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time Markov chain with values in the set of partitions of N, starting with
an infinite number of blocks/individuals.
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Bolthausen-Sznitman coalescent

The Bolthausen-Sznitman (BS) coalescent (II;, ¢ > 0), is a continuous
time Markov chain with values in the set of partitions of N, starting with
an infinite number of blocks/individuals.

It is an example of an exchangeable coalescent with multiple collisions.

It was first introduced in physics, in order to study spin glasses but it has
also been thought as a limiting genealogical model for evolving
populations with selective killing at each generation.
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Formal description

Let n € N, then the restriction (Hg"),t > 0) of (II;, ¢ > 0) to
[n] = {1,...,n} is a Markov chain with values in P,,, the set of
partitions of [n], with the following dynamics:
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Formal description

Let n € N, then the restriction (Hg"),t > 0) of (II;, ¢ > 0) to
[n] = {1,...,n} is a Markov chain with values in P,,, the set of
partitions of [n], with the following dynamics:

whenever Hg") is a partition consisting of b blocks, any particular k of
them merge into one block at rate

(k — 2)1(b — k)!

Aok =T

so the next coalescence event occurs at total rate

b
b
o= (k>A,,,k =b—1.

k=2
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Goal: determine the asymptotic behaviour of the total external length
E™M) of the BS coalescent restricted to P,,, when n — oo, and relate it
to its total length L(™) (the sum of lengths of all external and internal
branches).
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In the case of coalescents without proper frequencies, Mdhle (2010)
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Goal: determine the asymptotic behaviour of the total external length
E™M) of the BS coalescent restricted to P,,, when n — oo, and relate it
to its total length L(™) (the sum of lengths of all external and internal
branches).

In the case of coalescents without proper frequencies, Mdhle (2010)
proved that after a suitable scaling the asymptotic distributions of £(™)
and L™ are the same.

According to Drmota et al. (2007) the asymptotic behaviour of the total
length of the BS coalescent is given as follows

(log n)?

~= 1™ _logn —loglogn LN Z, (1)
n n— 00

where Z is a strictly stable r.v. with index 1, i.e. its characteristic
exponent satisfies

(0) =~ log B[ "] = 2161 i0loglo], €.
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Recently, Dhersin and Mahle (2013) showed
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Recently, Dhersin and Mahle (2013) showed

EM
— 1.

Thus one might guess that E(") satisfies the same asymptotic relation
with the same scaling.
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Let 7("™) be the number of coalescence events. More precisely

) = inf {k, X" =1},



Total internal and external lengths of the Bolthausen-Sznitman coalescent
LMain results

Internal and external lengths.

Let us consider (Hgn),t > 0). We denote by
n Ukn) = the size of the k-th jump,

m Xk(") = the number of blocks after k coalescence events.

Observe that XO(") =n and X,gn) = Xk(f)l — Uk(") =n— Zk U™,

i=1 1

Let 7("™) be the number of coalescence events. More precisely

) = inf {k, X" =1},

According to lksanov and Méhle (2007), 7(™) satisfies the following
asymptotic behaviour

(log n)QT(n)

flognfloglognl—%Z. (2)
n n—o00
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Let Yk(") be the number of internal branches after k coalescence events.
Note that Y™ = 0.

We denote by (™) for the total intern length.

Let (ex, k > 1) be a sequence of i.i.d. standard exponential r.v. which
are independent of X and Y thus

(M _q

()4 (n)__©k
™= 3" v, RO
k=1 k
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Let Yk(") be the number of internal branches after k coalescence events.
Note that Y™ = 0.

We denote by (™) for the total intern length.

Let (ex, k > 1) be a sequence of i.i.d. standard exponential r.v. which
are independent of X and Y thus

(M _q
JOKs Z ykm)eik.
k=1 Xk( )~ 1
Theorem
For the total internal length of the Bolthausen-Sznitman coalescent, we
have

2
(log n) ) P g

n n—00
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Asymptotic behaviour: in the Beta(2 — a, «)-coalescent with 0 < a < 2.
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Since L(™ = 1™ + E(") we deduce the asymptotic distribution of the
total external length E(").

Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we
have
(log n)*

E™ —logn —loglogn 4,71
n n—00

Asymptotic behaviour: in the Beta(2 — a, «)-coalescent with 0 < a < 2.

(0,1) Mbhle (2010) proved that E(™) /n converges in law to a random
variable defined in terms of a driftless subordinator depending on «.

(1,2) Kersting et al. (2012) proved that (E(™) — c(a)n?~%)/plt/at1-
converges weakly to a stable r.v. of index a.

a — 2 In Kingman's case a logarithmic correction appears and the limit law
is normal (Janson and Kersting, 2011) .
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Idea of the proof.
We first define

7 _q (n) 7 _q (n) (n)
i . E[Y (™| x(r
=y X g iy E[Y, | X™]

k=1

Y
X" =R
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recursive formula for 1(?).
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Idea of the proof.
We first define

(™M1 (n) 7M1 (n)
. Y X E[Y,™|X ™)
™M= %" k- and ™ Y k=
k=1 Xk( ) k=1 Xlg )

We use a similar argument used by Kersting et al. (2012) which gives a
recursive formula for 1(?).

More precisely, let

| Z,gn) = number of external branches after k& jumps.

[ ] Z,Ei)l — Z,gn) = number of external branches which participate to the
k-th coalescence event.

£z, - 7P 1x™, ") ~ Hyp(X{™), 2{%, 1+ U)
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Recall that Uk(") = X,gﬁ)l — X,én) denotes the size of the k-th jump of the
block counting process.

Then

IE[Z,E | x¢ )aZIS—)l] = Z,E_)l l;((n) ™
k—1
and o
T — 1
E[z{"|x "] =E[2{ | x| 2 ==,
x®
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Recall that U(") X,gn)l X(n) denotes the size of the k-th jump of the
block counting process.

Then

and

() _
E[Z{" x| K -1

x| =&z,

Since Yk(n) = Xk(") = Z,En) it follows

jn) — (kzi:ll< f[( X<">>'
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is stochastically bounded.
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The identity from above allow us to get

(log n)? jn) _P

n n—00

1.

Finally the following two approximations give us the result

7 — 7
T is stochastically bounded.
7 _ fln)

is stochastically bounded.

Vn

All the asymptotics are based in a coupling argument introduced by
Iksanov and M&hle (2007).
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