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Today ¢ =2

(y)(z) = —=y"(2) = 2*y(2) = My(2), zeT.

Stokes lines: Complex numbers
Stokes‘wedge with arg z € {O, %, 2%, T, 4%, 5%
[ Stokes wedges: between two
Stokes lines. The contour I is in
two such wedges and tends to in-
finity.
Bender, Bottcher: ¢ is P7 symmetric, i.e.

| PT(=(PT.

Problems:
@ Spaces? Domains? Operators? P7 symmetric?
o |s H self-adjoint in a Krein space?

@ |s the spectrum real?
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—y"(2) = 2'y(2) = M\y(2), zeT.
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Back to the real line

—y'(2) = 2'(2) = M\y(2), zeT.
Choose ¢ with 0 < ¢ < % and set
M=, = {xe/?": x € R}.

Set W(X) = )/(Z(X)) with Z(X) — xel®senx.
Then: y solves (1) for x # 0 if and only if w solves
—e 0w (x) — eOx*w(x)

—e2W" (x) — e HPx* w(x)

=Aw(x) x>0
=Aw(x) x<0
y cont. at zero < w(0+) = w(0-)

y' cont. at zero < e '?w/(04) = e“w/(0-)

(1)
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Aw
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Define operators A? via LHS of (2) with
dom A2 := {w, APw € [>(R") : w,w' € AC(RT), w(0) = 0}
and AP via LHS of (3) with a similar domain.

Lemma

Aeap(AD) & XNeo,(AD)
D

Aep(AD) = Xep(AP)
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Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

, —1/4 o0
yE(x) ~ [e_‘“‘és(x)} / exp (j:/ Res(t)l/2dt>
0
with s(x) := —e%®x* — e2® ). Hence
Res(t)Y/2 ~ —t2sin3¢

According to the Sims '57 classification (modified in [BMcEP '99])

Theorem

o Ifp ¢{0,3, 5?, , 45?, 55?} then (2) is in Limit Point Case (i.e.
one sol. ¢ L?(RT)).

e Ifp € {0, 3, 2”,7?, %’r, 57”} then (2) is in Limit Circle Case
(i.e. both sol. € L2(RT)).

® Similarly for Equation (3).
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Limit point, circle and spectral properties
Explanation for Stokes wedges and lines:

~

I in Stokes wedge = Limit Point Case

[ in Stokes line = Limit Circle Case

Discussion Limit Circle Case:
Both sol. of Equation (2) are in L2(R*). The Dirichlet condition
at zero will be matched by a linear combination, i.e.

a(AR) = o(AP) = C.

Missing: Boundary condition at 0o (cf. [AT'10] and [AT'12]).
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Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

I in Stokes wedge = Limit Point Case

[ in Stokes line = Limit Circle Case

Discussion Limit Point Case:

Theorem

The spectrum of Af and AP consists of discrete eigenvalues of
finite algebraic multiplicity with no finite acc. point and is in

a(AP) Moreover, if ¢ < 7 then

N

_ i o(AD) a(A2)na(AP) = 0.



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same I in
Stokes wedge, i.e. 0 < ¢ < 3.

Plan + Overview



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same I in
Stokes wedge, i.e. 0 < ¢ < 3.

Plan + Overview

© Consider the equation on the semi axis

© Study operator with Dirichlet boundary conditions on the semi
axis

© Study operator with some matching condition in zero on R:



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same I in
Stokes wedge, i.e. 0 < ¢ < 3.

Plan + Overview

© Consider the equation on the semi axis
© Study operator with Dirichlet boundary conditions on the semi
axis
© Study operator with some matching condition in zero on R:
® PT symmetry



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same I in
Stokes wedge, i.e. 0 < ¢ < 3.

Plan + Overview

© Consider the equation on the semi axis

© Study operator with Dirichlet boundary conditions on the semi
axis

© Study operator with some matching condition in zero on R:

® PT symmetry
@ Selfadjointness in a Krein space



Plan 4+ Overview

Assume from now on Limit Point Case or, what is the same I in
Stokes wedge, i.e. 0 < ¢ < 3.

Plan + Overview

© Consider the equation on the semi axis

© Study operator with Dirichlet boundary conditions on the semi
axis

© Study operator with some matching condition in zero on R:

® PT symmetry
@ Selfadjointness in a Krein space
© Spectrum
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P7 symmetric operators

Define

(Pf)(x) = f(—x) and (Tf)(x)="f(x), fel*R).

Definition
A closed densely defined op. H in L?(R) is P7 symmetric if for all
y € dom H we have

PTy €cdom H and PTHy=HPTy.
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Recall: Krein spaces

‘H with a hermitian sesquilinear form [-, -] is a Krein space if
H=Hi®H-

and (Hy, £[,-]) are Hilbert spaces.
Here:
(L*(R), [ ]) with [, ]:=(P-,-)
is a Krein space.
@ Define the Adjoint A™ with respect to [, ].
@ A [, ]-selfadjoint if AT = A.
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Aw — —e7210w" (x) — e*?x*w(x)
. 7e2i¢W//(X) o e—4i¢X4W(X)

= Aw(x), x>0
=Aw(x), x<0
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Full line operator A + conditions at zero

Define operator A

Aw — —e7210w" (x) — e*?x*w(x)
W= —e?Pw'(x) — e Hx*w(x)

(x), x>0

= A\w
=Aw(x), x<0

with domain

W|]Ri’ W,|Ri € AC(Ri)a
dom A := {w, Aw € L*(R) : w(0+) = w(0—)
w'(0+) =aw’(0-)

Then y on T is continuous. y’ on I is continuous < o = /%,

Theorem
o A is PT-symmetric if and only if |o| = 1.

o A is [, ]-selfadjoint if and only if o = e*'?.
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Full line operator A, a = e*¢

Lemma
If X ¢ op(AR) U 0,(AP), then

US\,—&-(O) :e4,'@ US\,—(O)

GO R O}

where uy ., uy_ are non-zero sol. of (2), resp. (3).

If ¢ < 7 we obtain

op(A) # C.
Moreover, A and AQ X AQ are 1-dim extensions of the (Krein
space) symmetric operator AN (AP x AP) and we obtain

Theorem
Let o = e*? and ¢ < %. Then

p(A) # 0.
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Full line operator A, @ = %
Aw — —e7 2w (x) — e*x*w(x) = Aw(x), x>0
YT —ePw(x) — e 49X w(x) = Aw(x), x <0
with w(0+) = w(0—) and w/(0+) =e**w/(0-).

Theorem
_ AAig T
Let o = €"? and ¢ < 7.

@ A is PT symmetric.
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Full line operator A, a = e*¢

Aw — —e %W (x) — eM’x*w(x) = Aw(x), x>0
YT —ePw(x) — e 49X w(x) = Aw(x), x <0

with w(0+) = w(0—) and w/(0+) =e**w/(0-).
Theorem
Let oo = €% and ¢ < .
@ A is PT symmetric.
Q A is [, ]-selfadjoint in the Krein space (L%(R),[,]) with
1= (P ),
© p(A) # 0.
Q Spectrum is symmetric with respect to R.

© Resolvent difference of A and AE X AQ is one. Hence
spectrum consists of discrete eigenvalues of finite algebraic
multiplicity with no finite acc. point.

Next: Realness of spectrum. P7-symmetric case (|| = 1)...



Thank You !



