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R=
*R

F=*F

3

• Self-dual Yang-Mills equations are the moment map 
conditions for the gauge group action.

• Self-dual Yang-Mills moduli spaces are infinite hyperkähler 
quotients and thus carry hyperkähler metrics.

• This is a natural place to look for Gravitational Instantons.
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Vector bundle               over a space-time four manifold with structure group G and 
a connection 

Curvature two-formFor most of this talk G is unitary.
   is a one form valued in 
and      is a Hermitian vector bundle.

Self-duality Equation:

Self-dual Yang-Mills 
Gauge Theory
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Hitchin System
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F = Fµνdxµdxν Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]
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Monowall is a BPS monopole on                   ,    

i.e. an n-dimensional hermitian vector bundle 
with a connection A and an endomorphism    satisfying 
Bogomolny equation

We also impose a condition:        
                    has no zeros for large enough   .

Definition:

Monowalls (aka doubly-periodic monopoles)
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Abelian case (gauge group U(1))

Bogomolny Equation:

Bogomolny Equation is linear

φthus the Higgs field    is harmonic
Based on: http://www.phys.uu.nl/~thooft/

Φ = iφ A = ia

http://www.phys.uu.nl/~thooft/
http://www.phys.uu.nl/~thooft/
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Abelian case (gauge group U(1))

Bogomolny Equation:

Bogomolny Equation is linear

φthus the Higgs field    is harmonic

•  A typical abelian solution (Constant Energy Density solution)

• Dirac Monowall

Based on: http://www.phys.uu.nl/~thooft/

Φ = iφ A = ia

http://www.phys.uu.nl/~thooft/
http://www.phys.uu.nl/~thooft/
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Our Asymptotic Conditions:

For a U(n) monopole wall, as                ,

Maximal Symmetry Breaking:  the pairs                   are all distinct, and so 
are                    .  It splits the bundle at infinity into line bundles.

Asymptotic holonomy eigenvalues are              around the x-direction and             around y.

Simplest case is



We also allow prescribed positive and negative Dirac singularities at some 
points                      with the Higgs field behavior 

T 2

R

Q−1

Q−2

Q−3

Q+3

Q+4

Q+1

Q+2

r+,2r+,1

r−,1 r−,2

(Q, M, p, q,�r)Complete boundary data:



We also allow prescribed positive and negative Dirac singularities at some 
points                      with the Higgs field behavior 

T 2

R

Q−1

Q−2

Q−3

Q+3

Q+4

Q+1

Q+2

r+,2r+,1

r−,1 r−,2

(Q, M, p, q,�r)Complete boundary data:

Singularities:

The charges         are rational, with the denominator equal to the multiplicity of                    .



Moduli Problem

Once we fix 
1) the asymptotic conditions                                and 
2) positions of positive and negative singularities      and     , 

We would like to explore the moduli spaces of solutions with these conditions.  

In particular aim to identify 
• the moduli of these solutions = coordinates on the moduli space and
• combinations of the asymptotic parameters that are parameters of the moduli space.

Demonstrate that the moduli space is ALH by computing its asymptotic.

So far there are two known examples of ALH spaces:
• D-type:                     and
• 1/2 K3.

D-type emerges as the moduli space of two centered SU(2) monopoles on T3 
with two positive and two negative singularities.

with Marcos Jardim

Questions:  
1. What monopole wall has D-type ALH as their moduli space?
2. Is there a transform from such monopole wall to a monopole on T3?
3. What is are the topologies of the other moduli spaces.

Aside:



Spectral Description

Bogomolny equation can be written in the form

Eq. (1) implies that the holonomy              of               is meromorphic in            

is a degree n polynomial in t with coefficients being rational functions in s.

Spectral curve:

formed by the eigenvalues of the holonomy and equipped with 
a holomorphic eigen line bundle 

form complete x-spectral data equivalent to the           solution.

is a degree n polynomial in t with rational functions in s as coefficients.

Analogously, we define the y-spectral data               .

There is a 1-to-1 map                                 .

Note:

Let Gx(s,t)=P(s)Fx(s,t) be a minimal monic polynomial in s and t, so that the spectral curve
is given by a polynomial equation  Gx(s,t)=0.



Newton Polygon

Newton polygon Nx of Gx(s,t) is a minimal convex polygon containing all points (a,b) such 
that the monomial satb is present in Gx(s,t).

Example: U(2) monopole wall with charges 

Gx(s,t)=st2-s2t-t-s

Monopole Wall Moduli = Moduli of Σx + Moduli of Mx

Reducible
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Newton Polygon

Newton polygon Nx of Gx(s,t) is a minimal convex polygon containing all points (a,b) such 
that the monomial satb is present in Gx(s,t).

Example: U(2) monopole wall with charges 

Gx(s,t)=st2-s2t-t-s

Monopole Wall Moduli = Moduli of Σx + Moduli of Mx

Reducible

General
Gx(s,t)=st2-s2t-t-s+a st



• Rank of the gauge group is the hight of the Newton polygon.

Consider one edge of Nx

a single edge of Nx directed along (α,β) produces 
asymptotic satisfying     α log s+β log t= 2πβ (M+i p) => Charge Q=α/β.

are roots of the edge polynomial.

⎨
⎧

⎩
｜
｜

⎨

⎧
⎩

α

β

• Horizontal edges of Newton polygon correspond to the singularities:
   Northern edges to positive; and Southern edges, to negative.

• Vertical edges - constant eigenvalues of Φ as z=±∞.

Dressed Newton polygon N => Monowall Boundary data
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form orthogonal vectors
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r±jβ±jof multiplicities
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Amoeba

An amoeba  Ax of Gx(s,t) is a the image of Σx under the map

• Area(Ax)≤π2 Area(NX). 
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Amoeba

An amoeba  Ax of Gx(s,t) is a the image of Σx under the map

(0,1) U(1) monopole wall with 
one negative singularity. (1,1) U(1) monopole wall with two 

negative singularities.

Balanced U(2) monopole with 2 positive 
and two negative singularities.

Reducible U(2) monopole with charges 
(Q_+; Q_-)=(1,-1; 1,-1)

• Area(Ax)≤π2 Area(NX). 



Asymptotic and singularity data => Amoeba tentacles => Newton Polygons Nx and Ny.

• Amoeba’s tentacles are orthogonal to the edges of the Newton polygon.
• Slope of a tentacle is the charge Q and its position is M.
• Vertical tentacles are positioned at the z-positions ρα of the Dirac singularities.
• Tentacle multiplicity is the multiplicity of the corresponding (Q,M) pair, which is 
the hight of the corresponding edge.

Statement: Introducing or changing terms in the interior of Nx does not change 
the asymptotic, tentacles, of its amoeba.

Since tentacle slopes are determined by the charges and the singularities 
Nx=Ny !

Number of Moduli = 4 x (Number of internal points of Nx).

Moduli Count:

(charges and number of singularities)

Number of internal points is given by the Pick’s relation



Parameter Count
18

Number of Moduli = 4 x (Number of internal points of Nx).
Moduli Count:

Number of Parameters = 3 x (Number of perimeter points of Nx - 1).

Parameter Count:

Charges Q=α/β satisfy:

Singularities and constant terms satisfy:
(Vietta theorem)



SL(2,Z) Isometric Action
19

There is a natural SL(2,Z) action on C*xC*

it induces a map on the spectral data (Σ,M), under which 

witha monomial

and the resulting Newton polygon is

and the boundary data transforms as



Nahm Transform

maps a monopole wall to another monopole wall keeping the spectral curve fixed.

Gx(s,t)=P(s,t) Ğx(s,t)=c P(t,s)

The Nahm transform is the S element of SL(2,Z).
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Monowalls with No Moduli 
(up to SL(2,Z))

21

based on Khovanskii ’97

• constant energy density monowall,

• Abelian monowall.



22
Monowalls with Four Moduli (upto SL(2,Z) )



Yet another moduli space equivalence
23

For any given abelian monowall  (a,ϕ) with the spectral curve 
t=P(s)/Q(s),

adding this solution to a monowall does not change its moduli space,
So
(A,Φ) has the same moduli space as (A+a,Φ+ϕ).

If the spectral curve of (A,Φ) is given by G(s,t)=0, 
then the spectral curve of (A+a,Φ+ϕ) is given by G(s,tQ(s)/P(s))=0

This equivalence reduces the list of monowall moduli spaces to a 
much shorter list.
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24
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Four-dimensional Monowall Moduli Spaces
24

Number of parameters

8 7 6 5 4

3Is this T3xR/Z2 ?

Moduli space of 
T*S3/Z3 ?

Are these two spaces isometric?

2



Other Subjects
25

- Correspondence with toric Calabi-Yau

- Tropical Geometry

- Viro’s Patchworking and Monowall Concatenation

- Quantum gauge theory application:
   Monowall moduli spaces are Coulomb branches  
   of ‘five-dimensional quantum gauge theories’ on T2



Deformation Theory

Denote the linearized operator by

and let

If both            and                        satisfy the Bogomolny Eq.                     , then

Kuranishi complex:
Atiyah, Hitchin, Singer ’78

To simplify notation a bit let                    and     

Then the space of linear deformations is given by the middle cohomology of the 
complex

Linearization of 
Bogomolny Eq.

Gauge fixing 
condition

On the other hand, the space of all solutions is 

The goal is to construct a map                       that is invertible (near the origin of Sol) 
in case of generic A.

Kuranishi map:



Kuranishi map is given by :

where G is the Green’s function of the covariant Laplacian                                  .

If the vanishing theorem holds and h1=h3=0 for the linear complex

then F is 1-to-1 and h1 gives the correct number of moduli.

For a reducible solution (A, Φ) this is not the case.  
We overcount by 4x(dimension of Stab(A,Φ)).

Example:  for a constant energy reducible solution

the space of first order deformations is 8 dimensional: h1=8.

The stabilizer is one dimensional, 

so the moduli space has real dimension 4 in agreement with 
the Newton polygon having one internal point.



Summary
28

•Monopole moduli spaces deliver various types of 
Gravitational Instantons (and higher-dimensional 
kyperkähler spaces)

•There are seven monowalls (doubly-periodic 
monopoles) with four-dimensional moduli space.

•Combinatorics of Newton polygons delivers 
• the moduli space dimension and
• the number of parameters.

• It also gives a simple criterium for SL(2,Z) 
equivalence.


