On \mathcal{PT} symmetric operators in Krein spaces

C. Trunk (TU Ilmenau, Germany)

joint work with T. Azizov (Voronezh)

5. November 2012

th:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

[Bender, Böttcher, *Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry*, Physical Review Letters 1998]:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

 $-y''(z) + z^2(iz)^{\epsilon}y(z) = \lambda y(z), \quad \epsilon > 0,$

[Bender, Böttcher, *Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry*, Physical Review Letters 1998]:

 $-y''(z) + z^2(iz)^{\epsilon}y(z) = \lambda y(z), \quad \epsilon > 0, \quad z \in \Gamma.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

[Bender, Böttcher, *Real Spectra in Non-Hermitian Hamiltonians Having* \mathcal{PT} *Symmetry*, Physical Review Letters 1998]:

 $-y''(z) + z^2(iz)^{\epsilon}y(z) = \lambda y(z), \quad \epsilon > 0, \quad z \in \Gamma.$

 Γ is a contour in $\mathbb C$ in a Stokes wedge

[Bender, Böttcher, *Real Spectra in Non-Hermitian Hamiltonians Having* \mathcal{PT} *Symmetry*, Physical Review Letters 1998]:

 $-y''(z) + z^2(iz)^{\epsilon}y(z) = \lambda y(z), \quad \epsilon > 0, \quad z \in \Gamma.$

Γ is a contour in \mathbb{C} in a *Stokes wedge* <u>Goal:</u> L^2 -spectral theory (cf. classical QM).

A D M A

[Bender, Böttcher, *Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry*, Physical Review Letters 1998]:

 $-y''(z) + z^2(iz)^{\epsilon}y(z) = \lambda y(z), \quad \epsilon > 0, \quad z \in \Gamma.$

Γ is a contour in \mathbb{C} in a *Stokes wedge* <u>Goal:</u> L^2 -spectral theory (cf. classical QM).

<u>Great interest:</u> S. Albeverio, C. Bender, M. V. Berry, S. Böttcher, S. F. Brandt, J. Brody, E. Caliceti, F. Cannata, J.-H. Chen, P. Dorey, C. Dunning, A. Fring, H. B. Geyer, S. Graffi, U. Günther, G. S. Japaridze, H. Jones, O. Kirillov, D. Krejčiřík, S. Kuzhel, P. Mannheim, P. Meisinger, K. A. Milton, A. Mostafazadeh, M. C. Ogilvie, K. C. Shin, P. Siegl, J. Sjöstrand, F. Stefani, T. Tanaka, R. Tateo, M. Znojil...

A D M A

$$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z),$$

$$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

 $\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

Stokes line Stokes line Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e. (formally)

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e. (formally)

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

where

$$(\mathcal{P}f)(z) = f(-\overline{z})$$
 and $(\mathcal{T}f)(z) = \overline{f(z)}$.

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

Problems:

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

Problems:

• Spaces?

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

Problems:

• Spaces? Domains?

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

Problems:

• Spaces? Domains? Operators?

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

 $\mathcal{P}\mathcal{T}\ell = \ell \mathcal{P}\mathcal{T}.$

Problems:

• Spaces? Domains? Operators? *PT* symmetric?

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

 $\mathcal{PT}\ell = \ell \mathcal{PT}.$

Problems:

- Spaces? Domains? Operators? *PT* symmetric?
- Is H self-adjoint in a Krein space?

$\ell(y)(z) := -y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$

Stokes lines: Complex numbers with arg $z \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bender, Böttcher: ℓ is \mathcal{PT} symmetric, i.e.

 $\mathcal{P}\mathcal{T}\ell = \ell \mathcal{P}\mathcal{T}.$

Problems:

- Spaces? Domains? Operators? *PT* symmetric?
- Is H self-adjoint in a Krein space?
- Is the spectrum real?

$$-y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$
(1)

$$-y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$
(1)

Choose ϕ with $0 < \phi < \frac{\pi}{3}$

$$-y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$
(1)

Choose ϕ with 0 $<\phi<\frac{\pi}{3}$ and set

$$\Gamma = \Gamma_{\phi} := \{ x e^{i\phi \operatorname{sgn} x} : x \in \mathbb{R} \}.$$

$$-y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$
(1)

Choose ϕ with $0 < \phi < \frac{\pi}{3}$ and set

 $\Gamma = \Gamma_{\phi} := \{ x e^{i\phi \operatorname{sgn} x} : x \in \mathbb{R} \}.$

Set w(x) := y(z(x)) with $z(x) := xe^{i\phi \operatorname{sgn} x}$.

$$-y''(z) - z^4 y(z) = \lambda y(z), \quad z \in \Gamma.$$
(1)

Choose ϕ with $0 < \phi < \frac{\pi}{3}$ and set

$$\Gamma = \Gamma_{\phi} := \{ x e^{i\phi \operatorname{sgn} x} : x \in \mathbb{R} \}.$$

Set w(x) := y(z(x)) with $z(x) := xe^{i\phi \text{sgn}x}$. Then: y solves (1) for $x \neq 0$ if and only if w solves

$$\begin{aligned} &-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) & x > 0 \\ &-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) & x < 0 \end{aligned}$$

$$y ext{ cont. at zero } \Leftrightarrow w(0+) = w(0-)$$

 $y' ext{ cont. at zero } \Leftrightarrow e^{-i\phi}w'(0+) = e^{i\phi}w'(0-)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan + Overview

Consider the equation on the semi axis

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

 ${f 0}$ Study operator with some matching condition in zero on ${\Bbb R}$

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
 (2)

$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
(2)
$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<u>Define</u> operators A^{D}_{+} via LHS of (2) with

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
(2)
$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

<u>Define</u> operators A^{D}_{+} via LHS of (2) with

dom
$$A^D_+ := \{w, A^D_+ w \in L^2(\mathbb{R}^+) : w, w' \in AC(\mathbb{R}^+), w(0) = 0\}$$

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
(2)
$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

<u>Define</u> operators A^{D}_{+} via LHS of (2) with

dom
$$A^D_+ := \{w, A^D_+ w \in L^2(\mathbb{R}^+) : w, w' \in AC(\mathbb{R}^+), w(0) = 0\}$$

and A_{-}^{D} via LHS of (3) with a similar domain.

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
(2)
$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

<u>Define</u> operators A^{D}_{+} via LHS of (2) with

dom
$$A^D_+ := \{w, A^D_+ w \in L^2(\mathbb{R}^+) : w, w' \in AC(\mathbb{R}^+), w(0) = 0\}$$

and A^D_- via LHS of (3) with a similar domain.

Lemma

$$\lambda \in \sigma_p(A^D_+) \quad \Leftrightarrow \quad \overline{\lambda} \in \sigma_p(A^D_-)$$

$$-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x) \qquad x > 0$$
(2)
$$-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x) \qquad x < 0$$
(3)

<u>Define</u> operators A^{D}_{+} via LHS of (2) with

dom
$$A^D_+ := \{w, A^D_+ w \in L^2(\mathbb{R}^+) : w, w' \in AC(\mathbb{R}^+), w(0) = 0\}$$

and A^D_- via LHS of (3) with a similar domain.

Lemma

$$\begin{array}{ll} \lambda \in \sigma_{p}(A^{D}_{+}) & \Leftrightarrow & \overline{\lambda} \in \sigma_{p}(A^{D}_{-}) \\ \lambda \in \rho(A^{D}_{+}) & \Leftrightarrow & \overline{\lambda} \in \rho(A^{D}_{-}) \end{array}$$

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)\right]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt\right)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)\right]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt\right)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

 $\operatorname{Re} s(t)^{1/2} \sim -t^2 \sin 3\phi$

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)
ight]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt
ight)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

$${\sf Re}\, {m s}(t)^{1/2} \sim -t^2 \sin 3\phi$$

According to the Sims '57 classification (modified in [BMcEP '99])
Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)\right]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt\right)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

$$\operatorname{\mathsf{Re}} s(t)^{1/2} \sim -t^2 \sin 3\phi$$

According to the Sims '57 classification (modified in [BMcEP '99])

Theorem

If φ ∉ {0, π/3, 2π/3, π, 4π/3, 5π/3} then (2) is in Limit Point Case (i.e. one sol. ∉ L²(ℝ⁺)).

A D M A

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)\right]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt\right)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

$$\operatorname{\mathsf{Re}} s(t)^{1/2} \sim -t^2 \sin 3\phi$$

According to the Sims '57 classification (modified in [BMcEP '99])

Theorem

- If φ ∉ {0, π/3, 2π/3, π, 4π/3, 5π/3} then (2) is in Limit Point Case (i.e. one sol. ∉ L²(ℝ⁺)).
- If $\phi \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ then (2) is in Limit Circle Case (i.e. both sol. $\in L^2(\mathbb{R}^+)$).

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$y^{\pm}(x) \sim \left[e^{-4i\phi}s(x)\right]^{-1/4} exp\left(\pm \int_0^\infty \operatorname{Re} s(t)^{1/2} dt\right)$$

with $s(x) := -e^{6i\phi}x^4 - e^{2i\phi}\lambda$. Hence

$$\operatorname{\mathsf{Re}} s(t)^{1/2} \sim -t^2 \sin 3\phi$$

According to the Sims '57 classification (modified in [BMcEP '99])

Theorem

If φ ∉ {0, π/3, 2π/3, π, 4π/3, 5π/3} then (2) is in Limit Point Case (i.e. one sol. ∉ L²(ℝ⁺)).

- If $\phi \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\}$ then (2) is in Limit Circle Case (i.e. both sol. $\in L^2(\mathbb{R}^+)$).
- Similarly for Equation (3).

Explanation for Stokes wedges and lines:

 Γ in Stokes wedge \cong Limit Point Case

Explanation for Stokes wedges and lines:

 Γ in Stokes wedge \cong Limit Point Case Γ in Stokes line \cong Limit Circle Case

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Discussion Limit Circle Case:

Explanation for Stokes wedges and lines:

 $\label{eq:relation} \begin{array}{rcl} \Gamma \mbox{ in Stokes wedge } \cong & \mbox{ Limit Point Case} \\ \Gamma \mbox{ in Stokes line } \cong & \mbox{ Limit Circle Case} \end{array}$

Discussion Limit Circle Case:

Both sol. of Equation (2) are in $L^2(\mathbb{R}^+)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

Explanation for Stokes wedges and lines:

 $\label{eq:relation} \begin{array}{rcl} \Gamma \mbox{ in Stokes wedge } \cong & \mbox{ Limit Point Case} \\ \Gamma \mbox{ in Stokes line } \cong & \mbox{ Limit Circle Case} \end{array}$

Discussion Limit Circle Case:

Both sol. of Equation (2) are in $L^2(\mathbb{R}^+)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

 $\sigma(A^D_+) = \sigma(A^D_-) = \mathbb{C}.$

A D M A

Explanation for Stokes wedges and lines:

 $\label{eq:relation} \begin{array}{rcl} \Gamma \mbox{ in Stokes wedge } \cong & \mbox{ Limit Point Case} \\ \Gamma \mbox{ in Stokes line } \cong & \mbox{ Limit Circle Case} \end{array}$

Discussion Limit Circle Case: Both sol. of Equation (2) are in $L^2(\mathbb{R}^+)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

 $\sigma(A^D_+) = \sigma(A^D_-) = \mathbb{C}.$

Missing: Boundary condition at $\pm \infty$ (cf. [AT'10] and [AT'12]).

Explanation for Stokes wedges and lines:

 Γ in Stokes wedge \cong Limit Point Case Γ in Stokes line \cong Limit Circle Case

Discussion Limit Point Case:

Explanation for Stokes wedges and lines:

 $\label{eq:relation} \begin{array}{rcl} \Gamma \mbox{ in Stokes wedge } \cong & \mbox{ Limit Point Case} \\ \Gamma \mbox{ in Stokes line } \cong & \mbox{ Limit Circle Case} \end{array}$

Discussion Limit Point Case:

Theorem

The spectrum of A^{D}_{+} and A^{D}_{-} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

Explanation for Stokes wedges and lines:

 $\label{eq:relation} \begin{array}{rcl} \Gamma \mbox{ in Stokes wedge } \cong & \mbox{ Limit Point Case} \\ \Gamma \mbox{ in Stokes line } \cong & \mbox{ Limit Circle Case} \end{array}$

Discussion Limit Point Case:

Theorem

The spectrum of A^{D}_{+} and A^{D}_{-} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

 $-e^{4i\phi}$

Explanation for Stokes wedges and lines:

Discussion Limit Point Case:

Theorem

The spectrum of A^{D}_{+} and A^{D}_{-} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

Moreover, if $\phi < \frac{\pi}{4}$ then

 $\sigma(A^D_+)\cap\sigma(A^D_-)=\emptyset.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少へで

Assume from now on Limit Point Case or, what is the same

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0 < \phi < \frac{\pi}{3}$.

Plan + Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0 < \phi < \frac{\pi}{3}$.

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Study operator with some matching condition in zero on \mathbb{R} :

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0 < \phi < \frac{\pi}{3}$.

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Study operator with some matching condition in zero on R:
 PT symmetry

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0 < \phi < \frac{\pi}{3}$.

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Study operator with some matching condition in zero on \mathbb{R} :
 - \mathcal{PT} symmetry
 - Selfadjointness in a Krein space

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0 < \phi < \frac{\pi}{3}$.

Plan + Overview

- Consider the equation on the semi axis
- Study operator with Dirichlet boundary conditions on the semi axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Study operator with some matching condition in zero on \mathbb{R} :
 - \mathcal{PT} symmetry
 - Selfadjointness in a Krein space
 - Spectrum

\mathcal{PT} symmetric operators

Define

 $(\mathcal{P}f)(x) = f(-x)$ and $(\mathcal{T}f)(x) = \overline{f(x)}, f \in L^2(\mathbb{R}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

\mathcal{PT} symmetric operators

Define

 $(\mathcal{P}f)(x) = f(-x)$ and $(\mathcal{T}f)(x) = \overline{f(x)}, f \in L^2(\mathbb{R}).$

Definition

A closed densely defined op. *H* in $L^2(\mathbb{R})$ is \mathcal{PT} symmetric if for all $y \in \text{dom } H$ we have

$$\mathcal{PT}y \in \text{dom } H$$
 and $\mathcal{PT}Hy = H\mathcal{PT}y$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 ${\mathcal H}$ with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

 ${\mathcal H}$ with a hermitian sesquilinear form $[\cdot,\cdot]$ is a Krein space if

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

and $(\mathcal{H}_{\pm}, \pm[\cdot, \cdot])$ are Hilbert spaces.

Here:

 ${\mathcal H}$ with a hermitian sesquilinear form $[\cdot,\cdot]$ is a Krein space if

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

and $(\mathcal{H}_{\pm},\pm[\cdot,\cdot])$ are Hilbert spaces.

Here:

$$(L^2(\mathbb{R}), [\cdot, \cdot])$$
 with $[\cdot, \cdot] := (\mathcal{P} \cdot, \cdot)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a Krein space.

 ${\mathcal H}$ with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

and $(\mathcal{H}_{\pm},\pm[\cdot,\cdot])$ are Hilbert spaces.

Here:

$$(L^2(\mathbb{R}), [\cdot, \cdot])$$
 with $[\cdot, \cdot] := (\mathcal{P} \cdot, \cdot)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 • のへ⊙

- is a Krein space.
 - Define the *Adjoint* A^+ with respect to $[\cdot, \cdot]$.

 ${\mathcal H}$ with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

and $(\mathcal{H}_{\pm},\pm[\cdot,\cdot])$ are Hilbert spaces.

Here:

$$(L^2(\mathbb{R}), [\cdot, \cdot])$$
 with $[\cdot, \cdot] := (\mathcal{P} \cdot, \cdot)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a Krein space.

- Define the *Adjoint* A^+ with respect to $[\cdot, \cdot]$.
- $A[\cdot, \cdot]$ -selfadjoint if $A^+ = A$.

Full line operator A + conditions at zero

Define operator A

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with domain

Full line operator A + conditions at zero

Define operator A

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with domain

dom
$$A := \{w, Aw \in L^{2}(\mathbb{R}) : w|_{\mathbb{R}^{\pm}}, w'|_{\mathbb{R}^{\pm}} \in AC(\mathbb{R}^{\pm}), w'|_{\mathbb{R}^{\pm}} \in AC(\mathbb{R}^{+}), w'|_{\mathbb{R}^{\pm}$$

Then y on Γ is continuous. y' on Γ is continuous $\Leftrightarrow \alpha = e^{2i\phi}$. Theorem

Full line operator A + conditions at zero

Define operator A

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with domain

$$\operatorname{dom} A := \left\{ w, Aw \in L^{2}(\mathbb{R}) : \begin{array}{c} w|_{\mathbb{R}^{\pm}}, w'|_{\mathbb{R}^{\pm}} \in AC(\mathbb{R}^{\pm}), \\ w(0+) = w(0-) \\ w'(0+) = \alpha w'(0-) \end{array} \right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then y on Γ is continuous. y' on Γ is continuous $\Leftrightarrow \alpha = e^{2i\phi}$.

Theorem

- A is \mathcal{PT} -symmetric if and only if $|\alpha| = 1$.
- A is $[\cdot, \cdot]$ -selfadjoint if and only if $\alpha = e^{4i\phi}$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Lemma

Lemma

If $\lambda \notin \sigma_p(A^D_+) \cup \sigma_p(A^D_-)$, then

$$\lambda \in \sigma_{\rho}(A) \quad \Leftrightarrow \quad rac{u'_{\lambda,+}(0)}{u_{\lambda,+}(0)} = e^{4i\phi} rac{u'_{\lambda,-}(0)}{u_{\lambda,-}(0)},$$

where $u_{\lambda,+}$, $u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).

If $\phi < \frac{\pi}{4}$ we obtain

 $\sigma_p(A) \neq \mathbb{C}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

If $\lambda \notin \sigma_p(A^D_+) \cup \sigma_p(A^D_-)$, then

$$\lambda \in \sigma_{\mathcal{P}}(\mathcal{A}) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} rac{u_{\lambda,+}'(0)}{u_{\lambda,+}(0)} = e^{4i\phi} rac{u_{\lambda,-}'(0)}{u_{\lambda,-}(0)},$$

where $u_{\lambda,+}$, $u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).

If $\phi < \frac{\pi}{4}$ we obtain

$$\sigma_p(A) \neq \mathbb{C}.$$

Moreover, A and $A^D_+ \times A^D_+$ are 1-dim extensions of the (Krein space) symmetric operator $A \cap (A^D_+ \times A^D_+)$ and we obtain

Lemma

If $\lambda \notin \sigma_p(A^D_+) \cup \sigma_p(A^D_-)$, then

$$\lambda \in \sigma_{\mathcal{P}}(\mathcal{A}) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} rac{u_{\lambda,+}'(0)}{u_{\lambda,+}(0)} = e^{4i\phi} rac{u_{\lambda,-}'(0)}{u_{\lambda,-}(0)},$$

where $u_{\lambda,+}$, $u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).

If $\phi < \frac{\pi}{4}$ we obtain

 $\sigma_p(A) \neq \mathbb{C}.$

Moreover, A and $A^D_+ \times A^D_+$ are 1-dim extensions of the (Krein space) symmetric operator $A \cap (A^D_+ \times A^D_+)$ and we obtain

Theorem

Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$. Then

 $ho(A)
eq \emptyset.$

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.

• A is \mathcal{PT} symmetric.

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

- Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.
 - A is \mathcal{PT} symmetric.
 - A is [·, ·]-selfadjoint in the Krein space (L²(ℝ), [·, ·]) with [·, ·] := (P · , ·).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()
$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

- Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.
 - A is \mathcal{PT} symmetric.
 - **2** A is $[\cdot, \cdot]$ -selfadjoint in the Krein space $(L^2(\mathbb{R}), [\cdot, \cdot])$ with $[\cdot, \cdot] := (\mathcal{P} \cdot, \cdot).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\ \, {\mathfrak O}(A) \neq \emptyset.$

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

- Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.
 - A is \mathcal{PT} symmetric.
 - A is [·, ·]-selfadjoint in the Krein space (L²(ℝ), [·, ·]) with [·, ·] := (P · , ·).

- Spectrum is symmetric with respect to \mathbb{R} .

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

- Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.
 - A is \mathcal{PT} symmetric.
 - A is [·, ·]-selfadjoint in the Krein space (L²(ℝ), [·, ·]) with [·, ·] := (P · , ·).

 - Spectrum is symmetric with respect to ℝ.
 - Resolvent difference of A and A^D₊ × A^D₊ is one. Hence spectrum consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point.

$$Aw := \begin{cases} -e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) = \lambda w(x), & x > 0\\ -e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) = \lambda w(x), & x < 0 \end{cases}$$

with w(0+) = w(0-) and $w'(0+) = e^{4i\phi}w'(0-)$.

Theorem

- Let $\alpha = e^{4i\phi}$ and $\phi < \frac{\pi}{4}$.
 - A is \mathcal{PT} symmetric.
 - A is [·, ·]-selfadjoint in the Krein space (L²(ℝ), [·, ·]) with [·, ·] := (P · , ·).
 - $(A) \neq \emptyset.$
 - Spectrum is symmetric with respect to ℝ.
 - Resolvent difference of A and A^D₊ × A^D₊ is one. Hence spectrum consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point.

Next: Realness of spectrum. \mathcal{PT} -symmetric case $(|\alpha| = 1)$.

Thank You !