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Higher-rank Cuntz-Krieger algebras

» Robertson and Steger studied C*-algbras arising from Zk
actions on Ag-buildings.

» Data consists of k commuting binary matrices such that
A;A;A, is binary valued for distinct 7, j, /.

» Resulting C*-algebra generated by copies of the Cuntz-Krieger
algebras O4; subject to commutation relations encoded by the
products A;A;.
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Higher-rank Cuntz-Krieger algebras

» Robertson and Steger studied C*-algbras arising from Zk
actions on Ag-buildings.

» Data consists of k commuting binary matrices such that
A;A;A, is binary valued for distinct 7, j, /.

» Resulting C*-algebra generated by copies of the Cuntz-Krieger
algebras O4; subject to commutation relations encoded by the
products A;A;.

» Kumjian and Pask recognised that such a family of matrices
encodes a sort of higher-rank graph:

Definition (KP). A k-graph is a countable category A with a
functor d : A — N¥ satisfying the factorisation property: whenever
d(\) = m+ n there are unique 1 € d~1(m) and v € d~1(n) such
that A = uv.
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Notation

» A" denotes d~1(n).

» Factorisation property gives A° = {id, : 0 € Obj(A)}.

» The domain and codomain maps determine maps
s,r: A — A% and then r(A)A = X = As(\) for all \.

» Write, for example, vA" for r=1(v) N A",

» MCE(u,v) ={X:d(\) =d(p)Vd)and A = pp/ =vv'},

» The coordinate graphs E; are E; = (A%, A%, r, s); this E; has
adjacency matrix A;.
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Notation

» A" denotes d~1(n).

» Factorisation property gives A° = {id, : 0 € Obj(A)}.

» The domain and codomain maps determine maps
s,r: A — A% and then r(A)A = X = As(\) for all \.

» Write, for example, vA" for r=1(v) N A",

» MCE(p,v) = {A:d(A\) =d(pn) vVd) and A = pp/ = v/}

» The coordinate graphs E; are E; = (A%, A%, r, s); this E; has
adjacency matrix A;.

For today:
» Ais “finite” in the sense that each A” is finite; and

» A is strongly connected: each vAw # ().
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Connectivity

» We'll use the strong connectivity quite a bit.

» First consequence: suppose that A% # (); say o € A,

wstmureor
UNIVERSITY OF
MATHEMATICS &
ITS APPLICATIONS WOLLONGONG @



Connectivity

» We'll use the strong connectivity quite a bit.

» First consequence: suppose that A% # (); say o € A,

» For v € A0, fix i € vAAr(a).

» Factorisation property says ua = o/’ for some o’ € vAS.

» So every vA® £ (); since A is finite, this means each E;
contains a cycle.

» Hence p(A;) > 1.
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Connectivity

» We'll use the strong connectivity quite a bit.

» First consequence: suppose that A% # (); say o € A,

» For v € A0, fix i € vAAr(a).

» Factorisation property says ua = o/’ for some o’ € vAS.

» So every vA® £ (); since A is finite, this means each E;
contains a cycle.

» Hence p(A;) > 1.

» If A% =), we can regard A as a (k — 1)-graph; so we can
assume wlog that every p(A;) > 1.
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Toeplitz-Cuntz-Krieger families
Definition (KP). Let A be a row-finite k-graph with no sources.
Then T C*(A) is universal for { T : A € A} such that:
(TCK1) {T, :v € E% is a set of mutually orthogonal projections;
(TCK2) T, T, = T, whenever s(u) = r(v).
(TCK3) T;Tu= Ty for all i, and
( )

TCK3) T, T;T,T) = ZAEMCE(u,V) T\ T3 for all v (an empty sum
is zero).
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Toeplitz-Cuntz-Krieger families
Definition (KP). Let A be a row-finite k-graph with no sources.
Then T C*(A) is universal for { T : A € A} such that:
(TCK1) {T, :v € E% is a set of mutually orthogonal projections;
(TCK2) T, T, = T, whenever s(u) = r(v).
(TCK3) T;Tu= Ty for all i, and
( )

TCK3) T, T;T,T) = ZAEMCE(u,V) T\ T3 for all v (an empty sum
is zero).

If w# v e A" then MCE(u,v) = 0. So

T, > Z T.\T; forall v,n.
AEevAn
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Toeplitz-Cuntz-Krieger families
Definition (KP). Let A be a row-finite k-graph with no sources.
Then T C*(A) is universal for {T) : A € A} such that:
(TCK1) {T, :v € E% is a set of mutually orthogonal projections;
(TCK2) T, T, = T, whenever s(u) = r(v).
(TCK3) T;Tu= Ty for all i, and
( )

TCK3) T, T;T,T) = ZAEMCE(u,V) T\ T3 for all v (an empty sum
is zero).

If w# v e A" then MCE(u,v) = 0. So

T, > Z T.\T; forall v,n.
AEevAn

C*(A) is the quotient by the ideal generated by

{T,— > TuT;:veN, neN-}
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Spanning elements
> use {t)\ : A € A} for the universal family.
» For u,v € A, have t)t, = Zua:uﬁeMCE(u,V) tat}, sO
TCH(A) = span{tt; : s() = s(v)}.
» Universal property gives v : T — Aut 7 C*(A) s.t.

12(t) = 29V,
» so r € [0,00)k gives a” : R — Aut T C*(A) via af = v,
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Spanning elements

> use {t)\ : A € A} for the universal family.
» For u,v € A, have t)t, = Zua:uﬁeMCE(u,V) tat}, sO
T C*(N) =span{t,t; : s(u) = s(v)}.

» Universal property gives v : T — Aut 7 C*(A) s.t.
Vz(tr) = Zd()\)t)\v

» so r € [0,00)k gives a” : R — Aut T C*(A) via af = v,

> af(t,ty) = etr(d=d@) g ¢+ so the t,t are analytic
elements.

» both v and « descend to C*(A).
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KMS states
» Recall: given o : R — Aut(A) and 8 € R, a state ¢ of A is

KMSg for (A, o) if
¢(ab) = ¢(bais(a))

whenever t — «ay(a), a:(b) have analytic extensions.

> It always suffices to check this KMS condition on your
favourite set of analytic elements with dense linear span.
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KMS states

» Recall: given av: R — Aut(A) and 8 € R, a state ¢ of A is
KMSg for (A, o) if

p(ab) = ¢(bajs(a))

whenever t — «ay(a), a:(b) have analytic extensions.

> It always suffices to check this KMS condition on your
favourite set of analytic elements with dense linear span.
» Questions:

» what are the KMS states for (7 C*(A),a")?
» Which ones factor through C*(A)?
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First observation

» Suppose that ¢ is a KMSg state of (7 C*(A),a").
» Universal property of 7 C*(E;) gives inclusion

v TCH(Ej)) = TC*(N).
> ar(tf) = eitrjtf for f € A9,
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First observation

» Suppose that ¢ is a KMSg state of (7 C*(A),a").
Universal property of 7 C*(E;) gives inclusion

v TCH(Ej)) = TC*(N).

ar(tf) = eitrjtf for f € N\9.

Put m® = (6(t,))yene-

Astrid showed us that then

v

v

v

v

Aim® < ePrim?®  for all i < k.

v

If ¢ factors through C*(A), we have equality.
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Perron-Frobenius for commuting matrices

» The A; need not be irreducible individually, so
Perron-Frobenius doesn’'t immediately apply.

» Kumjian-Pask describe a Perron-Frobenius theorem for
commuting matrices. Expanding on this,
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Perron-Frobenius for commuting matrices
» The A; need not be irreducible individually, so
Perron-Frobenius doesn’'t immediately apply.

» Kumjian-Pask describe a Perron-Frobenius theorem for
commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)
(1) Ify € [0,00)\" \ {0} and A1, ..., A satisfy Aiy < Ay for all i,
then y, > 0 for all v and \; > p(A;) for all i; and
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Perron-Frobenius for commuting matrices

» The A; need not be irreducible individually, so
Perron-Frobenius doesn’'t immediately apply.

» Kumjian-Pask describe a Perron-Frobenius theorem for
commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) Ify € [0,00)\" \ {0} and A1, ..., A satisfy Aiy < Ay for all i,
then y, > 0 for all v and \; > p(A;) for all i; and

(2) There is a unique x" € [0, 00)"" with ||x||1 = 1 which is a
common eigenvector of the A;; and then A" := [ AT satisfies
AN = p(AT)XN = Hf-;l p(A)"xN for all n € NK.
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Perron-Frobenius for commuting matrices

» The A; need not be irreducible individually, so
Perron-Frobenius doesn’'t immediately apply.

» Kumjian-Pask describe a Perron-Frobenius theorem for
commuting matrices. Expanding on this,

Proposition (Kumjian-Pask, aHLRS)

(1) Ify € [0,00)\" \ {0} and A1, ..., A satisfy Aiy < Ay for all i,
then y, > 0 for all v and \; > p(A;) for all i; and

(2) There is a unique x" € [0, 00)"" with ||x||1 = 1 which is a
common eigenvector of the A;; and then A" := [ AT satisfies
AN = p(AT)XN = Hf-;l p(A)"xN for all n € Nk,

Corollary

If ¢ is KMSg for o, then Br; > In p(A;) for all i. If ¢ factors
through C*(N), then each Br; = In p(A;), and m® = x".
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Second observation
> If ¢ is KMSg, then
P(tuty) = e PrdWg(trt,) = e Ar(di=duDg (s, tr).
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Second observation
> If ¢ is KMSg, then
P(tuty) = e PrdWg(trt,) = e Ar(di=duDg (s, tr).

» First equality gives ¢(t,t}) = 5mue—6r-d(u)mfm) if
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Second observation
> If ¢ is KMSg, then
O(tuty) = e mWg(tyt,) = e Prd=dtNg(e,15).
» First equality gives ¢(t,t;) = 5M7Ve_ﬂ"d(“)mf(ﬂ) if

d(p) = d(v).
» Second equality gives ¢(t,t;) =0 if r-d(u) # r-d(v).
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Second observation
> If ¢ is KMSg, then
Pt th) = e PrdW) gt t,) = e—ﬁr-(d(u)—d(V))¢(tMt3)_
» First equality gives ¢(t,t;) = 5M7Ve_6"d(“)mf(ﬂ) if
d(p) = d(v).
» Second equality gives ¢(t,t;) =0 if r-d(u) # r-d(v).

» Not so clear what happens if r- d(u) = r- d(v) but
d() # d(v).

Proposition (aHLRS)
Suppose that r; > In p(A;) for all i. Then ¢ is KMSg for
(T C*(N), ") if and only if

o(tut)) = 5uye_ﬁ d(1) m? s() for all p,v. (*)

INSTITUTE FOR
UNIVERSITY OF [%%]

MATHEMATICS & \
ITS APPLICATIONS WOLLONGONG ".l



Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(u) # r-d(v).
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if

d(u) # d(v) but r-d(p) # r-d(v).
We calculate
P(tuth) = d(tuttyth) = e PrldW=dWg (¢ ot t5) = p(t,17).
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(u) # r-d(v).
We calculate
But3) = Beutt85) = e Frd0-dN (e 8, 60) = o(1,85).

Cauchy-Schwarz gives [¢(t,t))| < ¢(tut,).
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(u) # r-d(v).
We calculate
P(tuth) = d(tuttyth) = e PrldW=dWg (¢ ot t5) = p(t,17).
Cauchy-Schwarz gives [¢(t,t))| < ¢(tut,).
Let n = (d(u) V d(v)) — d(p) > 0. Combinatorics/induction gives
P(tut)) = D oxesunin MCE(uAwa)20 P(tunt)y) for all j.
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(p) # r-d(v).
We calculate
But3) = Ot 87) = eI ANG (0,158, 7) = o(8,85).
Cauchy-Schwarz gives [¢(t,t))| < ¢(tut,).
Let n = (d(u) V d(v)) — d(p) > 0. Combinatorics/induction gives

P(tut)) = 2ones(unn MCE(uAwN) 20 P(turtyy) for all .
So

B(Gt) < Y Hltatin)

AEs(p)Nn

O
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(p) # r-d(v).
We calculate
But3) = Ot 87) = eI ANG (0,158, 7) = o(8,85).
Cauchy-Schwarz gives [¢(t,t))| < ¢(tut,).
Let n = (d(u) V d(v)) — d(p) > 0. Combinatorics/induction gives

P(tut)) = Dones(uynn MCE(urwn) 20 P(turty) for all .
So

B(Gt) < Y Hltatin)

AEs(p)Nn

— e BrUntd(n) Z Z o(tw)

woes(u)Nw
L]
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Proof sketch.
“if" is a calculation. For “only if,” need ¢(t,t}) = 0 if
d(p) # d(v) but r-d(p) # r-d(v).
We calculate
But3) = Ot 87) = eI ANG (0,158, 7) = o(8,85).
Cauchy-Schwarz gives [¢(t,t))| < ¢(tut,).
Let n = (d(u) V d(v)) — d(p) > 0. Combinatorics/induction gives

P(tut)) = Dones(uynn MCE(urwn) 20 P(turty) for all .
So

B(Gt) < Y Hltatin)

AEs(p)Nn

— e BrUntd(n) Z Z o(tw)

woes(u)Nw
= (e PrrATY d(tuts) = 0. O
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KMS states on 7 C*(A)

Theorem (aHLRS)
Suppose that Sri > In p(A;) for all i. Then
1. Forv e A, Zuel\v e=Prd1) converges to some y, > 1. For
e € [0, oo)’\o, me := Hfle(l — e P A;) e satisfies
Aim© < ePim for all i, and |m||; =1 iffe-y = 1.
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KMS states on 7 C*(A)

Theorem (aHLRS)
Suppose that Br; > In p(A;) for all i. Then
1. Forv e A, Zuel\v e=Prd1) converges to some y, > 1. For
e €[0,00)N, me = Hfle(l — e PriA;) e satisfies
Aim© < ePim for all i, and |m||; =1 iffe-y = 1.
2. Ife-y =1, there is a KMSg state ¢. such that
Pe(tut)) = 5mveiﬁr.d(ﬂ)m§(y)'
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KMS states on 7 C*(A)

Theorem (aHLRS)
Suppose that Br; > In p(A;) for all i. Then
1. Forv e A, Zuel\v e=Prd1) converges to some y, > 1. For
e €[0,00)N, me = Hfle(l — e PriA;) e satisfies
Aim© < ePim for all i, and |m||; =1 iffe-y = 1.
2. Ife-y =1, there is a KMSg state ¢. such that

Pe(tuty) = Gpe P M)

3. € ¢ is an affine isomorphism of {€ : e -y = 1} onto the
KMSg simplex of (T C*(N), a").
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Proof sketch

(1) The termsin >° ., e Brd1) are terms in the series expansion
of Hﬁ;l(l — e PiA)TL, so the sum converges.
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Proof sketch

(1) The termsin >° ., e Brd1) are terms in the series expansion
of Hﬁ‘zl(l — e BiA)7L, so the sum converges. We calculate

0o
e—Br,-Ai(l _ e—,Br,-Ai)—l _ Z(e—ﬁriAi)n-‘rl
n=0

[e.9]
<Y (e Ay =(1—e AT
n=0
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Proof sketch

(1) The termsin >° ., e Brd1) are terms in the series expansion
of Hf‘zl(l — e BiA)7L, so the sum converges. We calculate

0o
e—Br,-Ai(l _ e—,Br,-Ai)—l _ Z(e—ﬁriAi)n-‘rl
n=0

[e.9]
<Y (e Ay =(1—e AT
n=0

(2) Define Ty € B(£2(N)) by Ta&u = 6s(n),r(j)éru- This is a
TCK-family, so induces 7 : T C*(A) — B(£2(N)).
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Proof sketch
(1) The termsin >° ., e Brd1) are terms in the series expansion
of Hf‘zl(l — e BiA)7L, so the sum converges. We calculate

0o
e—Br,-Ai(l _ e—,Br,-Ai)—l _ Z(e—ﬁriAi)n-‘rl
n=0

o0
<D (e = (1 e Ay
n=0

(2) Define Ty € B(£2(N)) by Ta&u = 6s(n),r(j)éru- This is a
TCK-family, so induces 7 : T C*(A) — B(£2(N)).

Check that A, := e~ #rdr )GS(M) satisfies 3 A Ay = 1. So
pc(a) == Zu Ap(rr(a)éu | )

is a state; verify (*) to see it's KMSg.
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KMS states on the Cuntz-Krieger algebra

Our proof that ¢(t,t)) =0 if d(p) # d(v) but r-d(pu) =r-d(v)
breaks down if Sr; = In p(A;).
No issue if the In p(A;) are rationally independent.
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KMS states on the Cuntz-Krieger algebra
Our proof that ¢(t,t)) =0 if d(p) # d(v) but r-d(pu) =r-d(v)
breaks down if Sr; = In p(A;).
No issue if the In p(A;) are rationally independent.
Theorem (aHLRS)
There is a KMSg state for (C*(N\), ") if and only if Bri = In p(A;)
for all i. The formula ¢(s,s;) = 6M7,,p(Ad(“))_1X£\(M) always defines

such a state. If the In p(A;) are rationally independent, then this is
the only KMS state for (C*(N), a").
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KMS states on the Cuntz-Krieger algebra

Our proof that ¢(t,t)) =0 if d(p) # d(v) but r-d(pu) =r-d(v)
breaks down if Sr; = In p(A;).
No issue if the In p(A;) are rationally independent.

Theorem (aHLRS)
There is a KMSg state for (C*(N\), ") if and only if Bri = In p(A;)
for all i. The formula ¢(s,s;) = 6M7,,p(Ad(“))_1X£\(M) always defines

such a state. If the In p(A;) are rationally independent, then this is
the only KMS state for (C*(N), a").

Proof.
We saw earlier that Br; = In p(A;) is necessary. A
weak*-compactness argument proves existence. The uniqueness
follows from our calculation

P(tuth) = e —Brd( u)¢(t t,) =e —Br(d(u)— )d)(t“t*)
earlier. O
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Non-uniqueness

>

The hypothesis that the In p(A;) are rationally independent is
needed.

Let E be the directed graph with one vertex and 2 loops so
C*(E) = O,.

Let A= {(\,n) € E* x N2 : |\ = ny + m}.
Kumjian and Pask prove that C*(A) = O, ® C(T).
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Non-uniqueness

>

The hypothesis that the In p(A;) are rationally independent is
needed.

Let E be the directed graph with one vertex and 2 loops so
C*(E) = 0s.

Let A= {(\,n) € E* x N2 : |\ = ny + m}.

Kumjian and Pask prove that C*(A) = O, ® C(T).

Here In p(A1) = In p(A2) = In2.

Put r = (In2,In2), and let ¢ be the unique KMS),, state of
0.

Calculations show that ¢ ® 1 is a KMS; state of C*(A) for
every state ¢ of C(T).
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Ground states

» a ground state is a state ¢ such that z — ¢(aa,(b)) is
bounded on the upper half-plane for all analytic a, b.

> a KMS.-state is a weak*-limit of KMSg,, states where
Bn — co. On general grounds every KMS, state is a ground
state, but not conversely.

Proposition

Suppose each r; > 0. For each probability measure ¢ on A°, there
is a ground state of (T C % (N),a") given by ¢(t,) = €(v) for

v € A% and ¢(t,t;) = 0 unless p = v = s(u). These are all of the
ground states, and they are all KMS, states.
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Ground states

» In the characterisation of ground states, The hypothesis that
r; > 0 is needed.

» For example, let r = (—1,1) and consider A = N? regarded as
a 2-graph.
> If ¢ is a state of T C*(A), then

D(t(1,0) %ty (t(1,0))) = e A0 p(ty) = e’ ¢(11cx(n))

is not bounded on the upper half plane.
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