# Total internal and external lengths of the Bolthausen-Sznitman coalescent 

Juan Carlos Pardo

CIMAT, Mexico
joint work with A. Siri-Jégousse and G. Kersting

## Bolthausen-Sznitman coalescent

The Bolthausen-Sznitman (BS) coalescent $\left(\Pi_{t}, t \geq 0\right)$, is a continuous time Markov chain with values in the set of partitions of $\mathbb{N}$, starting with an infinite number of blocks/individuals.

## Bolthausen-Sznitman coalescent

The Bolthausen-Sznitman (BS) coalescent ( $\Pi_{t}, t \geq 0$ ), is a continuous time Markov chain with values in the set of partitions of $\mathbb{N}$, starting with an infinite number of blocks/individuals.

It is an example of an exchangeable coalescent with multiple collisions.

## Bolthausen-Sznitman coalescent

The Bolthausen-Sznitman (BS) coalescent ( $\Pi_{t}, t \geq 0$ ), is a continuous time Markov chain with values in the set of partitions of $\mathbb{N}$, starting with an infinite number of blocks/individuals.

It is an example of an exchangeable coalescent with multiple collisions.

It was first introduced in physics, in order to study spin glasses but it has also been thought as a limiting genealogical model for evolving populations with selective killing at each generation.

## Formal description

## Formal description

Let $n \in \mathbb{N}$, then the restriction $\left(\Pi_{t}^{(n)}, t \geq 0\right)$ of $\left(\Pi_{t}, t \geq 0\right)$ to $[n]=\{1, \ldots, n\}$ is a Markov chain with values in $\mathcal{P}_{n}$, the set of partitions of $[n]$, with the following dynamics:

## Formal description

Let $n \in \mathbb{N}$, then the restriction $\left(\Pi_{t}^{(n)}, t \geq 0\right)$ of $\left(\Pi_{t}, t \geq 0\right)$ to $[n]=\{1, \ldots, n\}$ is a Markov chain with values in $\mathcal{P}_{n}$, the set of partitions of $[n]$, with the following dynamics:
whenever $\Pi_{t}^{(n)}$ is a partition consisting of b blocks, any particular $k$ of them merge into one block at rate

$$
\lambda_{b, k}=\frac{(k-2)!(b-k)!}{(b-1)!}
$$

so the next coalescence event occurs at total rate

$$
\lambda_{b}=\sum_{k=2}^{b}\binom{b}{k} \lambda_{b, k}=b-1
$$

Goal: determine the asymptotic behaviour of the total external length $E^{(n)}$ of the BS coalescent restricted to $\mathcal{P}_{n}$, when $n \rightarrow \infty$, and relate it to its total length $L^{(n)}$ (the sum of lengths of all external and internal branches).

Goal: determine the asymptotic behaviour of the total external length $E^{(n)}$ of the BS coalescent restricted to $\mathcal{P}_{n}$, when $n \rightarrow \infty$, and relate it to its total length $L^{(n)}$ (the sum of lengths of all external and internal branches).

In the case of coalescents without proper frequencies, Möhle (2010) proved that after a suitable scaling the asymptotic distributions of $E^{(n)}$ and $L^{(n)}$ are the same.

Goal: determine the asymptotic behaviour of the total external length $E^{(n)}$ of the BS coalescent restricted to $\mathcal{P}_{n}$, when $n \rightarrow \infty$, and relate it to its total length $L^{(n)}$ (the sum of lengths of all external and internal branches).

In the case of coalescents without proper frequencies, Möhle (2010) proved that after a suitable scaling the asymptotic distributions of $E^{(n)}$ and $L^{(n)}$ are the same.

According to Drmota et al. (2007) the asymptotic behaviour of the total length of the BS coalescent is given as follows

$$
\begin{equation*}
\frac{(\log n)^{2}}{n} L^{(n)}-\log n-\log \log n \xrightarrow[n \rightarrow \infty]{d} Z \tag{1}
\end{equation*}
$$

where $Z$ is a strictly stable r.v. with index 1 , i.e. its characteristic exponent satisfies

$$
\Psi(\theta)=-\log \mathbb{E}\left[e^{i \theta Z}\right]=\frac{\pi}{2}|\theta|-i \theta \log |\theta|, \quad \theta \in \mathbb{R}
$$

## Recently, Dhersin and Möhle (2013) showed

$$
\frac{E^{(n)}}{L^{(n)}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Recently, Dhersin and Möhle (2013) showed

$$
\frac{E^{(n)}}{L^{(n)}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Thus one might guess that $E^{(n)}$ satisfies the same asymptotic relation with the same scaling.

## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

- $U_{k}^{(n)}=$ the size of the $k$-th jump,


## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

- $U_{k}^{(n)}=$ the size of the $k$-th jump,
- $X_{k}^{(n)}=$ the number of blocks after $k$ coalescence events.


## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

- $U_{k}^{(n)}=$ the size of the $k$-th jump,
- $X_{k}^{(n)}=$ the number of blocks after $k$ coalescence events.

Observe that $X_{0}^{(n)}=n$ and $X_{k}^{(n)}=X_{k-1}^{(n)}-U_{k}^{(n)}=n-\sum_{i=1}^{k} U_{i}^{(n)}$.

## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

- $U_{k}^{(n)}=$ the size of the $k$-th jump,
- $X_{k}^{(n)}=$ the number of blocks after $k$ coalescence events.

Observe that $X_{0}^{(n)}=n$ and $X_{k}^{(n)}=X_{k-1}^{(n)}-U_{k}^{(n)}=n-\sum_{i=1}^{k} U_{i}^{(n)}$.
Let $\tau^{(n)}$ be the number of coalescence events. More precisely

$$
\tau^{(n)}=\inf \left\{k, X_{k}^{(n)}=1\right\} .
$$

## Internal and external lengths.

Let us consider $\left(\Pi_{t}^{(n)}, t \geq 0\right)$. We denote by

- $U_{k}^{(n)}=$ the size of the $k$-th jump,
- $X_{k}^{(n)}=$ the number of blocks after $k$ coalescence events.

Observe that $X_{0}^{(n)}=n$ and $X_{k}^{(n)}=X_{k-1}^{(n)}-U_{k}^{(n)}=n-\sum_{i=1}^{k} U_{i}^{(n)}$.
Let $\tau^{(n)}$ be the number of coalescence events. More precisely

$$
\tau^{(n)}=\inf \left\{k, X_{k}^{(n)}=1\right\} .
$$

According to Iksanov and Möhle (2007), $\tau^{(n)}$ satisfies the following asymptotic behaviour

$$
\begin{equation*}
\frac{(\log n)^{2}}{n} \tau^{(n)}-\log n-\log \log n \xrightarrow[n \rightarrow \infty]{d} Z \tag{2}
\end{equation*}
$$

Let $Y_{k}^{(n)}$ be the number of internal branches after $k$ coalescence events.
Note that $Y_{0}^{(n)}=0$.

Let $Y_{k}^{(n)}$ be the number of internal branches after $k$ coalescence events.
Note that $Y_{0}^{(n)}=0$.
We denote by $I^{(n)}$ for the total intern length.

Let $Y_{k}^{(n)}$ be the number of internal branches after $k$ coalescence events. Note that $Y_{0}^{(n)}=0$.

We denote by $I^{(n)}$ for the total intern length.
Let $\left(\mathbf{e}_{k}, k \geq 1\right)$ be a sequence of i.i.d. standard exponential r.v. which are independent of $X^{(n)}$ and $Y^{(n)}$, thus

$$
I^{(n)} \stackrel{d}{=} \sum_{k=1}^{\tau^{(n)}-1} Y_{k}^{(n)} \frac{\mathbf{e}_{k}}{X_{k}^{(n)}-1}
$$

Let $Y_{k}^{(n)}$ be the number of internal branches after $k$ coalescence events.
Note that $Y_{0}^{(n)}=0$.
We denote by $I^{(n)}$ for the total intern length.
Let $\left(\mathbf{e}_{k}, k \geq 1\right)$ be a sequence of i.i.d. standard exponential r.v. which are independent of $X^{(n)}$ and $Y^{(n)}$, thus

$$
I^{(n)} \stackrel{d}{=} \sum_{k=1}^{\tau^{(n)}-1} Y_{k}^{(n)} \frac{\mathbf{e}_{k}}{X_{k}^{(n)}-1}
$$

## Theorem

For the total internal length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} I^{(n)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

## Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} E^{(n)}-\log n-\log \log n \underset{n \rightarrow \infty}{d} Z-1
$$

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

## Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} E^{(n)}-\log n-\log \log n \xrightarrow[n \rightarrow \infty]{d} Z-1 .
$$

Asymptotic behaviour: in the $\operatorname{Beta}(2-\alpha, \alpha)$-coalescent with $0<\alpha<2$.

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

## Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} E^{(n)}-\log n-\log \log n \underset{n \rightarrow \infty}{d} Z-1
$$

Asymptotic behaviour: in the $\operatorname{Beta}(2-\alpha, \alpha)$-coalescent with $0<\alpha<2$.
$(0,1)$ Möhle (2010) proved that $E^{(n)} / n$ converges in law to a random variable defined in terms of a driftless subordinator depending on $\alpha$.

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

## Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} E^{(n)}-\log n-\log \log n \underset{n \rightarrow \infty}{d} Z-1
$$

Asymptotic behaviour: in the $\operatorname{Beta}(2-\alpha, \alpha)$-coalescent with $0<\alpha<2$.
$(0,1)$ Möhle (2010) proved that $E^{(n)} / n$ converges in law to a random variable defined in terms of a driftless subordinator depending on $\alpha$.
$(1,2)$ Kersting et al. (2012) proved that $\left(E^{(n)}-c(\alpha) n^{2-\alpha}\right) / n^{1 / \alpha+1-\alpha}$ converges weakly to a stable r.v. of index $\alpha$.

Since $L^{(n)}=I^{(n)}+E^{(n)}$, we deduce the asymptotic distribution of the total external length $E^{(n)}$.

## Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we have

$$
\frac{(\log n)^{2}}{n} E^{(n)}-\log n-\log \log n \xrightarrow[n \rightarrow \infty]{d} Z-1 .
$$

Asymptotic behaviour: in the $\operatorname{Beta}(2-\alpha, \alpha)$-coalescent with $0<\alpha<2$.
$(0,1)$ Möhle (2010) proved that $E^{(n)} / n$ converges in law to a random variable defined in terms of a driftless subordinator depending on $\alpha$.
$(1,2)$ Kersting et al. (2012) proved that $\left(E^{(n)}-c(\alpha) n^{2-\alpha}\right) / n^{1 / \alpha+1-\alpha}$ converges weakly to a stable r.v. of index $\alpha$.
$\alpha \rightarrow 2$ In Kingman's case a logarithmic correction appears and the limit law is normal (Janson and Kersting, 2011) .

## Idea of the proof.

## We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}}
$$

## Idea of the proof.

We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}}
$$

We use a similar argument used by Kersting et al. (2012) which gives a recursive formula for $\hat{I}^{(n)}$.

## Idea of the proof.

We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}}
$$

We use a similar argument used by Kersting et al. (2012) which gives a recursive formula for $\hat{I}^{(n)}$.

More precisely, let

## Idea of the proof.

We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}} .
$$

We use a similar argument used by Kersting et al. (2012) which gives a recursive formula for $\hat{I}^{(n)}$.

More precisely, let

- $Z_{k}^{(n)}=$ number of external branches after $k$ jumps.


## Idea of the proof.

We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}} .
$$

We use a similar argument used by Kersting et al. (2012) which gives a recursive formula for $\hat{I}^{(n)}$.

More precisely, let

- $Z_{k}^{(n)}=$ number of external branches after $k$ jumps.
- $Z_{k-1}^{(n)}-Z_{k}^{(n)}=$ number of external branches which participate to the $k$-th coalescence event.


## Idea of the proof.

We first define

$$
\tilde{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1} \frac{Y_{k}^{(n)}}{X_{k}^{(n)}} \quad \text { and } \quad \hat{I}^{(n)} \sum_{k=1}^{\tau^{(n)}-1} \frac{\mathbb{E}\left[Y_{k}^{(n)} \mid X^{(n)}\right]}{X_{k}^{(n)}} .
$$

We use a similar argument used by Kersting et al. (2012) which gives a recursive formula for $\hat{I}^{(n)}$.

More precisely, let

- $Z_{k}^{(n)}=$ number of external branches after $k$ jumps.
- $Z_{k-1}^{(n)}-Z_{k}^{(n)}=$ number of external branches which participate to the $k$-th coalescence event.

$$
\mathcal{L}\left(Z_{k-1}^{(n)}-Z_{k}^{(n)} \mid X^{(n)}, Z_{k-1}^{(n)}\right) \sim \operatorname{Hyp}\left(X_{k-1}^{(n)}, Z_{k-1}^{(n)}, 1+U_{k}^{(n)}\right)
$$

Recall that $U_{k}^{(n)}=X_{k-1}^{(n)}-X_{k}^{(n)}$ denotes the size of the $k$-th jump of the block counting process.

Recall that $U_{k}^{(n)}=X_{k-1}^{(n)}-X_{k}^{(n)}$ denotes the size of the $k$-th jump of the block counting process.

Then

$$
\mathbb{E}\left[Z_{k}^{(n)} \mid X^{(n)}, Z_{k-1}^{(n)}\right]=Z_{k-1}^{(n)} \frac{X_{k}^{(n)}-1}{X_{k-1}^{(n)}}
$$

and

$$
\mathbb{E}\left[Z_{k}^{(n)} \mid X^{(n)}\right]=\mathbb{E}\left[Z_{k-1}^{(n)} \mid X^{(n)}\right] \frac{X_{k}^{(n)}-1}{X_{k-1}^{(n)}}
$$

Recall that $U_{k}^{(n)}=X_{k-1}^{(n)}-X_{k}^{(n)}$ denotes the size of the $k$-th jump of the block counting process.

Then

$$
\mathbb{E}\left[Z_{k}^{(n)} \mid X^{(n)}, Z_{k-1}^{(n)}\right]=Z_{k-1}^{(n)} \frac{X_{k}^{(n)}-1}{X_{k-1}^{(n)}}
$$

and

$$
\mathbb{E}\left[Z_{k}^{(n)} \mid X^{(n)}\right]=\mathbb{E}\left[Z_{k-1}^{(n)} \mid X^{(n)}\right] \frac{X_{k}^{(n)}-1}{X_{k-1}^{(n)}}
$$

Since $Y_{k}^{(n)}=X_{k}^{(n)}-Z_{k}^{(n)}$ it follows

$$
\hat{I}^{(n)}=\sum_{k=1}^{\tau^{(n)}-1}\left(1-\prod_{i=1}^{k}\left(1-\frac{1}{X_{i}^{(n)}}\right)\right)
$$

The identity from above allow us to get

$$
\frac{(\log n)^{2}}{n} \hat{I}^{(n)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

The identity from above allow us to get

$$
\frac{(\log n)^{2}}{n} \hat{I}^{(n)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Finally the following two approximations give us the result

$$
\begin{aligned}
& \frac{I^{(n)}-\tilde{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. } \\
& \frac{\tilde{I}^{(n)}-\hat{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. }
\end{aligned}
$$

The identity from above allow us to get

$$
\frac{(\log n)^{2}}{n} \hat{I}^{(n)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Finally the following two approximations give us the result

$$
\begin{aligned}
& \frac{I^{(n)}-\tilde{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. } \\
& \frac{\tilde{I}^{(n)}-\hat{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. }
\end{aligned}
$$

The identity from above allow us to get

$$
\frac{(\log n)^{2}}{n} \hat{I}^{(n)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1
$$

Finally the following two approximations give us the result

$$
\begin{aligned}
& \frac{I^{(n)}-\tilde{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. } \\
& \frac{\tilde{I}^{(n)}-\hat{I}^{(n)}}{\sqrt{n}} \text { is stochastically bounded. }
\end{aligned}
$$

All the asymptotics are based in a coupling argument introduced by Iksanov and Möhle (2007).

