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The question of “levels of selection”

Wikipedia: A unit of selection is a biological entity within the hierarchy
of biological organisation (e.g. self-reproducing molecules, genes, cells,
individuals, groups, species) that is subject to natural selection. For sev-
eral decades there has been intense debate among evolutionary biologists
about the extent to which evolution has been shaped by selective pressures
acting at these different levels.
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Early history:

Wynne-Edwards (1962) (adaptations and social behaviour of animals)
W.D. Hamilton (1964) (kin selection and inclusive fitness)
G.C. Williams (1966) (highly critical of group selection)
John Maynard Smith (1964), (1976) - group selection and kin selection
D.S. Wilson (1975) - multideme model

Books

R.M. Brandon and R.N. Burian (1984)
E. Sober and D.S. Wilson (1998)
L. Keller (editor) Princeton Univ. Press (1999)
S. Okasha (Oxford Univ. Press 2006).

Mathematical models:

Motivated by K. Aoki (1982), Motoo Kimura (1983) introduced a dif-
fusion process model and identified a condition for group selection to
prevail over counteracting individual selection.
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E.G. Leigh (2010)
These conditions (e.g. he quotes Kimura’s conditions) seem so wonder-
fully improbable that, following Williams (1966), most biologists have fo-
cused almost exclusively on individual selection. Improbability, however,
does not mean impossibility. Group selection capable of overwhelming
selection within groups, played a crucial role in some major transitions
...
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Recent developments on multilevel selection

• Evolution of propagule size during evolution of multicellularity
(Roze and Michod (2001))

• Plasmid replication in bacteria (Paulsson (2002))

• Prebiotic evolution (Hogeweg and Takeuchi (2003)))

• Evolution of cooperation (Traulsen and Nowak (2006))

• Animal science (Bijma, Muir and Arendonk (2007))

• Emergence of life (Szathmáry and Demeter (1987), Görnerup and
Crutchfield (2008),

• Ecology - selection between species, major transitions (Leigh (2010))

• Host pathogen systems (Luo, Reed, Mattingly and Koelle (2012),
Luo (2013)).

• Microbial social trait (de Vargas Roditi, Boyle and Xavier (2013))
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Simple Model

• Level 2 unit is a population of N level 1 individuals undergoing
mutation and selection.

• Each level 2 subpopulation described by K-type Wright-Fisher
diffusions with mutation and selection

• Migration between subpopulations occur at rate c.

• There is some form of competition between demes (level 2 indi-
viduals) and the replacement of one deme by another with prob-
abilities depending on the “fitness of the different demes”.
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System of interacting subpopulations (demes)

• Individual type space: I, |I| = K.

• Interacting subpopulations (demes): µξ ∈ P(I), ξ ∈ {1, . . . , N}.

• Mutation rates i → j: mi,j ,

• Individual fitness of type j: V1(j) ∈ [0, 1], j ∈ I

• Individual selection intensity s1

• Genetic drift at each site: γ1 (“inverse population size”)

• Migration rate between demes: ξ → ξ′ #= ξ: c
N

• Deme fitness V2(µ) ∈ [0, 1], µ ∈ P(I)

• Deme level selection intensity s2

• Deme random sampling parameter γ2
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Stochastic dynamics γ > 0: Basic Tools

• Probability-valued Markov diffusion X(t) ∈ P(I) = ∆K−1

• Martingale problem with generator G to characterize the law of
the process P ∈ P(C∆K−1([0,∞)))

MF (t) := F (X(t))−
∫ t

0
GF (X(s))ds

is a P martingale for all F ∈ D(G).

• Dual: Set-valued jump process Gt ∈ {G ∈ 2I
N
, |G| < ∞}}.

• Duality relation:

EX(0)(F (X(t),G0)) = EG0(F (X(0),Gt))
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Individual mutation-selection dynamics at a deme

The Wright-Fisher diffusion Xt(1) satisfies the G0-martingale prob-
lem where G0 acting on a C2-functions f on the simplex

∆K−1 = {(x1, . . . , xK), xi ≥ 0,
∑K

i=1 x1 = 1} = P(I) as follows:

G0f(x) =
K∑

i=1




K∑

j=1

(mjixj −mijxi)



 ∂f(x)

∂xi
mutation

+s1

K∑

i=1

xi

(
V1(i)−

K∑

k=1

V1(k)xk

)
∂f(x)

∂xi
selection

+
γ1
2

K∑

i,j=1

xi(δijxj − xj)
∂2f(x)

∂xi∂xj
genetic drift
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Model of N interacting populations

A deme can be replaced with population x sampled from the empirical
distribution of demes with weights proportional to the level 2 fitness

0 ≤ V2(x) ≤ 1, x ∈ P(I).

Individuals can migrate between demes at rate c

The generator for the interacting model: for f ∈ C2((∆K−1)N )
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Gintf(x(1), . . . ,x(N))

=
N∑

ξ=1

G0
ξf(. . . ,x(ξ), . . . ) mutation-selection dynamics at each site

+c ·
N∑

ξ=1




K∑

j=1




N∑

ξ′=1

1

N
xj(ξ

′)− xj(ξ)



 ∂f(. . . ,x(ξ), . . .)

∂xj(ξ)



 migration

+s2

N∑

ξ=1



 1

N

N∑

ξ′=1

V2(x(ξ
′))[(Φξξ′f(...)− f(...)]



 deme replacement

+
1

2
γ2

N∑

ξ=1

N∑

ξ′=1

[Φξ,ξ′f(. . . )− f(. . . )] deme resampling

where Φξξ′f(. . . ,x(ξ), . . . ,x(ξ′), . . . ) = f(. . . ,x(ξ′), . . . ,x(ξ′), . . . )
The martingale problem has a unique solution that defines a càdlàg

strong Markov process with state space (∆K−1)N .
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Empirical Process

We assume that the initial state satisfies (x1(0), . . . ,xN (0)) is
exchangeable.

ΞN (t) :=
1

N

N∑

j=1

δxj(t) ∈ P(P(I)).

Then ΞN (t) is a P(P(I))-valued Markov process.

The multilevel Fleming-Viot process with selection at the deme level
arises as the limit as N → ∞.
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The two-level Fleming-Viot process

The domain D2 ⊂ C(P(P(I)))

H(ν) =
K∏

k=1

[∫
hk(µk)ν(dµk)

]

h(µ) =
∑

j

hjµ
⊗(ΠiAij) polynomial on P(I).
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The generator of the two-level Fleming-Viot process acting on D2 ⊂
C(P(P(I)):

G2H(ν) =

∫

P(I)
G0 δH(ν)

δν(µ)
ν(dµ)

+c

∫

P(I)

∫

I

(
δ

δµ1(x)

δH(ν)

δν(µ1)

)
[

∫
ν(dµ2)µ2(dx)− µ1(dx)]ν(dµ1))

+
γ2
2

∫

P(I)

∫

P(I)

δ2H(ν)

δ(ν(µ1))δ(ν(µ2))

(
ν(dµ1)δµ1(dµ2)− ν(dµ1)ν(dµ2)

)

+s2

[∫

P(I)

δH(ν)

δν(µ1)
[V2(µ1)−

∫

P(I)
V2(µ2)ν(dµ2)]ν(dµ1)

]

This is the analogue of the multilevel branching and multilevel super-
process (e.g. D-Hochberg (1991), Y.Wu (1994), Gorostiza-Hochberg-
Wakolbinger (1995), D-Hochberg-Vinogradov (1996)), D-Gorostiza-Wakolbinger
(2004).
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The Fleming-Viot limit and its equilibria

Theorem

{ΞN (t)}t∈[0,T ] ⇒ (Ξt)t∈[0,T ] as N → ∞

where Ξt(dx) ∈ C([0, T ],P(∆K−1)) is solution to the (G2,D2) martin-
gale problem. The martingale problem is well-posed.

The uniqueness is proved using the set-valued dual introduced below.
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A class of fitness functions

V2(µ) =
∑

j

ajV2,j(µ), V2,j(µ) = µ⊗(
∏

i

1Bij )

Using Bernstein approximation we can approximate any continuous func-
tion on P(I) in this way.

Action of deme level selection

h(µ1) → V2,j(µ1)h(µ1) + (1− V2,j(µ1))h(µ2)

∫
h(µ)ν(dµ) →

∫
V2(µ1)h(µ1)ν(dµ1)+

∫ ∫
(1−V2(µ1))h(µ2)ν(dµ1)ν(dµ2)

17



Multilevel set-valued dual representation

The Set-Valued Process Gt (D-Greven (2011,2013))

Type space:
I := {1, . . . ,K}

Geographic space (labels of demes)

S = {1, . . . , N} or S = N.

Local state space for a deme:

I := algebra of subsets of IN

of the form A× IN, A is a subset of Im,m ∈ N

State space:

I := algebra of sets = {G ∈ IS, |G| < ∞}

|G| := min{j : ∃Sj = {s1, . . . , sj} ⊂ N : G = Gj × ((I)N)S\Sj

Gj ∈ ISj}
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The Dual Representation

Ξ(t) ∈ P(P(I)).

Set-valued Dual Process: Gt ∈ I

Define the function F : P(P(I))⊗ I → [0, 1] by

F (Ξ,G) =
∫

X∗(x1, . . . , x|S|)(G)Ξ(dµ1), . . . ,Ξ(dµ|S|)

where if X =
∏N

j=1 xj , then X∗(x1, . . . , xN ) =
∏N

j=1(xj)N ∈ P((IN)S).

Dual Representation

EX(0)(F (Ξ(t),G0)) = EG0(F (Ξ(0),Gt))
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Set-valued transitions - individual level

Examples:

Types B ⊂ I have fitness s > 0, Bc has fitness 0.

G0 = A× IN, A ⊂ I

Selection: A → B ∩A ∪Bc ×A at rate s

Coalescence: A1 ×A2 → A1 ∩A2 at rate γ1

Migration (A1)1 × (A2)1 → (A1)1 × (A2)2 at rate c

here the subscript ()i denotes the deme.

Mutation: A → A ∪ {j} or A → A\{j} at rates based on {mij}
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Set-valued transitions - deme level selection

V2(µ) =
∑

j

ajV2,j(µ), V2,j(µ) = µ⊗(
∏

i

1Bij )

∫
h(µ)ν(dµ) →

∫
V2(µ1)h(µ1)ν(dµ1)+

∫ ∫
(1−V2(µ1))h(µ2)ν(dµ1)ν(dµ2)

Example: If V2(µ) = µ(B), then the set-valued process Gt the state space
is

(
n∏

i=1

Ai

)

1

→ (B)1 ×
(

n∏

i=1

Ai

)

1

∪ (Bc)1 ×
(

n∏

i=1

Ai

)

2
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Set-valued transitions - deme level coalescence

Example




∏

j

Bj





1

×
(
∏

i

Ai

)

1

∪




∏

j

Bj




c

1

×
(
∏

i

Ai

)

2

→




∏

j

Bj





1

×
(
∏

i

Ai

)

1

∪




∏

j

Bj




c

1

×
(
∏

i

Ai

)

1
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Applications

1. Equilibria and fixation probabilities

• Positive mutation rates on I and γ2 > 0. The two level Fleming-
Viot process has a unique equilibrium.

• Positive mutation rates on I and γ2 = 0, s2 = 0. Have deter-
ministic McKean-Vlasov equation and convergence to a unique
equilibrium.

• General mutation rates on I and γ2 = 0. Have infinite dimensional
nonlinear dynamics.

• γ1 = γ2 = 0 - Deme dynamics is deterministic and deme level
selection acts only on the initial randomness - e.g. case ν(dµ) =
Ξ0(dµ) = δxm(dx) where m ∈ M([0, 1]). In this case deme level
selection acts on the initial diversity of demes.

• No mutation on I and γ2 = 0, s1, s2 > 0. Can compute fixation
probabilities.
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Parameter ranges and initial Conditions

Proposition
(a) Consider the case I = {1, 2}, Ξ0 = δµ with no mutation and only
level 2 selection and fitness function V2(µ) = µ(2), s2 > 0 and γ2 = 0.
Then µ(t, 2) → 1 if and only if γ1 > 0.
(This fact was first pointed out by John Maynard Smith.)

(b) Assume no mutation, γ1 > 0, γ2 > 0, V1, V2 > 0 – ultimate fixation
of a single type. Can calculate the fixation probabilities using the set-
valued dual equilibrium.

The proofs are obtained by showing that the growth of the set-valued
process is described by a Crump-Mode-Jagers branching process.
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2. Phase transition

Example: Kimura’smodel of the evolution of an altruistic trait

Consider the case I = {1, 2}.

V1(1) = 0, V1(2) = 1,

the individual selection intensity is s1, and no mutation. The migration
rate is c, the deme selection intensity is s2, deme fitness is

V2(µ) = µ(1).

Then if s2 > 2cs1
γ1

and ν({µ : µ(1) > 0}) > 0, then for ε > 0,

νt({µ : µ(2) > ε}) → 0,

if s2 < 2cs1
γ1

and ν({µ : µ(2) > 0}) > 0, then for ε > 0,

νt({µ : µ(1) > ε}) → 0.
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Kimura (1983) proved this by solving explicitly for the one dimen-
sional diffusion in terms of hypergeometric functions.

Idea of the set-valued dual proof

Acting on h(µ) = µ(1), V1(1) = 0, V1(2) = 1, V2(µ) = µ(1)

• Each individual level selection operation acting on an active rank
followed by a successful migration creates a factor smaller than 1.
(10)1 → (10)1 ⊗ (10)1 → (10)1 ⊗ (10)2. p → p2, rate s1

2c
2c+γ1

• Each deme level selection operation acting on an occupied site
followed by a (level 1) coalescence creates a factor larger than 1.
(10) → (10)1 ⊗ (10)1 + (01)1 ⊗ (10)2 → (10)1 + (01)1 ⊗ (10)2.

p → p+ p(1− p) = p(2− p) = 1− (1− p)2, rate s2
γ1

2c+γ1

(01) → (10)1 ⊗ (01)1 + (01)1 ⊗ (01)2 → (01)1 ⊗ (01)2.

• Get two competing CMJ branching processes. Then one can show
that for large s2 the second growth rate (related to the malthusian
parameter) is larger than the first.
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Conclusions and open problems

• These methods allow the analysis of multitype populations (i.e.
not restricted to two-type level 1 populations).

• Can extend these methods to the case of countably many types
(at least with bounded fitness function).

• Nonlinear dynamics in the case γ2 = 0, mutation and general
fitness functions.

• γ2 > 0. Description of the genealogy.

• Extension to higher levels and generalized Fleming-Viot.

• Role of deme level selection on emergence of new types.

27



THANK YOU

28


