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Introduction

Bolthausen-Sznitman coalescent

The Bolthausen-Sznitman (BS) coalescent (Πt , t ≥ 0), is a continuous
time Markov chain with values in the set of partitions of N, starting with
an infinite number of blocks/individuals.

It is an example of an exchangeable coalescent with multiple collisions.

It was first introduced in physics, in order to study spin glasses but it has
also been thought as a limiting genealogical model for evolving
populations with selective killing at each generation.
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Introduction

Formal description

Let n ∈ N, then the restriction (Π
(n)
t , t ≥ 0) of (Πt , t ≥ 0) to

[n] = {1, . . . ,n} is a Markov chain with values in Pn , the set of
partitions of [n], with the following dynamics:

whenever Π
(n)
t is a partition consisting of b blocks, any particular k of

them merge into one block at rate

λb,k =
(k − 2)!(b − k)!

(b − 1)!
,

so the next coalescence event occurs at total rate

λb =

b∑
k=2

(
b

k

)
λb,k = b − 1.
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Introduction

Goal: determine the asymptotic behaviour of the total external length
E (n) of the BS coalescent restricted to Pn , when n →∞, and relate it
to its total length L(n) (the sum of lengths of all external and internal
branches).

In the case of coalescents without proper frequencies, Möhle (2010)
proved that after a suitable scaling the asymptotic distributions of E (n)

and L(n) are the same.

According to Drmota et al. (2007) the asymptotic behaviour of the total
length of the BS coalescent is given as follows

(log n)2

n
L(n) − log n − log log n

d−−−−→
n→∞

Z , (1)

where Z is a strictly stable r.v. with index 1, i.e. its characteristic
exponent satisfies

Ψ(θ) = − logE
[
eiθZ

]
=
π

2
|θ| − iθ log |θ|, θ ∈ R.
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Introduction

Recently, Dhersin and Möhle (2013) showed

E (n)

L(n)

P−−−−→
n→∞

1.

Thus one might guess that E (n) satisfies the same asymptotic relation
with the same scaling.
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Main results

Internal and external lengths.

Let us consider (Π
(n)
t , t ≥ 0). We denote by

U
(n)
k = the size of the k -th jump,

X
(n)
k = the number of blocks after k coalescence events.

Observe that X
(n)
0 = n and X

(n)
k = X

(n)
k−1 −U

(n)
k = n −

∑k
i=1 U

(n)
i .

Let τ (n) be the number of coalescence events. More precisely

τ (n) = inf
{
k ,X

(n)
k = 1

}
.

According to Iksanov and Möhle (2007), τ (n) satisfies the following
asymptotic behaviour

(log n)2

n
τ (n) − log n − log log n

d−−−−→
n→∞

Z . (2)
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According to Iksanov and Möhle (2007), τ (n) satisfies the following
asymptotic behaviour

(log n)2

n
τ (n) − log n − log log n

d−−−−→
n→∞

Z . (2)



7/ 11

Total internal and external lengths of the Bolthausen-Sznitman coalescent

Main results

Let Y
(n)
k be the number of internal branches after k coalescence events.

Note that Y
(n)
0 = 0.

We denote by I (n) for the total intern length.

Let (ek , k ≥ 1) be a sequence of i.i.d. standard exponential r.v. which
are independent of X (n) and Y (n), thus

I (n)
d
=
τ(n)−1∑
k=1

Y
(n)
k

ek

X
(n)
k − 1

.

Theorem
For the total internal length of the Bolthausen-Sznitman coalescent, we
have

(log n)2

n
I (n)

P−−−−→
n→∞

1.
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Main results

Since L(n) = I (n) + E (n), we deduce the asymptotic distribution of the
total external length E (n).

Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we
have

(log n)2

n
E (n) − log n − log log n

d−−−−→
n→∞

Z − 1.

Asymptotic behaviour: in the Beta(2− α, α)-coalescent with 0 < α < 2.

(0, 1) Möhle (2010) proved that E (n)/n converges in law to a random
variable defined in terms of a driftless subordinator depending on α.

(1, 2) Kersting et al. (2012) proved that (E (n) − c(α)n2−α)/n1/α+1−α

converges weakly to a stable r.v. of index α.

α→ 2 In Kingman’s case a logarithmic correction appears and the limit law
is normal (Janson and Kersting, 2011) .
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(0, 1) Möhle (2010) proved that E (n)/n converges in law to a random
variable defined in terms of a driftless subordinator depending on α.

(1, 2) Kersting et al. (2012) proved that (E (n) − c(α)n2−α)/n1/α+1−α

converges weakly to a stable r.v. of index α.

α→ 2 In Kingman’s case a logarithmic correction appears and the limit law
is normal (Janson and Kersting, 2011) .



8/ 11

Total internal and external lengths of the Bolthausen-Sznitman coalescent

Main results

Since L(n) = I (n) + E (n), we deduce the asymptotic distribution of the
total external length E (n).

Corollary

For the total external length of the Bolthausen-Sznitman coalescent, we
have

(log n)2

n
E (n) − log n − log log n

d−−−−→
n→∞

Z − 1.

Asymptotic behaviour: in the Beta(2− α, α)-coalescent with 0 < α < 2.
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Idea of the proof

Idea of the proof.

We first define

Ĩ (n) =

τ(n)−1∑
k=1

Y
(n)
k

X
(n)
k

and Î (n)
τ(n)−1∑
k=1

E[Y
(n)
k |X (n)]

X
(n)
k

.

We use a similar argument used by Kersting et al. (2012) which gives a
recursive formula for Î (n).

More precisely, let

Z
(n)
k = number of external branches after k jumps.

Z
(n)
k−1 − Z

(n)
k = number of external branches which participate to the

k -th coalescence event.

L(Z
(n)
k−1 − Z

(n)
k |X (n),Z

(n)
k−1) ∼ Hyp(X

(n)
k−1,Z

(n)
k−1, 1 + U

(n)
k )
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τ(n)−1∑
k=1

E[Y
(n)
k |X (n)]

X
(n)
k

.

We use a similar argument used by Kersting et al. (2012) which gives a
recursive formula for Î (n).

More precisely, let

Z
(n)
k = number of external branches after k jumps.

Z
(n)
k−1 − Z

(n)
k = number of external branches which participate to the

k -th coalescence event.

L(Z
(n)
k−1 − Z

(n)
k |X (n),Z

(n)
k−1) ∼ Hyp(X

(n)
k−1,Z

(n)
k−1, 1 + U

(n)
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Recall that U
(n)
k = X

(n)
k−1 −X

(n)
k denotes the size of the k -th jump of the

block counting process.

Then

E
[
Z

(n)
k

∣∣∣X (n),Z
(n)
k−1

]
= Z

(n)
k−1

X
(n)
k − 1

X
(n)
k−1

,

and

E
[
Z

(n)
k

∣∣∣X (n)
]

= E
[
Z

(n)
k−1

∣∣∣X (n)
]X (n)

k − 1

X
(n)
k−1

.

Since Y
(n)
k = X

(n)
k − Z

(n)
k it follows

Î (n) =

τ(n)−1∑
k=1

(
1−

k∏
i=1

(
1− 1

X
(n)
i

))
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The identity from above allow us to get

(log n)2

n
Î (n)

P−−−−→
n→∞

1.

Finally the following two approximations give us the result

I (n) − Ĩ (n)√
n

is stochastically bounded.

Ĩ (n) − Î (n)√
n

is stochastically bounded.

All the asymptotics are based in a coupling argument introduced by
Iksanov and Möhle (2007).
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Ĩ (n) − Î (n)√
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