On $\mathcal{P} \mathcal{T}$ symmetric operators in Krein spaces

C. Trunk (TU IImenau, Germany)

joint work with T. Azizov (Voronezh)
5. November 2012
th

Main Equation

-y^{\prime \prime}(z)+z^{2}(i z)^{\epsilon} y(z)=\lambda y(z), \quad \epsilon>0
\]

Main Equation

-y^{\prime \prime}(z)+z^{2}(i z)^{\epsilon} y(z)=\lambda y(z), \quad \epsilon>0, \quad z \in \Gamma
\]

Main Equation

-y^{\prime \prime}(z)+z^{2}(i z)^{\epsilon} y(z)=\lambda y(z), \quad \epsilon>0, \quad z \in \Gamma
\]

Γ is a contour in \mathbb{C} in a Stokes wedge

Main Equation

-y^{\prime \prime}(z)+z^{2}(i z)^{\epsilon} y(z)=\lambda y(z), \quad \epsilon>0, \quad z \in \Gamma
\]

Γ is a contour in \mathbb{C} in a Stokes wedge
Goal: L^{2}-spectral theory (cf. classical QM).

Main Equation

-y^{\prime \prime}(z)+z^{2}(i z)^{\epsilon} y(z)=\lambda y(z), \quad \epsilon>0, \quad z \in \Gamma
\]

Γ is a contour in \mathbb{C} in a Stokes wedge

Goal: L^{2}-spectral theory (cf. classical QM).

Great interest: S. Albeverio, C. Bender, M. V. Berry, S. Böttcher, S. F. Brandt, J. Brody, E. Caliceti, F. Cannata, J.-H. Chen, P. Dorey, C. Dunning, A. Fring, H. B. Geyer, S. Graffi, U. Günther, G. S. Japaridze, H. Jones, O. Kirillov, D. Krejčiřík, S. Kuzhel, P. Mannheim, P. Meisinger, K. A. Milton, A. Mostafazadeh, M. C. Ogilvie, K. C. Shin, P. Siegl, J. Sjöstrand, F. Stefani, T. Tanaka, R. Tateo, M. Znojil...

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z),
$$

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e. (formally)

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e. (formally)

$$
\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T}
$$

where

$$
(\mathcal{P} f)(z)=f(-\bar{z}) \quad \text { and } \quad(\mathcal{T} f)(z)=\overline{f(z)}
$$

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

- Spaces?

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

- Spaces? Domains?

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\mathcal{P T} \ell=\ell \mathcal{P} \mathcal{T} .
$$

Problems:

- Spaces? Domains? Operators?

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

- Spaces? Domains? Operators? $\mathcal{P} \mathcal{T}$ symmetric?

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

- Spaces? Domains? Operators? $\mathcal{P} \mathcal{T}$ symmetric?
- Is H self-adjoint in a Krein space?

Today $\epsilon=2$

$$
\ell(y)(z):=-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma .
$$

Stokes lines: Complex numbers with $\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ Stokes wedges: between two Stokes lines. The contour Γ is in two such wedges and tends to infinity.
Bender, Böttcher: ℓ is $\mathcal{P} \mathcal{T}$ symmetric, i.e.

$$
\overline{\mathcal{P} \mathcal{T} \ell=\ell \mathcal{P} \mathcal{T} .}
$$

Problems:

- Spaces? Domains? Operators? $\mathcal{P} \mathcal{T}$ symmetric?
- Is H self-adjoint in a Krein space?
- Is the spectrum real?

Back to the real line

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma . \tag{1}
\end{equation*}
$$

Back to the real line

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma \tag{1}
\end{equation*}
$$

Choose ϕ with $0<\phi<\frac{\pi}{3}$

Back to the real line

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma \tag{1}
\end{equation*}
$$

Choose ϕ with $0<\phi<\frac{\pi}{3}$ and set

$$
\Gamma=\Gamma_{\phi}:=\left\{x e^{i \phi \operatorname{sgn} x}: x \in \mathbb{R}\right\}
$$

Back to the real line

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma \tag{1}
\end{equation*}
$$

Choose ϕ with $0<\phi<\frac{\pi}{3}$ and set

$$
\Gamma=\Gamma_{\phi}:=\left\{x e^{i \phi \operatorname{sgn} x}: x \in \mathbb{R}\right\}
$$

Set $w(x):=y(z(x))$ with $z(x):=x e^{i \phi \operatorname{sgn} x}$.

Back to the real line

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma . \tag{1}
\end{equation*}
$$

Choose ϕ with $0<\phi<\frac{\pi}{3}$ and set

$$
\Gamma=\Gamma_{\phi}:=\left\{x e^{i \phi \operatorname{sgn} x}: x \in \mathbb{R}\right\} .
$$

Set $w(x):=y(z(x))$ with $z(x):=x e^{i \phi \operatorname{sgn} x}$. Then: y solves (1) for $x \neq 0$ if and only if w solves

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0
\end{array}
$$

y cont. at zero $\Leftrightarrow w(0+)=w(0-)$
y^{\prime} cont. at zero $\Leftrightarrow e^{-i \phi} w^{\prime}(0+)=e^{i \phi} w^{\prime}(0-)$

Plan + Overview

(1) Consider the equation on the semi axis

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis
(3) Study operator with some matching condition in zero on \mathbb{R}

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Define operators A_{+}^{D} via LHS of (2) with

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Define operators A_{+}^{D} via LHS of (2) with
$\operatorname{dom} A_{+}^{D}:=\left\{w, A_{+}^{D} w \in L^{2}\left(\mathbb{R}^{+}\right): w, w^{\prime} \in A C\left(\mathbb{R}^{+}\right), w(0)=0\right\}$

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Define operators A_{+}^{D} via LHS of (2) with

$$
\operatorname{dom} A_{+}^{D}:=\left\{w, A_{+}^{D} w \in L^{2}\left(\mathbb{R}^{+}\right): w, w^{\prime} \in A C\left(\mathbb{R}^{+}\right), w(0)=0\right\}
$$

and A_{-}^{D} via LHS of (3) with a similar domain.

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Define operators A_{+}^{D} via LHS of (2) with

$$
\operatorname{dom} A_{+}^{D}:=\left\{w, A_{+}^{D} w \in L^{2}\left(\mathbb{R}^{+}\right): w, w^{\prime} \in A C\left(\mathbb{R}^{+}\right), w(0)=0\right\}
$$

and A_{-}^{D} via LHS of (3) with a similar domain.
Lemma

$$
\lambda \in \sigma_{p}\left(A_{+}^{D}\right) \quad \Leftrightarrow \quad \bar{\lambda} \in \sigma_{p}\left(A_{-}^{D}\right)
$$

Half line operators + Dirichlet boundary condition

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & x<0 \tag{3}
\end{array}
$$

Define operators A_{+}^{D} via LHS of (2) with

$$
\operatorname{dom} A_{+}^{D}:=\left\{w, A_{+}^{D} w \in L^{2}\left(\mathbb{R}^{+}\right): w, w^{\prime} \in A C\left(\mathbb{R}^{+}\right), w(0)=0\right\}
$$

and A_{-}^{D} via LHS of (3) with a similar domain.
Lemma

$$
\begin{aligned}
\lambda \in \sigma_{p}\left(A_{+}^{D}\right) & \Leftrightarrow \bar{\lambda} \in \sigma_{p}\left(A_{-}^{D}\right) \\
\lambda \in \rho\left(A_{+}^{D}\right) & \Leftrightarrow \bar{\lambda} \in \rho\left(A_{-}^{D}\right)
\end{aligned}
$$

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

According to the Sims '57 classification (modified in [BMcEP '99])

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

According to the Sims '57 classification (modified in [BMcEP '99])
Theorem

- If $\phi \notin\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ then (2) is in Limit Point Case (i.e. one sol. $\notin L^{2}\left(\mathbb{R}^{+}\right)$).

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

According to the Sims '57 classification (modified in [BMcEP '99])
Theorem

- If $\phi \notin\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ then (2) is in Limit Point Case (i.e. one sol. $\notin L^{2}\left(\mathbb{R}^{+}\right)$).
- If $\phi \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ then (2) is in Limit Circle Case (i.e. both sol. $\in L^{2}\left(\mathbb{R}^{+}\right)$).

Limit point, limit circle

The two sol. of (2) satisfy asymptotically (e.g. Eastham '89)

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. Hence

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

According to the Sims '57 classification (modified in [BMcEP '99])
Theorem

- If $\phi \notin\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ then (2) is in Limit Point Case (i.e. one sol. $\notin L^{2}\left(\mathbb{R}^{+}\right)$).
- If $\phi \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$ then (2) is in Limit Circle Case (i.e. both sol. $\in L^{2}\left(\mathbb{R}^{+}\right)$).
- Similarly for Equation (3).

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\Gamma \text { in Stokes wedge } \cong \text { Limit Point Case }
$$

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Circle Case:

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Circle Case:
Both sol. of Equation (2) are in $L^{2}\left(\mathbb{R}^{+}\right)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Circle Case:
Both sol. of Equation (2) are in $L^{2}\left(\mathbb{R}^{+}\right)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

$$
\sigma\left(A_{+}^{D}\right)=\sigma\left(A_{-}^{D}\right)=\mathbb{C} .
$$

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Circle Case:
Both sol. of Equation (2) are in $L^{2}\left(\mathbb{R}^{+}\right)$. The Dirichlet condition at zero will be matched by a linear combination, i.e.

$$
\sigma\left(A_{+}^{D}\right)=\sigma\left(A_{-}^{D}\right)=\mathbb{C}
$$

Missing: Boundary condition at $\pm \infty$ (cf. [AT'10] and [AT'12]).

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Point Case:

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Point Case:
Theorem
The spectrum of A_{+}^{D} and A_{-}^{D} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Point Case:
Theorem
The spectrum of A_{+}^{D} and A_{-}^{D} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

Limit point, circle and spectral properties

Explanation for Stokes wedges and lines:

$$
\begin{aligned}
\Gamma \text { in Stokes wedge } & \cong \text { Limit Point Case } \\
\Gamma \text { in Stokes line } & \cong \text { Limit Circle Case }
\end{aligned}
$$

Discussion Limit Point Case:
Theorem
The spectrum of A_{+}^{D} and A_{-}^{D} consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point and is in

Moreover, if $\phi<\frac{\pi}{4}$ then

$$
\sigma\left(A_{+}^{D}\right) \cap \sigma\left(A_{-}^{D}\right)=\emptyset
$$

Plan + Overview

Assume from now on Limit Point Case or, what is the same

Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0<\phi<\frac{\pi}{3}$.

Plan + Overview

Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0<\phi<\frac{\pi}{3}$.

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis
(3) Study operator with some matching condition in zero on \mathbb{R} :

Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0<\phi<\frac{\pi}{3}$.

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis
(3) Study operator with some matching condition in zero on \mathbb{R} :
(1) $\mathcal{P} \mathcal{T}$ symmetry

Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0<\phi<\frac{\pi}{3}$.

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis
(3) Study operator with some matching condition in zero on \mathbb{R} :
(1) $\mathcal{P T}$ symmetry
(2) Selfadjointness in a Krein space

Plan + Overview

Assume from now on Limit Point Case or, what is the same Γ in Stokes wedge, i.e. $0<\phi<\frac{\pi}{3}$.

Plan + Overview

(1) Consider the equation on the semi axis
(2) Study operator with Dirichlet boundary conditions on the semi axis
(3) Study operator with some matching condition in zero on \mathbb{R} :
(1) $\mathcal{P T}$ symmetry
(2) Selfadjointness in a Krein space
(3) Spectrum

$\mathcal{P} \mathcal{T}$ symmetric operators

Define

$$
(\mathcal{P} f)(x)=f(-x) \quad \text { and } \quad(\mathcal{T} f)(x)=\overline{f(x)}, \quad f \in L^{2}(\mathbb{R})
$$

$\mathcal{P} \mathcal{T}$ symmetric operators

Define

$$
(\mathcal{P} f)(x)=f(-x) \quad \text { and } \quad(\mathcal{T} f)(x)=\overline{f(x)}, \quad f \in L^{2}(\mathbb{R})
$$

Definition
A closed densely defined op. H in $L^{2}(\mathbb{R})$ is $\mathcal{P} \mathcal{T}$ symmetric if for all $y \in \operatorname{dom} H$ we have

$$
\mathcal{P} \mathcal{T} y \in \operatorname{dom} H \quad \text { and } \quad \mathcal{P} \mathcal{T} H y=H \mathcal{P} \mathcal{T} y
$$

Recall: Krein spaces

\mathcal{H} with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

Recall: Krein spaces

\mathcal{H} with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$
\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

and $\left(\mathcal{H}_{ \pm}, \pm[\cdot, \cdot]\right)$ are Hilbert spaces.
Here:

Recall: Krein spaces

\mathcal{H} with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$
\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

and $\left(\mathcal{H}_{ \pm}, \pm[\cdot, \cdot]\right)$ are Hilbert spaces.
Here:

$$
\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right) \text { with } \quad[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)
$$

is a Krein space.

Recall: Krein spaces

\mathcal{H} with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$
\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

and $\left(\mathcal{H}_{ \pm}, \pm[\cdot, \cdot]\right)$ are Hilbert spaces.
Here:

$$
\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right) \quad \text { with } \quad[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)
$$

is a Krein space.

- Define the Adjoint A^{+}with respect to $[\cdot, \cdot]$.

Recall: Krein spaces

\mathcal{H} with a hermitian sesquilinear form $[\cdot, \cdot]$ is a Krein space if

$$
\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

and $\left(\mathcal{H}_{ \pm}, \pm[\cdot, \cdot]\right)$ are Hilbert spaces.
Here:

$$
\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right) \quad \text { with } \quad[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)
$$

is a Krein space.

- Define the Adjoint A^{+}with respect to $[\cdot, \cdot]$.
- $A[\cdot, \cdot]$-selfadjoint if $A^{+}=A$.

Full line operator $A+$ conditions at zero

Define operator A

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with domain

Full line operator $A+$ conditions at zero

Define operator A

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with domain

$$
\left.\begin{array}{c}
\left.w\right|_{\mathbb{R}^{ \pm}},\left.w^{\prime}\right|_{\mathbb{R}^{ \pm}} \in A C\left(\mathbb{R}^{ \pm}\right) \\
w(0+)=w(0-) \\
w^{\prime}(0+)=\alpha w^{\prime}(0-)
\end{array}\right\}
$$

Then y on Γ is continuous. y^{\prime} on Γ is continuous $\Leftrightarrow \alpha=e^{2 i \phi}$.
Theorem

Full line operator $A+$ conditions at zero

Define operator A

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with domain

$$
\left.\begin{array}{c}
\left.w\right|_{\mathbb{R}^{ \pm}},\left.w^{\prime}\right|_{\mathbb{R}^{ \pm}} \in A C\left(\mathbb{R}^{ \pm}\right) \\
w(0+)=w(0-) \\
w^{\prime}(0+)=\alpha w^{\prime}(0-)
\end{array}\right\}
$$

Then y on Γ is continuous. y^{\prime} on Γ is continuous $\Leftrightarrow \alpha=e^{2 i \phi}$.
Theorem

- A is $\mathcal{P} \mathcal{T}$-symmetric if and only if $|\alpha|=1$.
- A is $[\cdot, \cdot]$-selfadjoint if and only if $\alpha=e^{4 i \phi}$.

Full line operator $A, \alpha=e^{4 i \phi}$
Lemma

Full line operator $A, \alpha=e^{4 i \phi}$
Lemma
If $\lambda \notin \sigma_{p}\left(A_{+}^{D}\right) \cup \sigma_{p}\left(A_{-}^{D}\right)$, then

$$
\lambda \in \sigma_{p}(A) \Leftrightarrow \frac{u_{\lambda,+}^{\prime}(0)}{u_{\lambda,+}(0)}=e^{4 i \phi} \frac{u_{\lambda,-}^{\prime}(0)}{u_{\lambda,-}(0)}
$$

where $u_{\lambda,+}, u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).
If $\phi<\frac{\pi}{4}$ we obtain

$$
\sigma_{p}(A) \neq \mathbb{C}
$$

Full line operator $A, \alpha=e^{4 i \phi}$

Lemma

If $\lambda \notin \sigma_{p}\left(A_{+}^{D}\right) \cup \sigma_{p}\left(A_{-}^{D}\right)$, then

$$
\lambda \in \sigma_{p}(A) \Leftrightarrow \frac{u_{\lambda,+}^{\prime}(0)}{u_{\lambda,+}(0)}=e^{4 i \phi} \frac{u_{\lambda,-}^{\prime}(0)}{u_{\lambda,-}(0)}
$$

where $u_{\lambda,+}, u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).
If $\phi<\frac{\pi}{4}$ we obtain

$$
\sigma_{p}(A) \neq \mathbb{C}
$$

Moreover, A and $A_{+}^{D} \times A_{+}^{D}$ are 1-dim extensions of the (Krein space) symmetric operator $A \cap\left(A_{+}^{D} \times A_{+}^{D}\right)$ and we obtain

Full line operator $A, \alpha=e^{4 i \phi}$

Lemma

If $\lambda \notin \sigma_{p}\left(A_{+}^{D}\right) \cup \sigma_{p}\left(A_{-}^{D}\right)$, then

$$
\lambda \in \sigma_{p}(A) \Leftrightarrow \frac{u_{\lambda,+}^{\prime}(0)}{u_{\lambda,+}(0)}=e^{4 i \phi} \frac{u_{\lambda,-}^{\prime}(0)}{u_{\lambda,-}(0)}
$$

where $u_{\lambda,+}, u_{\lambda,-}$ are non-zero sol. of (2), resp. (3).
If $\phi<\frac{\pi}{4}$ we obtain

$$
\sigma_{p}(A) \neq \mathbb{C}
$$

Moreover, A and $A_{+}^{D} \times A_{+}^{D}$ are 1-dim extensions of the (Krein space) symmetric operator $A \cap\left(A_{+}^{D} \times A_{+}^{D}\right)$ and we obtain

Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$. Then

$$
\rho(A) \neq \emptyset .
$$

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{T}$ symmetric.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{T}$ symmetric.
(2) A is $[\cdot, \cdot]$-selfadjoint in the Krein space $\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right)$ with $[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)$.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{I}$ symmetric.
(2) A is $[\cdot, \cdot]$-selfadjoint in the Krein space $\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right)$ with $[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)$.
(3) $\rho(A) \neq \emptyset$.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{T}$ symmetric.
(2) A is $[\cdot, \cdot]$-selfadjoint in the Krein space $\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right)$ with $[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)$
(3) $\rho(A) \neq \emptyset$.
(4) Spectrum is symmetric with respect to \mathbb{R}.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{I}$ symmetric.
(2) A is $[\cdot, \cdot]$-selfadjoint in the Krein space $\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right)$ with $[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)$.
(3) $\rho(A) \neq \emptyset$.
(1) Spectrum is symmetric with respect to \mathbb{R}.

- Resolvent difference of A and $A_{+}^{D} \times A_{+}^{D}$ is one. Hence spectrum consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point.

Full line operator $A, \alpha=e^{4 i \phi}$

$$
A w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x), & x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x), & x<0\end{cases}
$$

with $w(0+)=w(0-)$ and $w^{\prime}(0+)=e^{4 i \phi} w^{\prime}(0-)$.
Theorem
Let $\alpha=e^{4 i \phi}$ and $\phi<\frac{\pi}{4}$.
(1) A is $\mathcal{P} \mathcal{I}$ symmetric.
(2) A is $[\cdot, \cdot]$-selfadjoint in the Krein space $\left(L^{2}(\mathbb{R}),[\cdot, \cdot]\right)$ with $[\cdot, \cdot]:=(\mathcal{P} \cdot, \cdot)$.
(3) $\rho(A) \neq \emptyset$.
(1) Spectrum is symmetric with respect to \mathbb{R}.

- Resolvent difference of A and $A_{+}^{D} \times A_{+}^{D}$ is one. Hence spectrum consists of discrete eigenvalues of finite algebraic multiplicity with no finite acc. point.

Next: Realness of spectrum. $\mathcal{P} \mathcal{T}$-symmetric case $(|\alpha|=1)$.

Thank You!

