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Motivation

» Power reduction and spectrum scarcity cause interference to be the
main factor that limits performance of modern wireless systems.

» The potential of pure cellular concepts to deal with interference is
close to being exhausted.

> Investigate potential of inter-cell cooperation [Karakayali, Foschini,
Valenzuela 2006].

» To be included in 5G wireless systems like LTE-Advanced.
» Problem 1: Full cooperation is too complex and uses too many resources
» Partial cooperation needs to be investigated.
» Partial channel state information (CSl) needs to be considered.
» Problem 2: How can one cope with interference from co-existing networks
run by different providers?

» Uncoordinated WLAN hot spots
» Frequency co-sharing in 5G mobile networks
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Conferencing Encoders

Willems introduced the concept of conferencing encoders in information
theory [Willems 1982].

» models rate-limited cooperation between base stations.
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Willems' Conferencing Protocol

» Consists of an interactive exchange of information about the
messages mq,mo present at encoder 1 and 2, resp.

An [-iterations conferencing protocol has the form

c21

€1,
M —= Vi1 Moy —= Vo
c1,2 C2,2
Ml X V271 — V172 ./\/lg X Vl,l — V2’2
c1,3 €2,3
./\/l1 X Vg,l X V272 — V173 ./\/lg X V171 X V1,2 — V2,3

C2,1

C1,1 )
My x Vg,l X... X Vg,[_l — VL] My x V171 X...X V171_1 — VQJ

Here
» M, = message set of sender v € {1,2},

>V, finite set with |V, ;| = V,.;, v=1274i=1,...,1.
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MAC Coding with Rate-Constrained Conferencing

Given a multiple-access channel (MAC) with input alphabets X and ).
» Conferencing is part of coding.

» With conferencing capacities C,Cy > 0, for a blocklength-n code,
the above sets V; 1,...,)Vo 1 need to satisfy

1 1
—longJ---VL]gC’l, —IOgVQ,l"'VQ,[SCQ.
n n

» Describes the rate-constrained iterative exchange of information
about the messages present at the encoders.

» The encoding functions have the form

f1:M1XV2,1><...><V2,[—>Xn,
fg:MQXVLlX...XVL[—)yn.
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Channel Models

» The Compound MAC with conferencing encoders models channel
state uncertainty in a downlink network with cooperating base
stations.

> |t is also the key to the solution of the coding theorem for
AV-MACs.

» The Arbitrarily Varying MAC (AV-MAC) with conferencing
encoders models a downlink network with cooperating base station

suffering from interference from networks operating in the same
band.

» New effects occur in AV-MACs — conferencing can change the
whole channel structure.
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The Compound MAC

The Compound MAC models channel state uncertainty.
» A Compound MAC with state set S is a family

W={W;:seS}

of discrete memoryless MACs W : X x ) — P(Z2).
> The transmission of words x € X" and y € V" is governed by the
probabilities

n

W(zlx,y) = HWS(ZZ"$17?JZ') (s€S8).
i=1
» The encoders and the decoder only have partial CSI.
» Partial CSl is modeled as partitions of the state set S for the
encoders and the decoder.

» We restrict ourselves here to the case with no CSI at all.
» arbitrary CSI treated in [W,B,B,Jungnickel 2011, Trans|T]
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Coding for the Compound MAC

» The conferencing codes are as described before.

» Through conferencing, the codewords of each encoder depend on
both messages m; and mg. They are called Xy, m, and Y m.,-

> The decoding sets are called Dy, -

» The average error for the code is given by

Igleag ‘M1‘|M2 Z Wn 70711m2|xm1m27ym1m2).

mi,msg

» To achieve a rate pair with conferencing capacities C'1, Co > 0, one
may use codes whose conferencing protocol satisfies the rate
restriction

1 1
—logVi1--- Vi1 < Ch, —log Vo1 --- Vo < Ch.
n n
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The Capacity Region

The capacity region of the Compound MAC with conferencing
capacities C7,Cs > 0 equals the closure of

N U{(B1R2) € 0,00

U,X,Y seS
Ry < I(Zg X|Y,U) + C,
Ry < I(Z:Y|X,U) + G,

Ry + Ry < min(I(Zg; X, Y|U) + Cy + Cy, I(Zs; X, Y)) }

where Py 7 xy = Ws and X, Y are independent given U.

» The region is achieved using non-iterative conferencing protocols,
i.e. with I =1.

12/32



Numerical Example
Let ¥ =Y =2=38=1{0,1} and the Compound MAC {W;, W} with

L3 6 (s i
W1:—< > and W2:—< >,
10\8 1o 10\5 1
where the output corresponding to the input combination (a,b) is
written in row 2a + b+ 1. With C7 = Cy =~ 0.301,

0.7

- = Wi

- =W2

= N0 CoOp.
(C1,C2)

= full coop. |

0.6

R, [bit/channel use]

0 0.1 0.2 0.5 0.6 0.7

0.3 0.4
R1 [bit/channel use]
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Proof of Achievability

Reduced to the Compound MAC with Common Message. Given a rate
pair (R, R2),
> Set

M =My, x My, Mo =My, x Mo

with 1 log|M, | = 2" and Llog|M,, | = min(R,,C)).
» Uniform partitions of M7 and M.
> Set ¢, (my) = cp(Myp,mye) =my. (v=1,2).

» The joint result of conferencing (mj ¢, ma,) is a uniformly
distributed common message from M . x Mg .

» Use codes for the Compound MAC with Common Message for the
message set (M. X My ) x My, X Mo .
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Weak and Strong Converse

There is a weak converse.

v

v

A strong converse for compound channels can only be shown for
the maximal error [Ahlswede 1967].

v

For MACs, the maximal error capacity region differs from the
average error capacity region in general [Dueck 1978].

v

For MACs, the capacity region is only known for the average error.
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The Arbitrarily Varying MAC (1)

The AV-MAC models the interference of networks with a MAC they do
not cooperate with and which operate in the same band.

— cooperation
——» desired signal
— —» interference

For example:
» Uncoordinated WLAN hot spots

» Frequency co-sharing in 5G mobile networks
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The Arbitrarily Varying MAC (2)

» The AV-MAC with state set S is also given by a family
W={Ws:seS}

» However, the states may change at every time instant, so the set of
n-block transition probabilities consists of

n

W(zlx, yls) = [ W (zili. )
=1

for s € S".
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Coding for the AV-MAC

» The conferencing codes are as described before.

» The average error of a conferencing code for transmission over the
AV-MAC is given by

1

sup ——————— WTL Dc x Ly s).
seSn |M1||M2| Z ( mlm2| mima mlmQ‘ )

mi,m2

» To achieve a rate pair with conferencing capacities C'1, C2 > 0, one
may use codes whose conferencing protocol satisfies the rate
restriction

1 1
—logVLl---VL]gCl, —IOgVQ,l"'VQ’]SOQ.
n n
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New Effects in Uncoordinated Networks

The capacity region of the AV-MAC exhibits a dichotomy. This is
characterized by symmetrizability [Ericson 1985], [Gubner 1990].

The AV-MAC W is (X, ))-symmetrizable if there is a stochastic matrix
o:X xY — P(S) such that for all z,2’ € X and y,y’ € Y and z € Z

> Wz, y)o(sla’,y') =Y Wzl y)o(s|z,y).
sES sES

W is X-symmetrizable if there is a stochastic matrix o1 : X — P(S) such that
forallz,z’ e X andye Y and z € Z

ZW 2|z, y)o1 (s|z’) ZW 2|2z’ y)o (s|r).

seS seS

Y-symmetrizability is defined analogously.
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Capacity Region of the AV-MAC

Theorem [W,B 2011]

The capacity region of W with conferencing capacities C7,Cy > 0
equals {(0,0)} if and only if it is (X, ))-symmetrizable. Otherwise it
equals the capacity region of the compound MAC with conferencing
capacities C'1, Co given by

W= {W, = Z Wsq(s):q € P(S)}.

SES

» Conferencing is as simple as for Compound MACs.
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Proof: Robustification

» Turn good codes for the compound MAC with cooperating
encoders into good random codes for the AV-MAC.

Random code: A finite family of codes {X,ms, Yrmima, Dmims }
together with a random variable IT" living on this family. The average
error incurred by such a code equals

max

SES™ M1M2 Z an m1m2 |Xm1m2’Ym1m2| )PF(’Y)‘

mi,m2 7y

[Ahlswede 1980]: Good deterministic codes for the compound MAC W
can be turned into good random codes for the AV-MAC W by
randomizing over polynomially many permutations of the codewords and
the decoding sets.
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Proof: Elimination of Correlation

» Turn a good random code into a good deterministic code.

Idea: Use a random code with the desired rates. Prefix a deterministic
code to it which specifies which random code will be used. [Ahlswede
1978]

Random code blocklength n, polynomially many deterministic codes
constituting the random code

» prefixed code has blocklength logn and — asymptotically —
arbitrarily small rate.

Thus if any positive rate is achievable deterministically, then this
derandomization method can be used.
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Proof: Achieving a small positive rate

» A small positive rate pair is achievable if WV is not
(X,))-symmetrizable.

0<R< 2min{C1, Cs} is deterministically achievable by the single-user
AVC W with input alphabet X x ) if W is not (X, ))-symmetrizable
[Csiszar, Narayan 1988, capacity of single-user AVCs].

M| = [My| = 27R/2 = onF

» every encoder informs the other encoder completely about the
message it would like to send

» The encoders use the codeword corresponding to the message pair
from the single-user code achieving R.
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Converse

The converse follows from the converse for the compound channel
together with the result of [Csiszar, Narayan 1988].

» If Wis (X,))-symmetrizable, then by [Csiszar, Narayan 1988], every
code incurs at least an error of 1/4.
» “Almost” a strong converse.

» If W is not (X, ))-symmetrizable, then at least the corresponding
compound region is achievable. Clearly, this cannot be exceeded by
the AV-MAC.

» Weak converse.
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Open problems for the AV-MAC

> |s the direct approach to the AVC capacity [Csiszar, Narayan 1988]
feasible for the AV-MAC?

» Conjecture: Impossible for the Quantum AVC
~> Ahlswede’s approach must be taken [Ahlswede,B,B,Notzel 2010].

> The maximal error for arbitrarily varying channels leads to the unsolved
problem of zero-error capacity.

For average errors —
> can we obtain a strong converse for non-zero capacity regions?

» still no complete description of the non-conferencing capacity
region.
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Gains for Compound MACs

Comparison of Compound MAC without encoder cooperation with
Compound MAC with Cy,Cy > 0.
» Gains, if existent, are continuous in C7,Cs including C7y = Cy = 0.
» If single-user (sum) capacity of Compound MAC
W:X x)Y — P(Z2) equals zero
~> nothing is gained by conferencing.
» If single-user capacity greater then zero
~> capacity region grows from non-cooperative to full-cooperation
region
~> linear in C7, Cy until cutoff.
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Gains for AV-MACs: Background

Theorem [Ahlswede, Cai 1999]

The capacity region of VW without encoder cooperation contains a pair
(R, R) with R > 0 if W is neither X- nor Y- nor (X,))-symmetrizable.

In that case

Theorem [Jahn 1981]

If the capacity region of VW without encoder cooperation contains a pair
(R, R) with R > 0, then it equals the capacity region of the compound
channel W without conferencing.

» If an AV-MAC is (X, ))-symmetrizable or both X- and
Y-symmetrizable, then its capacity region equals {(0,0)}.

> If it is either X- or }-symmetrizable, then its capacity region is at
most one-dimensional.
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Gains for AV-MACs

Comparison of AV-MAC without encoder cooperation with Compound
MAC with Cq,Csy > 0.

» If Wis (X,))-symmetrizable, then conferencing does not help.
> If Wis

» not (X, Y)-symmetrizable,
» but X- and Y-symmetrizable,
then

» its capacity region without conferencing equals zero,
> its capacity region with C1, C2 > 0 equals the capacity region of the
compound MAC W with C1, Cs.

~~ discontinuous gains possible when enabling conferencing.
» Example: The AV-MAC with X =Y =S ={0,1}, Z2 ={0,...,3},

z=xr+y+s,
is not (X, ))-symmetrizable but both X- and )-symmetrizable.
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Conclusion

» Base station cooperation is used in 5G networks to mitigate
interference.

» Conferencing is an information-theoretic model of rate-limited base
station cooperation.

» The Compound MAC with conferencing encoders models partial
CSI and is the key to the AV-MAC with conferencing encoders.

» The AV-MAC models interference from the same band as occurring
in frequency co-sharing.

> In every case, the optimal conferencing protocol is a simple
non-iterative protocol.

» For AV-MACs, conferencing may enable discontinuous transmission
gains.

» Still open problems regarding maximal error criterion and strong
converses.
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