KMS states on C^* -algebras associated to *k*-graphs

BIRS workshop "Operator algebras and dynamical systems from number theory"

Joint work with Astrid an Huef, Marcelo Laca and Iain Raeburn

Aidan Sims

26 November 2013

Higher-rank Cuntz-Krieger algebras

- ► Robertson and Steger studied C*-algbras arising from Z^k actions on Ã_k-buildings.
- Data consists of k commuting binary matrices such that A_iA_jA_l is binary valued for distinct i, j, l.
- Resulting C*-algebra generated by copies of the Cuntz-Krieger algebras O_{A_i} subject to commutation relations encoded by the products A_iA_j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Higher-rank Cuntz-Krieger algebras

- ► Robertson and Steger studied C*-algbras arising from Z^k actions on Ã_k-buildings.
- Data consists of k commuting binary matrices such that A_iA_jA_l is binary valued for distinct i, j, l.
- Resulting C*-algebra generated by copies of the Cuntz-Krieger algebras O_{A_i} subject to commutation relations encoded by the products A_iA_j.
- Kumjian and Pask recognised that such a family of matrices encodes a sort of higher-rank graph:

Definition (KP). A *k-graph* is a countable category Λ with a functor $d : \Lambda \to \mathbb{N}^k$ satisfying the factorisation property: whenever $d(\lambda) = m + n$ there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu\nu$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation

- Λ^n denotes $d^{-1}(n)$.
- Factorisation property gives Λ⁰ = {id_o : o ∈ Obj(Λ)}.
- The domain and codomain maps determine maps s, r : Λ → Λ⁰; and then r(λ)λ = λ = λs(λ) for all λ.
- Write, for example, $v\Lambda^n$ for $r^{-1}(v) \cap \Lambda^n$.
- $\mathsf{MCE}(\mu,\nu) = \{\lambda : d(\lambda) = d(\mu) \lor d(\nu) \text{ and } \lambda = \mu\mu' = \nu\nu'\}.$
- The coordinate graphs E_i are E_i = (Λ⁰, Λ^{e_i}, r, s); this E_i has adjacency matrix A_i.

Notation

- Λ^n denotes $d^{-1}(n)$.
- Factorisation property gives Λ⁰ = {id_o : o ∈ Obj(Λ)}.
- The domain and codomain maps determine maps s, r : Λ → Λ⁰; and then r(λ)λ = λ = λs(λ) for all λ.
- Write, for example, $v\Lambda^n$ for $r^{-1}(v) \cap \Lambda^n$.
- $\mathsf{MCE}(\mu,\nu) = \{\lambda : d(\lambda) = d(\mu) \lor d(\nu) \text{ and } \lambda = \mu\mu' = \nu\nu'\}.$
- The coordinate graphs E_i are E_i = (Λ⁰, Λ^{e_i}, r, s); this E_i has adjacency matrix A_i.

For today:

- A is "finite" in the sense that each Λ^n is finite; and
- Λ is strongly connected: each $v\Lambda w \neq \emptyset$.

Connectivity

- ► We'll use the strong connectivity quite a bit.
- First consequence: suppose that $\Lambda^{e_i} \neq \emptyset$; say $\alpha \in \Lambda^{e_i}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Connectivity

- We'll use the strong connectivity quite a bit.
- First consequence: suppose that $\Lambda^{e_i} \neq \emptyset$; say $\alpha \in \Lambda^{e_i}$.
- For $v \in \Lambda^0$, fix $\mu \in v\Lambda r(\alpha)$.
- Factorisation property says μα = α'μ' for some α' ∈ νΛ^{e_i}.
- So every νΛ^{e_i} ≠ Ø; since Λ⁰ is finite, this means each E_i contains a cycle.
- Hence $\rho(A_i) \geq 1$.

Connectivity

- We'll use the strong connectivity quite a bit.
- First consequence: suppose that $\Lambda^{e_i} \neq \emptyset$; say $\alpha \in \Lambda^{e_i}$.
- For $v \in \Lambda^0$, fix $\mu \in v\Lambda r(\alpha)$.
- Factorisation property says μα = α'μ' for some α' ∈ νΛ^{e_i}.
- So every νΛ^{e_i} ≠ Ø; since Λ⁰ is finite, this means each E_i contains a cycle.
- Hence $\rho(A_i) \geq 1$.
- ▶ If $\Lambda^{e_i} = \emptyset$, we can regard Λ as a (k 1)-graph; so we can assume wlog that every $\rho(A_i) \ge 1$.

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources. Then $\mathcal{T}C^*(\Lambda)$ is universal for $\{T_{\lambda} : \lambda \in \Lambda\}$ such that: (TCK1) $\{T_{\nu} : \nu \in E^0\}$ is a set of mutually orthogonal projections; (TCK2) $T_{\mu}T_{\nu} = T_{\mu\nu}$ whenever $s(\mu) = r(\nu)$. (TCK3) $T^*_{\mu}T_{\mu} = T_{s(\mu)}$ for all μ , and (TCK3) $T_{\mu}T^*_{\mu}T_{\nu}T^*_{\nu} = \sum_{\lambda \in \mathsf{MCE}(\mu,\nu)} T_{\lambda}T^*_{\lambda}$ for all μ, ν (an empty sum is zero).

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources. Then $\mathcal{T}C^*(\Lambda)$ is universal for $\{T_{\lambda} : \lambda \in \Lambda\}$ such that: (TCK1) { $T_v : v \in E^0$ } is a set of mutually orthogonal projections; (TCK2) $T_{\mu}T_{\nu} = T_{\mu\nu}$ whenever $s(\mu) = r(\nu)$. (TCK3) $T_{\mu}^{*}T_{\mu} = T_{s(\mu)}$ for all μ , and (TCK3) $T_{\mu}T_{\mu}^{*}T_{\nu}T_{\nu}^{*} = \sum_{\lambda \in MCE(\mu,\nu)} T_{\lambda}T_{\lambda}^{*}$ for all μ, ν (an empty sum is zero). If $\mu \neq \nu \in \Lambda^n$, then MCE $(\mu, \nu) = \emptyset$. So

Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources. Then $\mathcal{T}C^*(\Lambda)$ is universal for $\{T_{\lambda} : \lambda \in \Lambda\}$ such that: (TCK1) { $T_v : v \in E^0$ } is a set of mutually orthogonal projections; (TCK2) $T_{\mu}T_{\nu} = T_{\mu\nu}$ whenever $s(\mu) = r(\nu)$. (TCK3) $T^*_{\mu}T_{\mu} = T_{s(\mu)}$ for all μ , and (TCK3) $T_{\mu}T_{\mu}^{*}T_{\nu}T_{\nu}^{*} = \sum_{\lambda \in MCE(\mu,\nu)} T_{\lambda}T_{\lambda}^{*}$ for all μ, ν (an empty sum is zero). If $\mu \neq \nu \in \Lambda^n$, then MCE $(\mu, \nu) = \emptyset$. So $T_v \geq \sum T_\lambda T_\lambda^*$ for all v, n. $\lambda \in v \Lambda^n$

 $C^*(\Lambda)$ is the quotient by the ideal generated by

$$\{ T_{\nu} - \sum_{\mu \in \nu \wedge^{n}} T_{\mu} T_{\mu}^{*} : \nu \in \wedge^{0}, n \in \mathbb{N}^{k} \}.$$

(日) (同) (三) (三) (三) (○) (○)

Spanning elements

• use $\{t_{\lambda} : \lambda \in \Lambda\}$ for the universal family.

► For
$$\mu, \nu \in \Lambda$$
, have $t_{\mu}^* t_{\nu} = \sum_{\mu \alpha = \nu \beta \in \mathsf{MCE}(\mu, \nu)} t_{\alpha} t_{\beta}^*$, so
 $\mathcal{T}C^*(\Lambda) = \overline{\mathsf{span}} \{ t_{\mu} t_{\nu}^* : s(\mu) = s(\nu) \}.$

- Universal property gives $\gamma : \mathbb{T}^k \to \operatorname{Aut} \mathcal{T}C^*(\Lambda)$ s.t. $\gamma_z(t_\lambda) = z^{d(\lambda)}t_\lambda$,
- ▶ so $r \in [0,\infty)^k$ gives $\alpha^r : \mathbb{R} \to \operatorname{Aut} \mathcal{TC}^*(\Lambda)$ via $\alpha_t^r = \gamma_{e^{itr}}$.

Spanning elements

• use $\{t_{\lambda} : \lambda \in \Lambda\}$ for the universal family.

► For
$$\mu, \nu \in \Lambda$$
, have $t_{\mu}^* t_{\nu} = \sum_{\mu \alpha = \nu \beta \in \mathsf{MCE}(\mu, \nu)} t_{\alpha} t_{\beta}^*$, so
 $\mathcal{T}C^*(\Lambda) = \overline{\mathsf{span}} \{ t_{\mu} t_{\nu}^* : s(\mu) = s(\nu) \}.$

- Universal property gives $\gamma : \mathbb{T}^k \to \operatorname{Aut} \mathcal{T}C^*(\Lambda)$ s.t. $\gamma_z(t_\lambda) = z^{d(\lambda)}t_\lambda$,
- ▶ so $r \in [0,\infty)^k$ gives $\alpha^r : \mathbb{R} \to \operatorname{Aut} \mathcal{TC}^*(\Lambda)$ via $\alpha_t^r = \gamma_{e^{itr}}$.
- both γ and α descend to $C^*(\Lambda)$.

KMS states

► Recall: given α : ℝ → Aut(A) and β ∈ ℝ, a state φ of A is KMS_β for (A, α) if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$

whenever $t \mapsto \alpha_t(a), \alpha_t(b)$ have analytic extensions.

It always suffices to check this KMS condition on your favourite set of analytic elements with dense linear span.

KMS states

► Recall: given α : ℝ → Aut(A) and β ∈ ℝ, a state φ of A is KMS_β for (A, α) if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$

whenever $t \mapsto \alpha_t(a), \alpha_t(b)$ have analytic extensions.

- It always suffices to check this KMS condition on your favourite set of analytic elements with dense linear span.
- Questions:
 - what are the KMS states for (*TC**(Λ), α^r)?
 - Which ones factor through C*(Λ)?

First observation

- Suppose that ϕ is a KMS_{β} state of $(\mathcal{T}C^*(\Lambda), \alpha^r)$.
- Universal property of $\mathcal{T}C^*(E_j)$ gives inclusion $\iota : \mathcal{T}C^*(E_j) \to \mathcal{T}C^*(\Lambda)$.

•
$$\alpha^r(t_f) = e^{itr_j}t_f$$
 for $f \in \Lambda^{e_j}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

First observation

- Suppose that ϕ is a KMS_{β} state of $(\mathcal{T}C^*(\Lambda), \alpha^r)$.
- Universal property of $\mathcal{T}C^*(E_j)$ gives inclusion $\iota : \mathcal{T}C^*(E_j) \to \mathcal{T}C^*(\Lambda)$.

•
$$\alpha^r(t_f) = e^{itr_j}t_f$$
 for $f \in \Lambda^{e_j}$.

- Put $m^{\phi} = (\phi(t_{\nu}))_{\nu \in \Lambda^0}$.
- Astrid showed us that then

$$A_i m^{\phi} \leq e^{\beta r_i} m^{\phi}$$
 for all $i \leq k$.

• If ϕ factors through $C^*(\Lambda)$, we have equality.

- The A_i need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

- The A_i need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) If $y \in [0, \infty)^{\Lambda^0} \setminus \{0\}$ and $\lambda_1, \ldots, \lambda_k$ satisfy $A_i y \leq \lambda_i y$ for all i, then $y_v > 0$ for all v and $\lambda_i \geq \rho(A_i)$ for all i; and

- The A_i need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) If $y \in [0, \infty)^{\Lambda^0} \setminus \{0\}$ and $\lambda_1, \ldots, \lambda_k$ satisfy $A_i y \leq \lambda_i y$ for all i, then $y_v > 0$ for all v and $\lambda_i \geq \rho(A_i)$ for all i; and

(2) There is a unique $x^{\Lambda} \in [0, \infty)^{\Lambda^0}$ with $||x^{\Lambda}||_1 = 1$ which is a common eigenvector of the A_i ; and then $A^n := \prod A_n^{n_i}$ satisfies $A^n x^{\Lambda} = \rho(A^n) x^{\Lambda} = \prod_{i=1}^k \rho(A_i)^{n_i} x^{\Lambda}$ for all $n \in \mathbb{N}^k$.

- The A_i need not be irreducible individually, so Perron-Frobenius doesn't immediately apply.
- Kumjian-Pask describe a Perron-Frobenius theorem for commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) If $y \in [0, \infty)^{\Lambda^0} \setminus \{0\}$ and $\lambda_1, \ldots, \lambda_k$ satisfy $A_i y \leq \lambda_i y$ for all i, then $y_v > 0$ for all v and $\lambda_i \geq \rho(A_i)$ for all i; and

(2) There is a unique $x^{\Lambda} \in [0, \infty)^{\Lambda^0}$ with $||x^{\Lambda}||_1 = 1$ which is a common eigenvector of the A_i ; and then $A^n := \prod_{n \neq i} A_n^{n_i}$ satisfies $A^n x^{\Lambda} = \rho(A^n) x^{\Lambda} = \prod_{i=1}^k \rho(A_i)^{n_i} x^{\Lambda}$ for all $n \in \mathbb{N}^k$.

Corollary

If ϕ is KMS_{β} for α^{r} , then $\beta r_{i} \geq \ln \rho(A_{i})$ for all *i*. If ϕ factors through $C^{*}(\Lambda)$, then each $\beta r_{i} = \ln \rho(A_{i})$, and $m^{\phi} = x^{\Lambda}$.

• If ϕ is KMS_{β}, then

$$\phi(t_{\mu}t_{\nu}^{*}) = e^{-\beta r \cdot d(\mu)}\phi(t_{\nu}^{*}t_{\mu}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*}).$$

• If ϕ is KMS_{β}, then

$$\phi(t_{\mu}t_{\nu}^*)=e^{-\beta r\cdot d(\mu)}\phi(t_{\nu}^*t_{\mu})=e^{-\beta r\cdot (d(\mu)-d(\nu))}\phi(t_{\mu}t_{\nu}^*).$$

• First equality gives $\phi(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu}e^{-\beta r \cdot d(\mu)}m_{s(\mu)}^{\phi}$ if $d(\mu) = d(\nu)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• If ϕ is KMS_{β}, then

$$\phi(t_{\mu}t_{\nu}^*)=e^{-\beta r\cdot d(\mu)}\phi(t_{\nu}^*t_{\mu})=e^{-\beta r\cdot (d(\mu)-d(\nu))}\phi(t_{\mu}t_{\nu}^*).$$

- ► First equality gives $\phi(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu}e^{-\beta r \cdot d(\mu)}m_{s(\mu)}^{\phi}$ if $d(\mu) = d(\nu)$.
- Second equality gives $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $r \cdot d(\mu) \neq r \cdot d(\nu)$.

• If ϕ is KMS_{β}, then

$$\phi(t_{\mu}t_{\nu}^*)=e^{-\beta r\cdot d(\mu)}\phi(t_{\nu}^*t_{\mu})=e^{-\beta r\cdot (d(\mu)-d(\nu))}\phi(t_{\mu}t_{\nu}^*).$$

First equality gives
$$\phi(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu}e^{-\beta r \cdot d(\mu)}m_{s(\mu)}^{\phi}$$
 if $d(\mu) = d(\nu)$.

- Second equality gives $\phi(t_{\mu}t_{\nu}^*) = 0$ if $r \cdot d(\mu) \neq r \cdot d(\nu)$.
- Not so clear what happens if r ⋅ d(µ) = r ⋅ d(ν) but d(µ) ≠ d(ν).

Proposition (aHLRS)

Suppose that $\beta r_i > \ln \rho(A_i)$ for all *i*. Then ϕ is KMS_{β} for $(\mathcal{T}C^*(\Lambda), \alpha^r)$ if and only if

$$\phi(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu} e^{-\beta r \cdot d(\mu)} m_{s(\mu)}^{\phi} \text{ for all } \mu,\nu.$$
 (*)

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$.

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\phi(t_{\mu}t_{\mu}^{*}) = \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = \phi(t_{\nu}t_{\nu}^{*}).$$

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\phi(t_{\mu}t_{\mu}^{*}) = \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = \phi(t_{\nu}t_{\nu}^{*}).$$

Cauchy-Schwarz gives $|\phi(t_{\mu}t_{\nu}^{*})| \le \phi(t_{\mu}t_{\mu}^{*}).$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

(

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\phi(t_{\mu}t_{\mu}^{*}) = \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = \phi(t_{\nu}t_{\nu}^{*}).$$

Cauchy-Schwarz gives $|\phi(t_{\mu}t_{\nu}^{*})| \le \phi(t_{\mu}t_{\mu}^{*}).$

Let $n = (d(\mu) \lor d(\nu)) - d(\mu) > 0$. Combinatorics/induction gives $\phi(t_{\mu}t_{\nu}^{*}) = \sum_{\lambda \in s(\mu)\Lambda^{j_{n}}, MCE(\mu\lambda,\nu\lambda) \neq \emptyset} \phi(t_{\mu\lambda}t_{\mu\lambda}^{*})$ for all j.

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\phi(t_{\mu}t_{\mu}^{*}) = \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}) = \phi(t_{\nu}t_{\nu}^{*}).$$

Cauchy-Schwarz gives $|\phi(t_{\mu}t_{\nu}^{*})| \leq \phi(t_{\mu}t_{\mu}^{*}).$
Let $n = (d(\mu) \lor d(\nu)) - d(\mu) > 0.$ Combinatorics/induction gives $\phi(t_{\mu}t_{\nu}^{*}) = \sum_{\lambda \in s(\mu)\Lambda^{jn}, MCE(\mu\lambda,\nu\lambda) \neq \emptyset} \phi(t_{\mu\lambda}t_{\mu\lambda}^{*})$ for all j .

So

$$|\phi(t_\mu t_
u^*)| \leq \sum_{\lambda \in oldsymbol{s}(\mu) oldsymbol{\Lambda}^{jn}} \phi(t_{\mu\lambda} t_{\mu\lambda}^*)$$

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\begin{split} \phi(t_{\mu}t_{\mu}^{*}) &= \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = e^{-\beta r \cdot (d(\mu) - d(\nu))} \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = \phi(t_{\nu}t_{\nu}^{*}). \\ \text{Cauchy-Schwarz gives } |\phi(t_{\mu}t_{\nu}^{*})| &\leq \phi(t_{\mu}t_{\mu}^{*}). \\ \text{Let } n &= (d(\mu) \lor d(\nu)) - d(\mu) > 0. \text{ Combinatorics/induction gives } \\ \phi(t_{\mu}t_{\nu}^{*}) &= \sum_{\lambda \in s(\mu) \wedge^{j_{n}}, \text{MCE}(\mu\lambda,\nu\lambda) \neq \emptyset} \phi(t_{\mu\lambda}t_{\mu\lambda}^{*}) \text{ for all } j. \\ \text{So} \end{split}$$

$$egin{aligned} \phi(t_{\mu}t_{
u}^*) &| \leq \sum_{\lambda \in s(\mu) \wedge^{jn}} \phi(t_{\mu\lambda}t_{\mu\lambda}^*) \ &= e^{-eta r \cdot (jn+d(\mu))} \sum_{\mathsf{w}} \sum_{\lambda \in s(\mu) \wedge^{jn} \mathsf{w}} \phi(t_{\mathsf{w}}) \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

"if" is a calculation. For "only if," need $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) \neq r \cdot d(\nu)$. We calculate

$$\begin{split} \phi(t_{\mu}t_{\mu}^{*}) &= \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = e^{-\beta r \cdot (d(\mu) - d(\nu))} \phi(t_{\mu}t_{\nu}^{*}t_{\nu}t_{\mu}^{*}) = \phi(t_{\nu}t_{\nu}^{*}). \\ \text{Cauchy-Schwarz gives } |\phi(t_{\mu}t_{\nu}^{*})| &\leq \phi(t_{\mu}t_{\mu}^{*}). \\ \text{Let } n &= (d(\mu) \lor d(\nu)) - d(\mu) > 0. \text{ Combinatorics/induction gives } \\ \phi(t_{\mu}t_{\nu}^{*}) &= \sum_{\lambda \in s(\mu) \wedge^{j_{n}}, \text{MCE}(\mu\lambda,\nu\lambda) \neq \emptyset} \phi(t_{\mu\lambda}t_{\mu\lambda}^{*}) \text{ for all } j. \\ \text{So} \end{split}$$

$$\begin{split} |\phi(t_{\mu}t_{\nu}^{*})| &\leq \sum_{\lambda \in s(\mu)\Lambda^{jn}} \phi(t_{\mu\lambda}t_{\mu\lambda}^{*}) \\ &= e^{-\beta r \cdot (jn+d(\mu))} \sum_{w} \sum_{\lambda \in s(\mu)\Lambda^{jn}w} \phi(t_{w}) \\ &= (e^{-\beta r \cdot n}A^{n})_{s(\mu)}^{j} \phi(t_{\mu}t_{\mu}^{*}) \to 0. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

KMS states on $\mathcal{T}C^*(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_i > \ln \rho(A_i)$ for all *i*. Then

1. For $v \in \Lambda^0$, $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_v > 1$. For $\epsilon \in [0, \infty)^{\Lambda^0}$, $m^{\epsilon} := \prod_{i=1}^k (1 - e^{-\beta r_i} A_i)^{-1} \epsilon$ satisfies $A_i m^{\epsilon} \le e^{\beta r_i} m$ for all i, and $\|m^{\epsilon}\|_1 = 1$ iff $\epsilon \cdot y = 1$.

KMS states on $\mathcal{T}C^*(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_i > \ln \rho(A_i)$ for all *i*. Then

- 1. For $v \in \Lambda^0$, $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_v > 1$. For $\epsilon \in [0, \infty)^{\Lambda^0}$, $m^{\epsilon} := \prod_{i=1}^k (1 e^{-\beta r_i} A_i)^{-1} \epsilon$ satisfies $A_i m^{\epsilon} \le e^{\beta r_i} m$ for all i, and $\|m^{\epsilon}\|_1 = 1$ iff $\epsilon \cdot y = 1$.
- 2. If $\epsilon \cdot y = 1$, there is a KMS_{β} state ϕ_{ϵ} such that $\phi_{\epsilon}(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu}e^{-\beta r \cdot d(\mu)}m_{s(\mu)}^{\epsilon}$.

KMS states on $\mathcal{T}C^*(\Lambda)$

Theorem (aHLRS)

Suppose that $\beta r_i > \ln \rho(A_i)$ for all *i*. Then

- 1. For $v \in \Lambda^0$, $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ converges to some $y_v > 1$. For $\epsilon \in [0, \infty)^{\Lambda^0}$, $m^{\epsilon} := \prod_{i=1}^k (1 e^{-\beta r_i} A_i)^{-1} \epsilon$ satisfies $A_i m^{\epsilon} \le e^{\beta r_i} m$ for all i, and $\|m^{\epsilon}\|_1 = 1$ iff $\epsilon \cdot y = 1$.
- 2. If $\epsilon \cdot y = 1$, there is a KMS_{β} state ϕ_{ϵ} such that $\phi_{\epsilon}(t_{\mu}t_{\nu}^{*}) = \delta_{\mu,\nu}e^{-\beta r \cdot d(\mu)}m_{s(\mu)}^{\epsilon}$.
- *ϵ* → *φ_ϵ* is an affine isomorphism of {*ϵ* : *ϵ* · *y* = 1} onto the KMS_β simplex of (*TC*^{*}(Λ), *α^r*).

(1) The terms in $\sum_{\mu \in \Lambda_V} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^k (1 - e^{-\beta r_i} A_i)^{-1}$, so the sum converges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(1) The terms in $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k} (1 - e^{-\beta r_i} A_i)^{-1}$, so the sum converges. We calculate

$$e^{-eta r_i} A_i (1-e^{-eta r_i} A_i)^{-1} = \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^{n+1} \ < \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^n = (1-e^{-eta r_i} A_i)^{-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(1) The terms in $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k} (1 - e^{-\beta r_i} A_i)^{-1}$, so the sum converges. We calculate

$$e^{-eta r_i} A_i (1 - e^{-eta r_i} A_i)^{-1} = \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^{n+1} < \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^n = (1 - e^{-eta r_i} A_i)^{-1}.$$

(2) Define $T_{\lambda} \in \mathcal{B}(\ell^{2}(\Lambda))$ by $T_{\lambda}\xi_{\mu} = \delta_{s(\lambda),r(\mu)}\xi_{\lambda\mu}$. This is a TCK-family, so induces $\pi_{T} : \mathcal{T}C^{*}(\Lambda) \to \mathcal{B}(\ell^{2}(\Lambda))$.

(1) The terms in $\sum_{\mu \in \Lambda v} e^{-\beta r \cdot d(\mu)}$ are terms in the series expansion of $\prod_{i=1}^{k} (1 - e^{-\beta r_i} A_i)^{-1}$, so the sum converges. We calculate

$$e^{-eta r_i} A_i (1 - e^{-eta r_i} A_i)^{-1} = \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^{n+1} < \sum_{n=0}^{\infty} (e^{-eta r_i} A_i)^n = (1 - e^{-eta r_i} A_i)^{-1}.$$

(2) Define $T_{\lambda} \in \mathcal{B}(\ell^{2}(\Lambda))$ by $T_{\lambda}\xi_{\mu} = \delta_{s(\lambda),r(\mu)}\xi_{\lambda\mu}$. This is a TCK-family, so induces $\pi_{T} : \mathcal{T}C^{*}(\Lambda) \to \mathcal{B}(\ell^{2}(\Lambda))$.

Check that $\Delta_{\mu} := e^{-\beta r \cdot d(\mu)} \epsilon_{s(\mu)}$ satisfies $\sum_{\mu \in \Lambda} \Delta_{\mu} = 1$. So $\phi_{\epsilon}(a) := \sum_{\mu} \Delta_{\mu}(\pi_{T}(a)\xi_{\mu} \mid \xi_{\mu})$

is a state; verify (*) to see it's KMS_{β} .

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) = r \cdot d(\nu)$ breaks down if $\beta r_{i} = \ln \rho(A_{i})$.

No issue if the $\ln \rho(A_i)$ are rationally independent.

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) = r \cdot d(\nu)$ breaks down if $\beta r_{i} = \ln \rho(A_{i})$.

No issue if the $\ln \rho(A_i)$ are rationally independent.

Theorem (aHLRS)

There is a KMS_{β} state for $(C^*(\Lambda), \alpha^r)$ if and only if $\beta r_i = \ln \rho(A_i)$ for all *i*. The formula $\phi(s_{\mu}s_{\nu}^*) = \delta_{\mu,\nu}\rho(A^{d(\mu)})^{-1}x_{s(\mu)}^{\Lambda}$ always defines such a state. If the $\ln \rho(A_i)$ are rationally independent, then this is the only KMS state for $(C^*(\Lambda), \alpha^r)$.

KMS states on the Cuntz-Krieger algebra

Our proof that $\phi(t_{\mu}t_{\nu}^{*}) = 0$ if $d(\mu) \neq d(\nu)$ but $r \cdot d(\mu) = r \cdot d(\nu)$ breaks down if $\beta r_{i} = \ln \rho(A_{i})$.

No issue if the $\ln \rho(A_i)$ are rationally independent.

Theorem (aHLRS)

There is a KMS_{β} state for $(C^*(\Lambda), \alpha^r)$ if and only if $\beta r_i = \ln \rho(A_i)$ for all *i*. The formula $\phi(s_{\mu}s_{\nu}^*) = \delta_{\mu,\nu}\rho(A^{d(\mu)})^{-1}x_{s(\mu)}^{\Lambda}$ always defines such a state. If the $\ln \rho(A_i)$ are rationally independent, then this is the only KMS state for $(C^*(\Lambda), \alpha^r)$.

Proof.

We saw earlier that $\beta r_i = \ln \rho(A_i)$ is necessary. A weak*-compactness argument proves existence. The uniqueness follows from our calculation

$$\phi(t_{\mu}t_{\nu}^{*}) = e^{-\beta r \cdot d(\mu)}\phi(t_{\nu}^{*}t_{\mu}) = e^{-\beta r \cdot (d(\mu) - d(\nu))}\phi(t_{\mu}t_{\nu}^{*})$$
earlier.

Non-uniqueness

- ► The hypothesis that the ln ρ(A_i) are rationally independent is needed.
- Let E be the directed graph with one vertex and 2 loops so C^{*}(E) = O₂.
- Let $\Lambda = \{(\lambda, n) \in E^* \times \mathbb{N}^2 : |\lambda| = n_1 + n_2\}.$
- Kumjian and Pask prove that $C^*(\Lambda) \cong \mathcal{O}_2 \otimes C(\mathbb{T})$.

Non-uniqueness

- ► The hypothesis that the ln ρ(A_i) are rationally independent is needed.
- Let E be the directed graph with one vertex and 2 loops so C^{*}(E) = O₂.
- Let $\Lambda = \{(\lambda, n) \in E^* \times \mathbb{N}^2 : |\lambda| = n_1 + n_2\}.$
- Kumjian and Pask prove that $C^*(\Lambda) \cong \mathcal{O}_2 \otimes C(\mathbb{T})$.
- Here $\ln \rho(A_1) = \ln \rho(A_2) = \ln 2$.
- Put r = (ln 2, ln 2), and let φ be the unique KMS_{ln 2} state of O₂.
- Calculations show that φ ⊗ ψ is a KMS₁ state of C^{*}(Λ) for every state φ of C(T).

Ground states

- a ground state is a state φ such that z → φ(aα_z(b)) is bounded on the upper half-plane for all analytic a, b.
- a KMS_∞-state is a weak*-limit of KMSβ_n states where β_n → ∞. On general grounds every KMS_∞ state is a ground state, but not conversely.

Proposition

Suppose each $r_i > 0$. For each probability measure ϵ on Λ^0 , there is a ground state of $(\mathcal{T}C * (\Lambda), \alpha^r)$ given by $\phi(t_v) = \epsilon(v)$ for $v \in \Lambda^0$ and $\phi(t_\mu t_\nu^*) = 0$ unless $\mu = \nu = s(\mu)$. These are all of the ground states, and they are all KMS_{∞} states.

Ground states

- ► In the characterisation of ground states, The hypothesis that r_i > 0 is needed.
- For example, let r = (−1, 1) and consider Λ = N² regarded as a 2-graph.
- If ϕ is a state of $\mathcal{T}C^*(\Lambda)$, then

$$\phi(t_{(1,0)}\alpha_{x+iy}^{r}(t_{(1,0)}^{*})) = e^{-yr \cdot d((1,0))}\phi(t_{0}) = e^{y}\phi(1_{\mathcal{T}C^{*}(\Lambda)})$$

is not bounded on the upper half plane.

- O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. 2, Equilibrium states. Models in quantum statistical mechanics, Springer-Verlag, Berlin, 1997, xiv+519.
- M. Enomoto, M. Fujii, and Y. Watatani, *KMS states for gauge action on O_A*, Math. Japon. **29** (1984), 607–619.
- A. Kumjian and D. Pask, *Higher rank graph C*-algebras*, New York J. Math. **6** (2000), 1–20.
- A. Kumjian and D. Pask, Actions of Z^k associated to higher rank graphs, Ergodic Theory Dynam. Systems 23 (2003), 1153–1172.
- S. Neshveyev, KMS states on the C*-algebras of non-principal groupoids, J. Operator Th., to appear (arXiv:1106.5912 [math.OA]).
- E. Seneta, Non-negative matrices and Markov chains, Revised reprint of the second (1981) edition, Springer, New York, 2006, xvi+287.

