambda)=m+n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda=\mu \nu$.

Notation

- Λ^{n} denotes $d^{-1}(n)$.
- Factorisation property gives $\Lambda^{0}=\left\{\right.$ id $\left._{o}: o \in \operatorname{Obj}(\Lambda)\right\}$.
- The domain and codomain maps determine maps $s, r: \Lambda \rightarrow \Lambda^{0}$; and then $r(\lambda) \lambda=\lambda=\lambda s(\lambda)$ for all λ.
- Write, for example, $v \Lambda^{n}$ for $r^{-1}(v) \cap \Lambda^{n}$.
- $\operatorname{MCE}(\mu, \nu)=\left\{\lambda: d(\lambda)=d(\mu) \vee d(\nu)\right.$ and $\left.\lambda=\mu \mu^{\prime}=\nu \nu^{\prime}\right\}$.
- The coordinate graphs E_{i} are $E_{i}=\left(\Lambda^{0}, \Lambda^{e_{i}}, r, s\right)$; this E_{i} has adjacency matrix A_{i}.

Notation

- Λ^{n} denotes $d^{-1}(n)$.
- Factorisation property gives $\Lambda^{0}=\left\{\right.$ id $\left._{o}: o \in \operatorname{Obj}(\Lambda)\right\}$.
- The domain and codomain maps determine maps $s, r: \Lambda \rightarrow \Lambda^{0}$; and then $r(\lambda) \lambda=\lambda=\lambda s(\lambda)$ for all λ.
- Write, for example, $v \Lambda^{n}$ for $r^{-1}(v) \cap \Lambda^{n}$.
- $\operatorname{MCE}(\mu, \nu)=\left\{\lambda: d(\lambda)=d(\mu) \vee d(\nu)\right.$ and $\left.\lambda=\mu \mu^{\prime}=\nu \nu^{\prime}\right\}$.
- The coordinate graphs E_{i} are $E_{i}=\left(\Lambda^{0}, \Lambda^{e_{i}}, r, s\right)$; this E_{i} has adjacency matrix A_{i}.

For today:

- Λ is "finite" in the sense that each Λ^{n} is finite; and
- Λ is strongly connected: each $v \wedge w \neq \emptyset$.

Connectivity

－We＇ll use the strong connectivity quite a bit．
－First consequence：suppose that $\Lambda^{e_{i}} \neq \emptyset$ ；say $\alpha \in \Lambda^{e_{i}}$ ．

Connectivity

- We'll use the strong connectivity quite a bit.
- First consequence: suppose that $\Lambda^{e_{i}} \neq \emptyset$; say $\alpha \in \Lambda^{e_{i}}$.
- For $v \in \Lambda^{0}$, fix $\mu \in v \Lambda r(\alpha)$.
- Factorisation property says $\mu \alpha=\alpha^{\prime} \mu^{\prime}$ for some $\alpha^{\prime} \in v \Lambda^{e_{i}}$.
- So every $v \Lambda^{e_{i}} \neq \emptyset$; since Λ^{0} is finite, this means each E_{i} contains a cycle.
- Hence $\rho\left(A_{i}\right) \geq 1$.

Connectivity

- We'll use the strong connectivity quite a bit.
- First consequence: suppose that $\Lambda^{e_{i}} \neq \emptyset$; say $\alpha \in \Lambda^{e_{i}}$.
- For $v \in \Lambda^{0}$, fix $\mu \in v \Lambda r(\alpha)$.
- Factorisation property says $\mu \alpha=\alpha^{\prime} \mu^{\prime}$ for some $\alpha^{\prime} \in v \Lambda^{e_{i}}$.
- So every $v \Lambda^{e_{i}} \neq \emptyset$; since Λ^{0} is finite, this means each E_{i} contains a cycle.
- Hence $\rho\left(A_{i}\right) \geq 1$.
- If $\Lambda^{e_{i}}=\emptyset$, we can regard Λ as a $(k-1)$-graph; so we can assume wlog that every $\rho\left(A_{i}\right) \geq 1$.

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources.
Then $\mathcal{T} C^{*}(\Lambda)$ is universal for $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ such that:
(TCK1) $\left\{T_{v}: v \in E^{0}\right\}$ is a set of mutually orthogonal projections;
(TCK2) $T_{\mu} T_{\nu}=T_{\mu \nu}$ whenever $s(\mu)=r(\nu)$.
(TCK3) $T_{\mu}^{*} T_{\mu}=T_{s(\mu)}$ for all μ, and
(TCK3) $T_{\mu} T_{\mu}^{*} T_{\nu} T_{\nu}^{*}=\sum_{\lambda \in \operatorname{MCE}(\mu, \nu)} T_{\lambda} T_{\lambda}^{*}$ for all μ, ν (an empty sum is zero).

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources.
Then $\mathcal{T} C^{*}(\Lambda)$ is universal for $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ such that:
(TCK1) $\left\{T_{v}: v \in E^{0}\right\}$ is a set of mutually orthogonal projections;
(TCK2) $T_{\mu} T_{\nu}=T_{\mu \nu}$ whenever $s(\mu)=r(\nu)$.
(TCK3) $T_{\mu}^{*} T_{\mu}=T_{s(\mu)}$ for all μ, and
(TCK3) $T_{\mu} T_{\mu}^{*} T_{\nu} T_{\nu}^{*}=\sum_{\lambda \in \operatorname{MCE}(\mu, \nu)} T_{\lambda} T_{\lambda}^{*}$ for all μ, ν (an empty sum is zero).
If $\mu \neq \nu \in \Lambda^{n}$, then $\operatorname{MCE}(\mu, \nu)=\emptyset$. So

$$
T_{v} \geq \sum_{\lambda \in v \Lambda^{n}} T_{\lambda} T_{\lambda}^{*} \quad \text { for all } v, n
$$

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources.
Then $\mathcal{T} C^{*}(\Lambda)$ is universal for $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ such that:
(TCK1) $\left\{T_{v}: v \in E^{0}\right\}$ is a set of mutually orthogonal projections;
(TCK2) $T_{\mu} T_{\nu}=T_{\mu \nu}$ whenever $s(\mu)=r(\nu)$.
(TCK3) $T_{\mu}^{*} T_{\mu}=T_{s(\mu)}$ for all μ, and
(TCK3) $T_{\mu} T_{\mu}^{*} T_{\nu} T_{\nu}^{*}=\sum_{\lambda \in \operatorname{MCE}(\mu, \nu)} T_{\lambda} T_{\lambda}^{*}$ for all μ, ν (an empty sum is zero).
If $\mu \neq \nu \in \Lambda^{n}$, then $\operatorname{MCE}(\mu, \nu)=\emptyset$. So

$$
T_{v} \geq \sum_{\lambda \in v \Lambda^{n}} T_{\lambda} T_{\lambda}^{*} \quad \text { for all } v, n
$$

$C^{*}(\Lambda)$ is the quotient by the ideal generated by

$$
\left\{T_{v}-\sum_{\mu \in v \Lambda^{n}} T_{\mu} T_{\mu}^{*}: v \in \Lambda^{0}, n \in \mathbb{N}^{k}\right\} .
$$

Spanning elements

- use $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ for the universal family.
- For $\mu, \nu \in \Lambda$, have $t_{\mu}^{*} t_{\nu}=\sum_{\mu \alpha=\nu \beta \in \operatorname{MCE}(\mu, \nu)} t_{\alpha} t_{\beta}^{*}$, so

$$
\mathcal{T} C^{*}(\Lambda)=\overline{\operatorname{span}}\left\{t_{\mu} t_{\nu}^{*}: s(\mu)=s(\nu)\right\}
$$

- Universal property gives $\gamma: \mathbb{T}^{k} \rightarrow$ Aut $\mathcal{T} C^{*}(\Lambda)$ s.t. $\gamma_{z}\left(t_{\lambda}\right)=z^{d(\lambda)} t_{\lambda}$,
- so $r \in[0, \infty)^{k}$ gives $\alpha^{r}: \mathbb{R} \rightarrow$ Aut $\mathcal{T} C^{*}(\Lambda)$ via $\alpha_{t}^{r}=\gamma_{e^{i t r}}$.

Spanning elements

- use $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ for the universal family.
- For $\mu, \nu \in \Lambda$, have $t_{\mu}^{*} t_{\nu}=\sum_{\mu \alpha=\nu \beta \in \operatorname{MCE}(\mu, \nu)} t_{\alpha} t_{\beta}^{*}$, so

$$
\mathcal{T} C^{*}(\Lambda)=\overline{\operatorname{span}}\left\{t_{\mu} t_{\nu}^{*}: s(\mu)=s(\nu)\right\}
$$

- Universal property gives $\gamma: \mathbb{T}^{k} \rightarrow$ Aut $\mathcal{T} C^{*}(\Lambda)$ s.t. $\gamma_{z}\left(t_{\lambda}\right)=z^{d(\lambda)} t_{\lambda}$,
- so $r \in[0, \infty)^{k}$ gives $\alpha^{r}: \mathbb{R} \rightarrow$ Aut $\mathcal{T} C^{*}(\Lambda)$ via $\alpha_{t}^{r}=\gamma_{e^{i t r}}$.
- $\alpha_{t}^{r}\left(t_{\mu} t_{\nu}^{*}\right)=e^{i t r \cdot(d(\mu)-d(\nu))} t_{\mu} t_{\nu}^{*}$, so the $t_{\mu} t_{\nu}^{*}$ are analytic elements.
- both γ and α descend to $C^{*}(\Lambda)$.

KMS states

- Recall: given $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(A)$ and $\beta \in \mathbb{R}$, a state ϕ of A is KMS_{β} for (A, α) if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right)
$$

whenever $t \mapsto \alpha_{t}(a), \alpha_{t}(b)$ have analytic extensions.

- It always suffices to check this KMS condition on your favourite set of analytic elements with dense linear span.

KMS states

- Recall: given $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(A)$ and $\beta \in \mathbb{R}$, a state ϕ of A is KMS_{β} for (A, α) if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right)
$$

whenever $t \mapsto \alpha_{t}(a), \alpha_{t}(b)$ have analytic extensions.

- It always suffices to check this KMS condition on your favourite set of analytic elements with dense linear span.
- Questions:
- what are the KMS states for $\left(\mathcal{T} C^{*}(\Lambda), \alpha^{r}\right)$?
- Which ones factor through $C^{*}(\Lambda)$?

First observation

- Suppose that ϕ is a KMS_{β} state of $\left(\mathcal{T} C^{*}(\Lambda), \alpha^{r}\right)$.
- Universal property of $\mathcal{T} C^{*}\left(E_{j}\right)$ gives inclusion $\iota: \mathcal{T} C^{*}\left(E_{j}\right) \rightarrow \mathcal{T} C^{*}(\Lambda)$.
- $\alpha^{r}\left(t_{f}\right)=e^{i t r_{j}} t_{f}$ for $f \in \Lambda^{e_{j}}$.

First observation

- Suppose that ϕ is a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T} C^{*}(\Lambda), \alpha^{r}\right)$.
- Universal property of $\mathcal{T} C^{*}\left(E_{j}\right)$ gives inclusion $\iota: \mathcal{T} C^{*}\left(E_{j}\right) \rightarrow \mathcal{T} C^{*}(\Lambda)$.
- $\alpha^{r}\left(t_{f}\right)=e^{i t r_{j}} t_{f}$ for $f \in \Lambda^{e_{j}}$.
- Put $m^{\phi}=\left(\phi\left(t_{v}\right)\right)_{v \in \Lambda^{0}}$.
- Astrid showed us that then

$$
A_{i} m^{\phi} \leq e^{\beta r_{i}} m^{\phi} \quad \text { for all } i \leq k
$$

- If ϕ factors through $C^{*}(\Lambda)$, we have equality.

Perron-Frobenius for commuting matrices

- The A_{i} need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Perron-Frobenius for commuting matrices

- The A_{i} need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)
(1) If $y \in[0, \infty)^{\wedge^{0}} \backslash\{0\}$ and $\lambda_{1}, \ldots, \lambda_{k}$ satisfy $A_{i} y \leq \lambda_{i} y$ for all i, then $y_{v}>0$ for all v and $\lambda_{i} \geq \rho\left(A_{i}\right)$ for all i; and

Perron-Frobenius for commuting matrices

- The A_{i} need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)
(1) If $y \in[0, \infty)^{\wedge^{0}} \backslash\{0\}$ and $\lambda_{1}, \ldots, \lambda_{k}$ satisfy $A_{i} y \leq \lambda_{i} y$ for all i, then $y_{v}>0$ for all v and $\lambda_{i} \geq \rho\left(A_{i}\right)$ for all i; and
(2) There is a unique $x^{\wedge} \in[0, \infty)^{\wedge^{0}}$ with $\left\|x^{\wedge}\right\|_{1}=1$ which is a common eigenvector of the A_{i}; and then $A^{n}:=\prod A_{n}^{n_{i}}$ satisfies $A^{n} x^{\wedge}=\rho\left(A^{n}\right) x^{\wedge}=\prod_{i=1}^{k} \rho\left(A_{i}\right)^{n_{i}} x^{\wedge}$ for all $n \in \mathbb{N}^{k}$.

Perron-Frobenius for commuting matrices

- The A_{i} need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) If $y \in[0, \infty)^{\wedge^{0}} \backslash\{0\}$ and $\lambda_{1}, \ldots, \lambda_{k}$ satisfy $A_{i} y \leq \lambda_{i} y$ for all i, then $y_{v}>0$ for all v and $\lambda_{i} \geq \rho\left(A_{i}\right)$ for all i; and
(2) There is a unique $x^{\wedge} \in[0, \infty)^{\wedge^{0}}$ with $\left\|x^{\wedge}\right\|_{1}=1$ which is a common eigenvector of the A_{i}; and then $A^{n}:=\prod A_{n}^{n_{i}}$ satisfies $A^{n} x^{\wedge}=\rho\left(A^{n}\right) x^{\wedge}=\prod_{i=1}^{k} \rho\left(A_{i}\right)^{n_{i}} x^{\wedge}$ for all $n \in \mathbb{N}^{k}$.

Corollary

If ϕ is $K M S_{\beta}$ for α^{r}, then $\beta r_{i} \geq \ln \rho\left(A_{i}\right)$ for all i. If ϕ factors through $C^{*}(\Lambda)$, then each $\beta r_{i}=\ln \rho\left(A_{i}\right)$, and $m^{\phi}=x^{\wedge}$.

Second observation

- If ϕ is KMS_{β}, then

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=e^{-\beta r \cdot d(\mu)} \phi\left(t_{\nu}^{*} t_{\mu}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*}\right) .
$$

Second observation

- If ϕ is KMS_{β}, then

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=e^{-\beta r \cdot d(\mu)} \phi\left(t_{\nu}^{*} t_{\mu}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*}\right) .
$$

- First equality gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\phi}$ if $d(\mu)=d(\nu)$.

Second observation

- If ϕ is KMS_{β}, then

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=e^{-\beta r \cdot d(\mu)} \phi\left(t_{\nu}^{*} t_{\mu}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*}\right) .
$$

- First equality gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\phi}$ if $d(\mu)=d(\nu)$.
- Second equality gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $r \cdot d(\mu) \neq r \cdot d(\nu)$.

Second observation

- If ϕ is KMS_{β}, then

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=e^{-\beta r \cdot d(\mu)} \phi\left(t_{\nu}^{*} t_{\mu}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*}\right) .
$$

- First equality gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\phi}$ if

$$
d(\mu)=d(\nu)
$$

- Second equality gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $r \cdot d(\mu) \neq r \cdot d(\nu)$.
- Not so clear what happens if $r \cdot d(\mu)=r \cdot d(\nu)$ but $d(\mu) \neq d(\nu)$.

Proposition (aHLRS)

Suppose that $\beta r_{i}>\ln \rho\left(A_{i}\right)$ for all i. Then ϕ is $K M S_{\beta}$ for $\left(\mathcal{T} C^{*}(\Lambda), \alpha^{r}\right)$ if and only if

$$
\begin{equation*}
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\phi} \text { for all } \mu, \nu \tag{*}
\end{equation*}
$$

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right) .
$$

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right) .
$$

Cauchy-Schwarz gives $\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \phi\left(t_{\mu} t_{\mu}^{*}\right)$.

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right)
$$

Cauchy-Schwarz gives $\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \phi\left(t_{\mu} t_{\mu}^{*}\right)$.
Let $n=(d(\mu) \vee d(\nu))-d(\mu)>0$. Combinatorics/induction gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\sum_{\lambda \in s(\mu) \wedge^{i n}, \operatorname{MCE}(\mu \lambda, \nu \lambda) \neq \emptyset} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right)$ for all j.

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right)
$$

Cauchy-Schwarz gives $\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \phi\left(t_{\mu} t_{\mu}^{*}\right)$.
Let $n=(d(\mu) \vee d(\nu))-d(\mu)>0$. Combinatorics/induction gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\sum_{\lambda \in s(\mu) \wedge^{i n}, \operatorname{MCE}(\mu \lambda, \nu \lambda) \neq \emptyset} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right)$ for all j. So

$$
\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \sum_{\lambda \in s(\mu) \wedge^{j n}} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right)
$$

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right)
$$

Cauchy-Schwarz gives $\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \phi\left(t_{\mu} t_{\mu}^{*}\right)$.
Let $n=(d(\mu) \vee d(\nu))-d(\mu)>0$. Combinatorics/induction gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\sum_{\lambda \in s(\mu) \wedge^{i n}, \operatorname{MCE}(\mu \lambda, \nu \lambda) \neq \emptyset} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right)$ for all j. So

$$
\begin{aligned}
\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| & \leq \sum_{\lambda \in s(\mu) \Lambda^{j n}} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right) \\
& =e^{-\beta r \cdot(j n+d(\mu))} \sum_{w} \sum_{\lambda \in s(\mu) \Lambda^{j n} w} \phi\left(t_{w}\right)
\end{aligned}
$$

Proof sketch.
"if" is a calculation. For "only if," need $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.
We calculate

$$
\phi\left(t_{\mu} t_{\mu}^{*}\right)=\phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*} t_{\nu} t_{\mu}^{*}\right)=\phi\left(t_{\nu} t_{\nu}^{*}\right)
$$

Cauchy-Schwarz gives $\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| \leq \phi\left(t_{\mu} t_{\mu}^{*}\right)$.
Let $n=(d(\mu) \vee d(\nu))-d(\mu)>0$. Combinatorics/induction gives $\phi\left(t_{\mu} t_{\nu}^{*}\right)=\sum_{\lambda \in s(\mu) \Lambda^{i n}, \operatorname{MCE}(\mu \lambda, \nu \lambda) \neq \emptyset} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right)$ for all j. So

$$
\begin{aligned}
\left|\phi\left(t_{\mu} t_{\nu}^{*}\right)\right| & \leq \sum_{\lambda \in s(\mu) \Lambda^{j n}} \phi\left(t_{\mu \lambda} t_{\mu \lambda}^{*}\right) \\
& =e^{-\beta r \cdot(j n+d(\mu))} \sum_{w} \sum_{\lambda \in s(\mu) \Lambda^{j n} w} \phi\left(t_{w}\right) \\
& =\left(e^{-\beta r \cdot n} A^{n}\right)_{s(\mu)}^{j} \phi\left(t_{\mu} t_{\mu}^{*}\right) \rightarrow 0 .
\end{aligned}
$$

KMS states on $\mathcal{T} C^{*}(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_{i}>\ln \rho\left(A_{i}\right)$ for all i. Then

1. For $v \in \Lambda^{0}, \sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_{v}>1$. For $\epsilon \in[0, \infty)^{\wedge^{0}}, m^{\epsilon}:=\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} \epsilon$ satisfies $A_{i} m^{\epsilon} \leq e^{\beta r_{i}} m$ for all i, and $\left\|m^{\epsilon}\right\|_{1}=1$ iff $\epsilon \cdot y=1$.

KMS states on $\mathcal{T} C^{*}(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_{i}>\ln \rho\left(A_{i}\right)$ for all i. Then

1. For $v \in \Lambda^{0}, \sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_{v}>1$. For $\epsilon \in[0, \infty)^{\wedge^{0}}, m^{\epsilon}:=\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} \epsilon$ satisfies $A_{i} m^{\epsilon} \leq e^{\beta r_{i}} m$ for all i, and $\left\|m^{\epsilon}\right\|_{1}=1$ iff $\epsilon \cdot y=1$.
2. If $\epsilon \cdot y=1$, there is a $K M S_{\beta}$ state ϕ_{ϵ} such that

$$
\phi_{\epsilon}\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\epsilon}
$$

KMS states on $\mathcal{T} C^{*}(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_{i}>\ln \rho\left(A_{i}\right)$ for all i. Then

1. For $v \in \Lambda^{0}, \sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_{v}>1$. For $\epsilon \in[0, \infty)^{\wedge^{0}}, m^{\epsilon}:=\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} \epsilon$ satisfies $A_{i} m^{\epsilon} \leq e^{\beta r_{i}} m$ for all i, and $\left\|m^{\epsilon}\right\|_{1}=1$ iff $\epsilon \cdot y=1$.
2. If $\epsilon \cdot y=1$, there is a $K M S_{\beta}$ state ϕ_{ϵ} such that $\phi_{\epsilon}\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\epsilon}$.
3. $\epsilon \mapsto \phi_{\epsilon}$ is an affine isomorphism of $\{\epsilon: \epsilon \cdot y=1\}$ onto the $K M S_{\beta}$ simplex of $\left(\mathcal{T} C^{*}(\Lambda), \alpha^{r}\right)$.

Proof sketch

(1) The terms in $\sum_{\mu \in \Lambda \nu} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}$, so the sum converges.

Proof sketch

(1) The terms in $\sum_{\mu \in \Lambda_{\nu}} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}$, so the sum converges. We calculate

$$
\begin{aligned}
e^{-\beta r_{i}} A_{i}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} & =\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n+1} \\
& <\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n}=\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}
\end{aligned}
$$

Proof sketch

(1) The terms in $\sum_{\mu \in \Lambda_{\nu}} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}$, so the sum converges. We calculate

$$
\begin{aligned}
e^{-\beta r_{i}} A_{i}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} & =\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n+1} \\
& <\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n}=\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}
\end{aligned}
$$

(2) Define $T_{\lambda} \in \mathcal{B}\left(\ell^{2}(\Lambda)\right)$ by $T_{\lambda} \xi_{\mu}=\delta_{s(\lambda), r(\mu)} \xi_{\lambda \mu}$. This is a TCK-family, so induces $\pi_{T}: \mathcal{T} C^{*}(\Lambda) \rightarrow \mathcal{B}\left(\ell^{2}(\Lambda)\right)$.

Proof sketch

(1) The terms in $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}$, so the sum converges. We calculate

$$
\begin{aligned}
e^{-\beta r_{i}} A_{i}\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1} & =\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n+1} \\
& <\sum_{n=0}^{\infty}\left(e^{-\beta r_{i}} A_{i}\right)^{n}=\left(1-e^{-\beta r_{i}} A_{i}\right)^{-1}
\end{aligned}
$$

(2) Define $T_{\lambda} \in \mathcal{B}\left(\ell^{2}(\Lambda)\right)$ by $T_{\lambda} \xi_{\mu}=\delta_{s(\lambda), r(\mu)} \xi_{\lambda \mu}$. This is a TCK-family, so induces $\pi_{T}: \mathcal{T} C^{*}(\Lambda) \rightarrow \mathcal{B}\left(\ell^{2}(\Lambda)\right)$.
Check that $\Delta_{\mu}:=e^{-\beta r \cdot d(\mu)} \epsilon_{s(\mu)}$ satisfies $\sum_{\mu \in \Lambda} \Delta_{\mu}=1$. So

$$
\phi_{\epsilon}(a):=\sum_{\mu} \Delta_{\mu}\left(\pi_{T}(a) \xi_{\mu} \mid \xi_{\mu}\right)
$$

is a state; verify $\left(^{*}\right)$ to see it's KMS_{β}.

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu)=r \cdot d(\nu)$ breaks down if $\beta r_{i}=\ln \rho\left(A_{i}\right)$.
No issue if the $\ln \rho\left(A_{i}\right)$ are rationally independent.

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu)=r \cdot d(\nu)$ breaks down if $\beta r_{i}=\ln \rho\left(A_{i}\right)$.
No issue if the $\ln \rho\left(A_{i}\right)$ are rationally independent.
Theorem (aHLRS)
There is a $\operatorname{KMS}_{\beta}$ state for $\left(C^{*}(\Lambda), \alpha^{r}\right)$ if and only if $\beta r_{i}=\ln \rho\left(A_{i}\right)$ for all i. The formula $\phi\left(s_{\mu} s_{\nu}^{*}\right)=\delta_{\mu, \nu} \rho\left(A^{d(\mu)}\right)^{-1} x_{s(\mu)}^{\wedge}$ always defines such a state. If the $\ln \rho\left(A_{i}\right)$ are rationally independent, then this is the only KMS state for $\left(C^{*}(\Lambda), \alpha^{r}\right)$.

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu)=r \cdot d(\nu)$ breaks down if $\beta r_{i}=\ln \rho\left(A_{i}\right)$.
No issue if the $\ln \rho\left(A_{i}\right)$ are rationally independent.

Theorem (aHLRS)

There is a $\operatorname{KMS}_{\beta}$ state for $\left(C^{*}(\Lambda), \alpha^{r}\right)$ if and only if $\beta r_{i}=\ln \rho\left(A_{i}\right)$ for all i. The formula $\phi\left(s_{\mu} s_{\nu}^{*}\right)=\delta_{\mu, \nu} \rho\left(A^{d(\mu)}\right)^{-1} x_{s(\mu)}^{\wedge}$ always defines such a state. If the $\ln \rho\left(A_{i}\right)$ are rationally independent, then this is the only KMS state for $\left(C^{*}(\Lambda), \alpha^{r}\right)$.

Proof.

We saw earlier that $\beta r_{i}=\ln \rho\left(A_{i}\right)$ is necessary. A
weak*-compactness argument proves existence. The uniqueness follows from our calculation

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=e^{-\beta r \cdot d(\mu)} \phi\left(t_{\nu}^{*} t_{\mu}\right)=e^{-\beta r \cdot(d(\mu)-d(\nu))} \phi\left(t_{\mu} t_{\nu}^{*}\right)
$$

earlier.

Non-uniqueness

- The hypothesis that the $\ln \rho\left(A_{i}\right)$ are rationally independent is needed.
- Let E be the directed graph with one vertex and 2 loops so $C^{*}(E)=\mathcal{O}_{2}$.
- Let $\Lambda=\left\{(\lambda, n) \in E^{*} \times \mathbb{N}^{2}:|\lambda|=n_{1}+n_{2}\right\}$.
- Kumjian and Pask prove that $C^{*}(\Lambda) \cong \mathcal{O}_{2} \otimes C(\mathbb{T})$.

Non-uniqueness

- The hypothesis that the $\ln \rho\left(A_{i}\right)$ are rationally independent is needed.
- Let E be the directed graph with one vertex and 2 loops so $C^{*}(E)=\mathcal{O}_{2}$.
- Let $\Lambda=\left\{(\lambda, n) \in E^{*} \times \mathbb{N}^{2}:|\lambda|=n_{1}+n_{2}\right\}$.
- Kumjian and Pask prove that $C^{*}(\Lambda) \cong \mathcal{O}_{2} \otimes C(\mathbb{T})$.
- Here $\ln \rho\left(A_{1}\right)=\ln \rho\left(A_{2}\right)=\ln 2$.
- Put $r=(\ln 2, \ln 2)$, and let ϕ be the unique $\mathrm{KMS}_{\ln 2}$ state of O_{2}.
- Calculations show that $\phi \otimes \psi$ is a KMS_{1} state of $C^{*}(\Lambda)$ for every state ϕ of $C(\mathbb{T})$.

Ground states

- a ground state is a state ϕ such that $z \mapsto \phi\left(a \alpha_{z}(b)\right)$ is bounded on the upper half-plane for all analytic a, b.
- a KMS_{∞}-state is a weak*-limit of $\mathrm{KMS} \beta_{n}$ states where $\beta_{n} \rightarrow \infty$. On general grounds every KMS_{∞} state is a ground state, but not conversely.

Proposition

Suppose each $r_{i}>0$. For each probability measure ϵ on Λ^{0}, there is a ground state of $\left(\mathcal{T} C *(\Lambda), \alpha^{r}\right)$ given by $\phi\left(t_{v}\right)=\epsilon(v)$ for $v \in \Lambda^{0}$ and $\phi\left(t_{\mu} t_{\nu}^{*}\right)=0$ unless $\mu=\nu=s(\mu)$. These are all of the ground states, and they are all $K M S_{\infty}$ states.

Ground states

- In the characterisation of ground states, The hypothesis that $r_{i}>0$ is needed.
- For example, let $r=(-1,1)$ and consider $\Lambda=\mathbb{N}^{2}$ regarded as a 2-graph.
- If ϕ is a state of $\mathcal{T} C^{*}(\Lambda)$, then

$$
\phi\left(t_{(1,0)} \alpha_{x+i y}^{r}\left(t_{(1,0)}^{*}\right)\right)=e^{-y r \cdot d((1,0))} \phi\left(t_{0}\right)=e^{y} \phi\left(1_{\mathcal{T} C^{*}(\Lambda)}\right)
$$

is not bounded on the upper half plane.
（ O．Bratteli and D．W．Robinson，Operator algebras and quantum statistical mechanics．2，Equilibrium states．Models in quantum statistical mechanics，Springer－Verlag，Berlin，1997，xiv＋519．
嗇 M．Enomoto，M．Fujii，and Y．Watatani，KMS states for gauge action on O_{A} ，Math．Japon． 29 （1984），607－619．
目 A．Kumjian and D．Pask，Higher rank graph C＊－algebras，New York J．Math． 6 （2000），1－20．
图 A．Kumjian and D．Pask，Actions of \mathbb{Z}^{k} associated to higher rank graphs，Ergodic Theory Dynam．Systems 23 （2003），1153－1172．
囯 S．Neshveyev，KMS states on the C^{*}－algebras of non－principal groupoids，J．Operator Th．，to appear（arXiv：1106．5912［math．OA］）．
E．Seneta，Non－negative matrices and Markov chains，Revised reprint of the second（1981）edition，Springer，New York，2006，xvi＋287．

