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Higher-rank Cuntz-Krieger algebras

I Robertson and Steger studied C ∗-algbras arising from Zk

actions on Ãk -buildings.

I Data consists of k commuting binary matrices such that
AiAjAl is binary valued for distinct i , j , l .

I Resulting C ∗-algebra generated by copies of the Cuntz-Krieger
algebras OAi

subject to commutation relations encoded by the
products AiAj .

I Kumjian and Pask recognised that such a family of matrices
encodes a sort of higher-rank graph:

Definition (KP). A k-graph is a countable category Λ with a
functor d : Λ→ Nk satisfying the factorisation property: whenever
d(λ) = m + n there are unique µ ∈ d−1(m) and ν ∈ d−1(n) such
that λ = µν.
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Notation

I Λn denotes d−1(n).

I Factorisation property gives Λ0 = {ido : o ∈ Obj(Λ)}.
I The domain and codomain maps determine maps

s, r : Λ→ Λ0; and then r(λ)λ = λ = λs(λ) for all λ.

I Write, for example, vΛn for r−1(v) ∩ Λn.

I MCE(µ, ν) = {λ : d(λ) = d(µ) ∨ d(ν) and λ = µµ′ = νν ′}.
I The coordinate graphs Ei are Ei = (Λ0,Λei , r , s); this Ei has

adjacency matrix Ai .

For today:

I Λ is “finite” in the sense that each Λn is finite; and

I Λ is strongly connected: each vΛw 6= ∅.
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Connectivity

I We’ll use the strong connectivity quite a bit.

I First consequence: suppose that Λei 6= ∅; say α ∈ Λei .

I For v ∈ Λ0, fix µ ∈ vΛr(α).

I Factorisation property says µα = α′µ′ for some α′ ∈ vΛei .

I So every vΛei 6= ∅; since Λ0 is finite, this means each Ei

contains a cycle.

I Hence ρ(Ai ) ≥ 1.

I If Λei = ∅, we can regard Λ as a (k − 1)-graph; so we can
assume wlog that every ρ(Ai ) ≥ 1.
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Toeplitz-Cuntz-Krieger families

Definition (KP). Let Λ be a row-finite k-graph with no sources.
Then T C ∗(Λ) is universal for {Tλ : λ ∈ Λ} such that:

(TCK1) {Tv : v ∈ E 0} is a set of mutually orthogonal projections;

(TCK2) TµTν = Tµν whenever s(µ) = r(ν).

(TCK3) T ∗µTµ = Ts(µ) for all µ, and

(TCK3) TµT
∗
µTνT

∗
ν =

∑
λ∈MCE(µ,ν) TλT

∗
λ for all µ, ν (an empty sum

is zero).

If µ 6= ν ∈ Λn, then MCE(µ, ν) = ∅. So

Tv ≥
∑
λ∈vΛn

TλT
∗
λ for all v , n.

C ∗(Λ) is the quotient by the ideal generated by

{Tv −
∑
µ∈vΛn

TµT
∗
µ : v ∈ Λ0, n ∈ Nk}.
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Spanning elements

I use {tλ : λ ∈ Λ} for the universal family.

I For µ, ν ∈ Λ, have t∗µtν =
∑

µα=νβ∈MCE(µ,ν) tαt
∗
β, so

T C ∗(Λ) = span{tµt∗ν : s(µ) = s(ν)}.

I Universal property gives γ : Tk → Aut T C ∗(Λ) s.t.
γz(tλ) = zd(λ)tλ,

I so r ∈ [0,∞)k gives αr : R→ Aut T C ∗(Λ) via αr
t = γe itr .

I αr
t(tµt

∗
ν ) = e itr ·(d(µ)−d(ν))tµt

∗
ν , so the tµt

∗
ν are analytic

elements.

I both γ and α descend to C ∗(Λ).
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KMS states

I Recall: given α : R→ Aut(A) and β ∈ R, a state φ of A is
KMSβ for (A, α) if

φ(ab) = φ(bαiβ(a))

whenever t 7→ αt(a), αt(b) have analytic extensions.

I It always suffices to check this KMS condition on your
favourite set of analytic elements with dense linear span.

I Questions:
I what are the KMS states for (T C∗(Λ), αr )?
I Which ones factor through C∗(Λ)?
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First observation

I Suppose that φ is a KMSβ state of (T C ∗(Λ), αr ).

I Universal property of T C ∗(Ej) gives inclusion
ι : T C ∗(Ej)→ T C ∗(Λ).

I αr (tf ) = e itrj tf for f ∈ Λej .

I Put mφ = (φ(tv ))v∈Λ0 .

I Astrid showed us that then

Aim
φ ≤ eβrimφ for all i ≤ k .

I If φ factors through C ∗(Λ), we have equality.



First observation

I Suppose that φ is a KMSβ state of (T C ∗(Λ), αr ).

I Universal property of T C ∗(Ej) gives inclusion
ι : T C ∗(Ej)→ T C ∗(Λ).

I αr (tf ) = e itrj tf for f ∈ Λej .

I Put mφ = (φ(tv ))v∈Λ0 .

I Astrid showed us that then

Aim
φ ≤ eβrimφ for all i ≤ k .

I If φ factors through C ∗(Λ), we have equality.



Perron-Frobenius for commuting matrices

I The Ai need not be irreducible individually, so
Perron-Frobenius doesn’t immediately apply.

I Kumjian-Pask describe a Perron-Frobenius theorem for
commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) If y ∈ [0,∞)Λ0 \ {0} and λ1, . . . , λk satisfy Aiy ≤ λiy for all i ,
then yv > 0 for all v and λi ≥ ρ(Ai ) for all i ; and

(2) There is a unique xΛ ∈ [0,∞)Λ0
with ‖xΛ‖1 = 1 which is a

common eigenvector of the Ai ; and then An :=
∏

Ani
n satisfies

AnxΛ = ρ(An)xΛ =
∏k

i=1 ρ(Ai )
ni xΛ for all n ∈ Nk .

Corollary

If φ is KMSβ for αr , then βri ≥ ln ρ(Ai ) for all i . If φ factors
through C ∗(Λ), then each βri = ln ρ(Ai ), and mφ = xΛ.
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Second observation

I If φ is KMSβ, then

φ(tµt
∗
ν ) = e−βr ·d(µ)φ(t∗ν tµ) = e−βr ·(d(µ)−d(ν))φ(tµt

∗
ν ).

I First equality gives φ(tµt
∗
ν ) = δµ,νe

−βr ·d(µ)mφ
s(µ) if

d(µ) = d(ν).

I Second equality gives φ(tµt
∗
ν ) = 0 if r · d(µ) 6= r · d(ν).

I Not so clear what happens if r · d(µ) = r · d(ν) but
d(µ) 6= d(ν).

Proposition (aHLRS)

Suppose that βri > ln ρ(Ai ) for all i . Then φ is KMSβ for
(T C ∗(Λ), αr ) if and only if

φ(tµt
∗
ν ) = δµ,νe

−βr ·d(µ)mφ
s(µ) for all µ, ν. (*)
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Proof sketch.
“if” is a calculation. For “only if,” need φ(tµt

∗
ν ) = 0 if

d(µ) 6= d(ν) but r · d(µ) 6= r · d(ν).

We calculate

φ(tµt
∗
µ) = φ(tµt

∗
ν tνt

∗
µ) = e−βr ·(d(µ)−d(ν))φ(tµt

∗
ν tνt

∗
µ) = φ(tνt

∗
ν ).

Cauchy-Schwarz gives |φ(tµt
∗
ν )| ≤ φ(tµt

∗
µ).

Let n = (d(µ) ∨ d(ν))− d(µ) > 0. Combinatorics/induction gives
φ(tµt

∗
ν ) =

∑
λ∈s(µ)Λjn,MCE(µλ,νλ) 6=∅ φ(tµλt

∗
µλ) for all j .

So

|φ(tµt
∗
ν )| ≤

∑
λ∈s(µ)Λjn

φ(tµλt
∗
µλ)

= e−βr ·(jn+d(µ))
∑
w

∑
λ∈s(µ)Λjnw

φ(tw )

= (e−βr ·nAn)js(µ)φ(tµt
∗
µ)→ 0.
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φ(tµt

∗
ν ) =

∑
λ∈s(µ)Λjn,MCE(µλ,νλ) 6=∅ φ(tµλt

∗
µλ) for all j .

So

|φ(tµt
∗
ν )| ≤

∑
λ∈s(µ)Λjn

φ(tµλt
∗
µλ)

= e−βr ·(jn+d(µ))
∑
w

∑
λ∈s(µ)Λjnw

φ(tw )

= (e−βr ·nAn)js(µ)φ(tµt
∗
µ)→ 0.
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We calculate

φ(tµt
∗
µ) = φ(tµt

∗
ν tνt

∗
µ) = e−βr ·(d(µ)−d(ν))φ(tµt

∗
ν tνt

∗
µ) = φ(tνt

∗
ν ).

Cauchy-Schwarz gives |φ(tµt
∗
ν )| ≤ φ(tµt

∗
µ).

Let n = (d(µ) ∨ d(ν))− d(µ) > 0. Combinatorics/induction gives
φ(tµt

∗
ν ) =

∑
λ∈s(µ)Λjn,MCE(µλ,νλ) 6=∅ φ(tµλt

∗
µλ) for all j .

So

|φ(tµt
∗
ν )| ≤

∑
λ∈s(µ)Λjn

φ(tµλt
∗
µλ)

= e−βr ·(jn+d(µ))
∑
w

∑
λ∈s(µ)Λjnw

φ(tw )

= (e−βr ·nAn)js(µ)φ(tµt
∗
µ)→ 0.



KMS states on T C ∗(Λ)

Theorem (aHLRS)

Suppose that βri > ln ρ(Ai ) for all i . Then

1. For v ∈ Λ0,
∑

µ∈Λv e
−βr ·d(µ) converges to some yv > 1. For

ε ∈ [0,∞)Λ0
, mε :=

∏k
i=1(1− e−βriAi )

−1ε satisfies
Aim

ε ≤ eβrim for all i , and ‖mε‖1 = 1 iff ε · y = 1.

2. If ε · y = 1, there is a KMSβ state φε such that
φε(tµt

∗
ν ) = δµ,νe

−βr ·d(µ)mε
s(µ).

3. ε 7→ φε is an affine isomorphism of {ε : ε · y = 1} onto the
KMSβ simplex of (T C ∗(Λ), αr ).
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Proof sketch

(1) The terms in
∑

µ∈Λv e
−βr ·d(µ) are terms in the series expansion

of
∏k

i=1(1− e−βriAi )
−1, so the sum converges.

We calculate

e−βriAi (1− e−βriAi )
−1 =

∞∑
n=0

(e−βriAi )
n+1

<

∞∑
n=0

(e−βriAi )
n = (1− e−βriAi )

−1.

(2) Define Tλ ∈ B(`2(Λ)) by Tλξµ = δs(λ),r(µ)ξλµ. This is a
TCK-family, so induces πT : T C ∗(Λ)→ B(`2(Λ)).

Check that ∆µ := e−βr ·d(µ)εs(µ) satisfies
∑

µ∈Λ ∆µ = 1. So

φε(a) :=
∑

µ ∆µ(πT (a)ξµ | ξµ)

is a state; verify (*) to see it’s KMSβ.
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KMS states on the Cuntz-Krieger algebra

Our proof that φ(tµt
∗
ν ) = 0 if d(µ) 6= d(ν) but r · d(µ) = r · d(ν)

breaks down if βri = ln ρ(Ai ).
No issue if the ln ρ(Ai ) are rationally independent.

Theorem (aHLRS)

There is a KMSβ state for (C ∗(Λ), αr ) if and only if βri = ln ρ(Ai )
for all i . The formula φ(sµs

∗
ν ) = δµ,νρ(Ad(µ))−1xΛ

s(µ) always defines

such a state. If the ln ρ(Ai ) are rationally independent, then this is
the only KMS state for (C ∗(Λ), αr ).

Proof.
We saw earlier that βri = ln ρ(Ai ) is necessary. A
weak*-compactness argument proves existence. The uniqueness
follows from our calculation

φ(tµt
∗
ν ) = e−βr ·d(µ)φ(t∗ν tµ) = e−βr ·(d(µ)−d(ν))φ(tµt

∗
ν )

earlier.
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Non-uniqueness

I The hypothesis that the ln ρ(Ai ) are rationally independent is
needed.

I Let E be the directed graph with one vertex and 2 loops so
C ∗(E ) = O2.

I Let Λ = {(λ, n) ∈ E ∗ × N2 : |λ| = n1 + n2}.
I Kumjian and Pask prove that C ∗(Λ) ∼= O2 ⊗ C (T).

I Here ln ρ(A1) = ln ρ(A2) = ln 2.

I Put r = (ln 2, ln 2), and let φ be the unique KMSln 2 state of
O2.

I Calculations show that φ⊗ ψ is a KMS1 state of C ∗(Λ) for
every state φ of C (T).



Non-uniqueness

I The hypothesis that the ln ρ(Ai ) are rationally independent is
needed.

I Let E be the directed graph with one vertex and 2 loops so
C ∗(E ) = O2.

I Let Λ = {(λ, n) ∈ E ∗ × N2 : |λ| = n1 + n2}.
I Kumjian and Pask prove that C ∗(Λ) ∼= O2 ⊗ C (T).

I Here ln ρ(A1) = ln ρ(A2) = ln 2.

I Put r = (ln 2, ln 2), and let φ be the unique KMSln 2 state of
O2.

I Calculations show that φ⊗ ψ is a KMS1 state of C ∗(Λ) for
every state φ of C (T).



Ground states

I a ground state is a state φ such that z 7→ φ(aαz(b)) is
bounded on the upper half-plane for all analytic a, b.

I a KMS∞-state is a weak*-limit of KMSβn states where
βn →∞. On general grounds every KMS∞ state is a ground
state, but not conversely.

Proposition

Suppose each ri > 0. For each probability measure ε on Λ0, there
is a ground state of (T C ∗ (Λ), αr ) given by φ(tv ) = ε(v) for
v ∈ Λ0 and φ(tµt

∗
ν ) = 0 unless µ = ν = s(µ). These are all of the

ground states, and they are all KMS∞ states.



Ground states

I In the characterisation of ground states, The hypothesis that
ri > 0 is needed.

I For example, let r = (−1, 1) and consider Λ = N2 regarded as
a 2-graph.

I If φ is a state of T C ∗(Λ), then

φ(t(1,0)α
r
x+iy (t∗(1,0))) = e−yr ·d((1,0))φ(t0) = eyφ(1T C∗(Λ))

is not bounded on the upper half plane.
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