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Motivation

◮ Power reduction and spectrum scarcity cause interference to be the
main factor that limits performance of modern wireless systems.

◮ The potential of pure cellular concepts to deal with interference is
close to being exhausted.

◮ Investigate potential of inter-cell cooperation [Karakayali, Foschini,
Valenzuela 2006].

◮ To be included in 5G wireless systems like LTE-Advanced.

◮ Problem 1: Full cooperation is too complex and uses too many resources

◮ Partial cooperation needs to be investigated.
◮ Partial channel state information (CSI) needs to be considered.

◮ Problem 2: How can one cope with interference from co-existing networks
run by different providers?

◮ Uncoordinated WLAN hot spots
◮ Frequency co-sharing in 5G mobile networks
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Conferencing Encoders
Willems introduced the concept of conferencing encoders in information
theory [Willems 1982].

◮ models rate-limited cooperation between base stations.
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Willems’ Conferencing Protocol

◮ Consists of an interactive exchange of information about the
messages m1,m2 present at encoder 1 and 2, resp.

An I-iterations conferencing protocol has the form

M1

c1,1
−−→ V1,1 M2

c2,1
−−→ V2,1

M1 × V2,1
c1,2
−−→ V1,2 M2 × V1,1

c2,2
−−→ V2,2

M1 × V2,1 × V2,2
c1,3
−−→ V1,3 M2 × V1,1 × V1,2

c2,3
−−→ V2,3

...
...

M1 × V2,1 ×. . .× V2,I−1

c1,I
−−→ V1,I M2 × V1,1 ×. . .× V1,I−1

c2,I
−−→ V2,I

Here

◮ Mν = message set of sender ν ∈ {1, 2},

◮ Vν,i finite set with |Vν,i| = Vν,i, ν = 1, 2, i = 1, . . . , I.
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MAC Coding with Rate-Constrained Conferencing

Given a multiple-access channel (MAC) with input alphabets X and Y.

◮ Conferencing is part of coding.

◮ With conferencing capacities C1, C2 ≥ 0, for a blocklength-n code,
the above sets V1,1, . . . ,V2,I need to satisfy

1

n
log V1,1 · · · V1,I ≤ C1,

1

n
log V2,1 · · ·V2,I ≤ C2.

◮ Describes the rate-constrained iterative exchange of information
about the messages present at the encoders.

◮ The encoding functions have the form

f1 : M1 × V2,1 × . . . × V2,I → X n,

f2 : M2 × V1,1 × . . . × V1,I → Yn.

7 / 32



Channel Models

◮ The Compound MAC with conferencing encoders models channel
state uncertainty in a downlink network with cooperating base
stations.

◮ It is also the key to the solution of the coding theorem for
AV-MACs.

◮ The Arbitrarily Varying MAC (AV-MAC) with conferencing
encoders models a downlink network with cooperating base station
suffering from interference from networks operating in the same
band.

◮ New effects occur in AV-MACs – conferencing can change the
whole channel structure.
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The Compound MAC
The Compound MAC models channel state uncertainty.

◮ A Compound MAC with state set S is a family

W = {Ws : s ∈ S}

of discrete memoryless MACs Ws : X × Y → P(Z).

◮ The transmission of words x ∈ X n and y ∈ Yn is governed by the
probabilities

W n
s (z|x,y) =

n
∏

i=1

Ws(zi|x1, yi) (s ∈ S).

◮ The encoders and the decoder only have partial CSI.

◮ Partial CSI is modeled as partitions of the state set S for the
encoders and the decoder.

◮ We restrict ourselves here to the case with no CSI at all.
◮ arbitrary CSI treated in [W,B,B,Jungnickel 2011, TransIT]
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Coding for the Compound MAC

◮ The conferencing codes are as described before.

◮ Through conferencing, the codewords of each encoder depend on
both messages m1 and m2. They are called xm1m2

and ym1m2
.

◮ The decoding sets are called Dm1m2
.

◮ The average error for the code is given by

max
s∈S

1

|M1||M2|

∑

m1,m2

W n
s (D

c
m1m2

|xm1m2
,ym1m2

).

◮ To achieve a rate pair with conferencing capacities C1, C2 ≥ 0, one
may use codes whose conferencing protocol satisfies the rate
restriction

1

n
log V1,1 · · · V1,I ≤ C1,

1

n
log V2,1 · · ·V2,I ≤ C2.
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The Capacity Region

The capacity region of the Compound MAC with conferencing
capacities C1, C2 ≥ 0 equals the closure of

⋂

U,X,Y

⋃

s∈S

{

(R1, R2) ∈ [0,∞)2 :

R1 ≤ I(Zs;X|Y,U) + C1,

R2 ≤ I(Zs;Y |X,U) + C2,

R1 +R2 ≤ min
(

I(Zs;X,Y |U) +C1 + C2, I(Zs;X,Y )
)

}

,

where PZs|U,X,Y = Ws and X,Y are independent given U .

◮ The region is achieved using non-iterative conferencing protocols,
i.e. with I = 1.
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Numerical Example
Let X = Y = Z = S = {0, 1} and the Compound MAC {W1,W2} with

W1 =
1

10

(

9 1
4 6
6 4
0 10

)

and W2 =
1

10

(

9 1
6 4
4 6
0 10

)

,

where the output corresponding to the input combination (a, b) is
written in row 2a+ b+ 1. With C1 = C2 ≈ 0.301,
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Proof of Achievability

Reduced to the Compound MAC with Common Message. Given a rate
pair (R1, R2),

◮ Set

M1 = M1,p ×M1,c, M2 = M2,p ×M2,c

with 1

n log|Mν | = 2nRν and 1

n log|Mν,c| = min(Rν , Cν).
◮ Uniform partitions of M1 and M2.

◮ Set cν(mν) = cν(mν,p,mν,c) = mν,c (ν = 1, 2).

◮ The joint result of conferencing (m1,c,m2,c) is a uniformly
distributed common message from M1,c ×M2,c.

◮ Use codes for the Compound MAC with Common Message for the
message set (M1,c ×M2,c)×M1,p ×M2,p.
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Weak and Strong Converse

◮ There is a weak converse.

◮ A strong converse for compound channels can only be shown for
the maximal error [Ahlswede 1967].

◮ For MACs, the maximal error capacity region differs from the
average error capacity region in general [Dueck 1978].

◮ For MACs, the capacity region is only known for the average error.
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The Arbitrarily Varying MAC (1)

The AV-MAC models the interference of networks with a MAC they do
not cooperate with and which operate in the same band.

For example:

◮ Uncoordinated WLAN hot spots

◮ Frequency co-sharing in 5G mobile networks
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The Arbitrarily Varying MAC (2)

◮ The AV-MAC with state set S is also given by a family

W = {Ws : s ∈ S}.

◮ However, the states may change at every time instant, so the set of
n-block transition probabilities consists of

W n(z|x,y|s) =

n
∏

i=1

Wsi(zi|xi, yi)

for s ∈ Sn.
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Coding for the AV-MAC

◮ The conferencing codes are as described before.

◮ The average error of a conferencing code for transmission over the
AV-MAC is given by

sup
s∈Sn

1

|M1||M2|

∑

m1,m2

W n(Dc
m1m2

|xm1m2
,ym1m2

|s).

◮ To achieve a rate pair with conferencing capacities C1, C2 ≥ 0, one
may use codes whose conferencing protocol satisfies the rate
restriction

1

n
log V1,1 · · · V1,I ≤ C1,

1

n
log V2,1 · · ·V2,I ≤ C2.
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New Effects in Uncoordinated Networks

The capacity region of the AV-MAC exhibits a dichotomy. This is
characterized by symmetrizability [Ericson 1985], [Gubner 1990].

The AV-MAC W is (X ,Y)-symmetrizable if there is a stochastic matrix
σ : X × Y → P(S) such that for all x, x′ ∈ X and y, y′ ∈ Y and z ∈ Z

∑

s∈S

W (z|x, y)σ(s|x′, y′) =
∑

s∈S

W (z|x′, y′)σ(s|x, y).

W is X -symmetrizable if there is a stochastic matrix σ1 : X → P(S) such that
for all x, x′ ∈ X and y ∈ Y and z ∈ Z

∑

s∈S

W (z|x, y)σ1(s|x
′) =

∑

s∈S

W (z|x′, y)σ1(s|x).

Y-symmetrizability is defined analogously.
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Capacity Region of the AV-MAC

Theorem [W,B 2011]

The capacity region of W with conferencing capacities C1, C2 > 0
equals {(0, 0)} if and only if it is (X ,Y)-symmetrizable. Otherwise it
equals the capacity region of the compound MAC with conferencing
capacities C1, C2 given by

W := {Wq =
∑

s∈S

Wsq(s) : q ∈ P(S)}.

◮ Conferencing is as simple as for Compound MACs.
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Proof: Robustification

◮ Turn good codes for the compound MAC with cooperating
encoders into good random codes for the AV-MAC.

Random code: A finite family of codes {xγ
m1m2

,yγ
m1m2

,Dγ
m1m2

}
together with a random variable Γ living on this family. The average
error incurred by such a code equals

max
s∈Sn

1

M1M2

∑

m1,m2

∑

γ

W n((Dγ
m1m2

)c|xγ
m1m2

,yγ
m1m2

|s)PΓ(γ).

[Ahlswede 1980]: Good deterministic codes for the compound MAC W
can be turned into good random codes for the AV-MAC W by
randomizing over polynomially many permutations of the codewords and
the decoding sets.
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Proof: Elimination of Correlation

◮ Turn a good random code into a good deterministic code.

Idea: Use a random code with the desired rates. Prefix a deterministic
code to it which specifies which random code will be used. [Ahlswede

1978]

Random code blocklength n, polynomially many deterministic codes
constituting the random code

◮ prefixed code has blocklength log n and – asymptotically –
arbitrarily small rate.

Thus if any positive rate is achievable deterministically, then this
derandomization method can be used.
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Proof: Achieving a small positive rate

◮ A small positive rate pair is achievable if W is not
(X ,Y)-symmetrizable.

0 < R̃ < 2min{C1, C2} is deterministically achievable by the single-user
AVC W with input alphabet X × Y if W is not (X ,Y)-symmetrizable
[Csiszár, Narayan 1988, capacity of single-user AVCs].

|M1| = |M2| = 2nR̃/2 =: 2nR

◮ every encoder informs the other encoder completely about the
message it would like to send

◮ The encoders use the codeword corresponding to the message pair
from the single-user code achieving R̃.

24 / 32



Converse

The converse follows from the converse for the compound channel
together with the result of [Csiszár, Narayan 1988].

◮ If W is (X ,Y)-symmetrizable, then by [Csiszár, Narayan 1988], every
code incurs at least an error of 1/4.

◮ “Almost” a strong converse.

◮ If W is not (X ,Y)-symmetrizable, then at least the corresponding
compound region is achievable. Clearly, this cannot be exceeded by
the AV-MAC.

◮ Weak converse.
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Open problems for the AV-MAC

◮ Is the direct approach to the AVC capacity [Csiszár, Narayan 1988]
feasible for the AV-MAC?

◮ Conjecture: Impossible for the Quantum AVC
 Ahlswede’s approach must be taken [Ahlswede,B,B,Nötzel 2010].

◮ The maximal error for arbitrarily varying channels leads to the unsolved
problem of zero-error capacity.

For average errors –

◮ can we obtain a strong converse for non-zero capacity regions?

◮ still no complete description of the non-conferencing capacity
region.
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Gains for Compound MACs

Comparison of Compound MAC without encoder cooperation with
Compound MAC with C1, C2 > 0.

◮ Gains, if existent, are continuous in C1, C2 including C1 = C2 = 0.

◮ If single-user (sum) capacity of Compound MAC
W : X × Y → P(Z) equals zero
 nothing is gained by conferencing.

◮ If single-user capacity greater then zero
 capacity region grows from non-cooperative to full-cooperation
region
 linear in C1, C2 until cutoff.
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Gains for AV-MACs: Background

Theorem [Ahlswede, Cai 1999]

The capacity region of W without encoder cooperation contains a pair
(R,R) with R > 0 if W is neither X - nor Y- nor (X ,Y)-symmetrizable.

In that case

Theorem [Jahn 1981]

If the capacity region of W without encoder cooperation contains a pair
(R,R) with R > 0, then it equals the capacity region of the compound
channel W without conferencing.

◮ If an AV-MAC is (X ,Y)-symmetrizable or both X - and
Y-symmetrizable, then its capacity region equals {(0, 0)}.

◮ If it is either X - or Y-symmetrizable, then its capacity region is at
most one-dimensional.
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Gains for AV-MACs

Comparison of AV-MAC without encoder cooperation with Compound
MAC with C1, C2 > 0.

◮ If W is (X ,Y)-symmetrizable, then conferencing does not help.

◮ If W is
◮ not (X ,Y)-symmetrizable,
◮ but X - and Y-symmetrizable,

then
◮ its capacity region without conferencing equals zero,
◮ its capacity region with C1, C2 > 0 equals the capacity region of the

compound MAC W with C1, C2.

 discontinuous gains possible when enabling conferencing.

◮ Example: The AV-MAC with X = Y = S = {0, 1}, Z = {0, . . . , 3},

z = x+ y + s,

is not (X ,Y)-symmetrizable but both X - and Y-symmetrizable.
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Conclusion

◮ Base station cooperation is used in 5G networks to mitigate
interference.

◮ Conferencing is an information-theoretic model of rate-limited base
station cooperation.

◮ The Compound MAC with conferencing encoders models partial
CSI and is the key to the AV-MAC with conferencing encoders.

◮ The AV-MAC models interference from the same band as occurring
in frequency co-sharing.

◮ In every case, the optimal conferencing protocol is a simple
non-iterative protocol.

◮ For AV-MACs, conferencing may enable discontinuous transmission
gains.

◮ Still open problems regarding maximal error criterion and strong
converses.
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