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Bender, Böttcher: ℓ is PT symmetric, i.e.

PT ℓ = ℓPT .

Problems:

Spaces? Domains? Operators? PT symmetric?



Today ǫ = 2

ℓ(y)(z) := −y ′′(z) − z4y(z) = λy(z), z ∈ Γ.

Γ
Stokes wedge

Stokes lines: Complex numbers
with arg z ∈ {0, π

3
, 2π

3
, π, 4π

3
, 5π

3
}

Stokes wedges: between two
Stokes lines. The contour Γ is in
two such wedges and tends to in-
finity.
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Spaces? Domains? Operators? PT symmetric?

Is H self-adjoint in a Krein space?

Is the spectrum real?
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−y ′′(z) − z4y(z) = λy(z), z ∈ Γ. (1)

Choose φ with 0 < φ < π
3

and set

Γ = Γφ := {xe iφsgnx : x ∈ R}.

Set w(x) := y(z(x)) with z(x) := xe iφsgnx .
Then: y solves (1) for x 6= 0 if and only if w solves

−e−2iφw ′′(x) − e4iφx4w(x) = λw(x) x > 0

−e2iφw ′′(x) − e−4iφx4w(x) = λw(x) x < 0

y cont. at zero ⇔ w(0+) = w(0−)

y ′ cont. at zero ⇔ e−iφw ′(0+) = e iφw ′(0−)
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and AD
− via LHS of (3) with a similar domain.

Lemma

λ ∈ σp(A
D
+) ⇔ λ ∈ σp(AD

−)

λ ∈ ρ(AD
+) ⇔ λ ∈ ρ(AD

−)
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3
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(i.e. both sol. ∈ L2(R+)).

Similarly for Equation (3).
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Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

Γ in Stokes wedge ∼= Limit Point Case

Γ in Stokes line ∼= Limit Circle Case

Discussion Limit Circle Case:
Both sol. of Equation (2) are in L2(R+). The Dirichlet condition
at zero will be matched by a linear combination, i.e.

σ(AD
+) = σ(AD

−) = C.

Missing: Boundary condition at ±∞ (cf. [AT’10] and [AT’12]).
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Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

Γ in Stokes wedge ∼= Limit Point Case

Γ in Stokes line ∼= Limit Circle Case

Discussion Limit Point Case:

Theorem

The spectrum of AD
+ and AD

− consists of discrete eigenvalues of
finite algebraic multiplicity with no finite acc. point and is in

σ(AD
−)

σ(AD
+)

−e4iφ

Moreover, if φ < π
4

then

σ(AD
+) ∩ σ(AD

−) = ∅.



Plan + Overview

Assume from now on Limit Point Case or, what is the same



Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in
Stokes wedge, i.e. 0 < φ < π

3
.

Plan + Overview



Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in
Stokes wedge, i.e. 0 < φ < π

3
.

Plan + Overview

1 Consider the equation on the semi axis

2 Study operator with Dirichlet boundary conditions on the semi
axis

3 Study operator with some matching condition in zero on R:



Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in
Stokes wedge, i.e. 0 < φ < π

3
.

Plan + Overview

1 Consider the equation on the semi axis

2 Study operator with Dirichlet boundary conditions on the semi
axis

3 Study operator with some matching condition in zero on R:
1 PT symmetry



Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in
Stokes wedge, i.e. 0 < φ < π

3
.

Plan + Overview

1 Consider the equation on the semi axis

2 Study operator with Dirichlet boundary conditions on the semi
axis

3 Study operator with some matching condition in zero on R:
1 PT symmetry
2 Selfadjointness in a Krein space



Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in
Stokes wedge, i.e. 0 < φ < π

3
.

Plan + Overview

1 Consider the equation on the semi axis

2 Study operator with Dirichlet boundary conditions on the semi
axis

3 Study operator with some matching condition in zero on R:
1 PT symmetry
2 Selfadjointness in a Krein space
3 Spectrum
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(Pf )(x) = f (−x) and (T f )(x) = f (x), f ∈ L2(R).

Definition

A closed densely defined op. H in L2(R) is PT symmetric if for all
y ∈ dom H we have

PT y ∈ dom H and PT Hy = HPT y .
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H with a hermitian sesquilinear form [., .] is a Krein space if

H = H+ ⊕H−

and (H±,±[., .]) are Hilbert spaces.

Here:
(L2(R), [., .]) with [., .] := (P . , . )

is a Krein space.

Define the Adjoint A+ with respect to [., .].

A [., .]-selfadjoint if A+ = A.
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Then y on Γ is continuous. y ′ on Γ is continuous ⇔ α = e2iφ.

Theorem

A is PT -symmetric if and only if |α| = 1.

A is [., .]-selfadjoint if and only if α = e4iφ.
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Next: Realness of spectrum. PT -symmetric case (|α| = 1)...



Thank You !


